JPS61200461A - Ultrasonic microscope - Google Patents

Ultrasonic microscope

Info

Publication number
JPS61200461A
JPS61200461A JP60041095A JP4109585A JPS61200461A JP S61200461 A JPS61200461 A JP S61200461A JP 60041095 A JP60041095 A JP 60041095A JP 4109585 A JP4109585 A JP 4109585A JP S61200461 A JPS61200461 A JP S61200461A
Authority
JP
Japan
Prior art keywords
sample
specimen
inclination
scanning
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60041095A
Other languages
Japanese (ja)
Inventor
Katsuji Ikenaga
池永 勝次
Nobuyuki Nakajima
中島 暢之
Masao Takai
高井 正生
Koshi Umemoto
梅本 講司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60041095A priority Critical patent/JPS61200461A/en
Publication of JPS61200461A publication Critical patent/JPS61200461A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance operability, by matching the surface inclination direction of a specimen with a predetermined direction by rotating the specimen so as to eliminate the inclination of an interference fringe generated by the shift of a scanning direction and the surface inclination direction of the specimen and correcting inclination in the matched state. CONSTITUTION:A specimen 7 is set to a specimen rotary stand 14b to pick up the image of said specimen 7 and the video signal from a receiver 10 and the scanning position data from a specimen stand driving part 13 are inputted to an operational controller 16. The operational controller 16 calculates angle of rotation by the interference fringe appearing in the image displayed on a display apparatus 12 and the line parallel to a scanning plane to rotate the specimen rotary stand 14b. Next, angle of inclination is calculated by the intervals between interference fringes on the image and the height difference and a piezoelectric element 17 is expanded and contracted to correct inclination.

Description

【発明の詳細な説明】 〔発明の利用分野〕 未発明は、超音波顕微鏡に係り、特に高い精度の@察を
好なうのりこ好適な超音波顕微鏡に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an ultrasonic microscope, and particularly to an ultrasonic microscope that is suitable for highly accurate observation.

〔発明の背景〕[Background of the invention]

超音波顕微鏡の概略を第7図および第8@によって説明
する。近年、]GH2rこ文び超高周波の音波の発生お
よび検出が可能となり、水中で約1μmの音波長が実現
できること1こよって該超音波を用いて高い分解能を有
する撮像が可能となってきた。第7図において、超音波
の集束および送受は音波レンズ1により行なっている。
The outline of the ultrasonic microscope will be explained with reference to Fig. 7 and Fig. 8@. In recent years, it has become possible to generate and detect ultrahigh-frequency sound waves using the GH2r technology, and a sound wavelength of about 1 μm can be achieved underwater, making it possible to perform imaging with high resolution using the ultrasonic waves. In FIG. 7, ultrasonic waves are focused, transmitted and received by a sonic lens 1.

該音波レンズ1の構造は1円柱状の溶融石英等を用いた
物質の一面を光学研磨+7、載面の上に上下の電極3に
よってはさみサンドウィッチ構造とした該圧電薄膜(例
えばZn0)2を設けた構成となっている。
The structure of the acoustic lens 1 is that one side of a material made of cylindrical fused silica or the like is optically polished +7, and the piezoelectric thin film (for example, Zn0) 2 is provided on the mounting surface in a sandwich structure with upper and lower electrodes 3. The structure is as follows.

この圧電薄膜2#こパルス発振器4#こよって発信した
パルス5を印加して超音波6を発生させている。
The ultrasonic wave 6 is generated by applying the pulse 5 transmitted by the piezoelectric thin film 2# to the pulse oscillator 4#.

また、前記音波レンズ1の他端部會こは口径0.111
1φ〜1.0m−程度の凹面の半球穴が形成さnている
。該半球穴と試料7との1ljcは、fiI記超音波6
を該試料7vこ伝播させるための媒質(例えば水)8が
満たされている。
The other end of the acoustic lens 1 has an aperture of 0.111 mm.
A concave hemispherical hole of about 1φ to 1.0 m is formed. The distance between the hemispherical hole and the sample 7 is the ultrasonic wave 6
It is filled with a medium (for example, water) 8 for propagating the sample 7v.

このような構成1こおいて、前記圧4m膜2によつて発
生した超音波6は明記音波レンズ】内を平面波となって
伝播する。該平面波が半球穴に達すると、該音波レンズ
1を成す石英と媒質8である水との伝播する音速の差に
より屈折作用が生じ、試料7の上面VこIl!束した超
音波6をI!6射することができる。逆に、試料7から
叉射さrてくる超音波は、前記音波レンズ1により集音
整相され、平面波となって圧電4 $ 2 rこ達し、
ここで高周波信号(以下RF倍信号いう)9#こ変換さ
nる。このRF信号9を受信器10で受信し、ダイオー
ド検波すると2もにビデオ信号11に変換して表示装置
1j32の入力信号として用いている。このようにして
、試料7からの反射超音波を得ているが、この動作を同
時に試料7を試料台駆動部13CよってX−Y平面内で
2次元的に走査させ、ば試料7の所定範囲における状態
をl前記表示g装置12に表示する構成となっている。
In such a configuration 1, the ultrasonic wave 6 generated by the 4 m pressure membrane 2 propagates as a plane wave within the acoustic wave lens. When the plane wave reaches the hemispherical hole, a refraction effect occurs due to the difference in the propagation speed of sound between the quartz forming the sound wave lens 1 and the water acting as the medium 8, so that the upper surface of the sample 7 is reflected. The bundled ultrasonic wave 6 is I! Can shoot 6 shots. On the other hand, the ultrasonic wave emitted from the sample 7 is collected and phased by the sonic lens 1, becomes a plane wave, and reaches the piezoelectric 4 $ 2 r.
Here, the high frequency signal (hereinafter referred to as RF multiplied signal) is converted. This RF signal 9 is received by a receiver 10 and subjected to diode detection and converted into a video signal 11, which is used as an input signal for the display device 1j32. In this way, reflected ultrasonic waves from the sample 7 are obtained. At the same time, this operation is performed by scanning the sample 7 two-dimensionally within the X-Y plane by the sample stage drive unit 13C, for example, a predetermined range of the sample 7. The display device 12 is configured to display the status of 1 on the display device 12.

ところで、前述のような超音波顕微鏡に用いろn、る音
波は、高分解能を得るためC100MH8〜IGHzと
いう超高周波とする。したがって、該音波の波長人が極
めて垣くなるため、前記試料7の上面がわずかに傾斜し
ていても、該傾M)こよる変4Dのλ/2毎に音波が干
渉して表示装置】2の画面にiff記干渉による干渉縞
が発生する。このため、該干渉縞によって有効な観察が
行なえないという入点があった。また、餌記人点を解決
するものとして、前記試料7の形状を変更したり、他の
部材であるブロック15に接着する等の対策が必要で、
作業能率が非常rこ慾いという入点もあった。
By the way, the sound waves used in the above-mentioned ultrasonic microscope have an ultra-high frequency of C100 MH8 to IGHz in order to obtain high resolution. Therefore, since the wavelength of the sound waves is extremely different, even if the top surface of the sample 7 is slightly inclined, the sound waves interfere with each other every λ/2 of the change 4D due to the inclination M). Interference fringes occur on the screen of No. 2 due to IF interference. For this reason, there was a problem that effective observation could not be performed due to the interference fringes. In addition, in order to solve the problem, it is necessary to take measures such as changing the shape of the sample 7 or adhering it to the block 15, which is another member.
There was also a comment that the work efficiency was very poor.

た。Ta.

そこで、m記試料面の傾きを任意な方向rこ傾斜させ得
る手段すなわち試料台上に配置した圧電素子等を複数設
置し、該複数の圧電素子を操作して前記干渉縞をなくす
方向に試料を傾斜させる構成のものが知らrている。(
例えば特開昭58−15152号公報)ところが、l!
iT述の構成においては、画像を確認しながら試料傾斜
手段を操作しなけn、ばならず、操作性の面での配慮が
なさnでいなかった。
Therefore, a means for tilting the inclination of the sample surface m in an arbitrary direction r is provided, in other words, a plurality of piezoelectric elements placed on a sample stage, and the plurality of piezoelectric elements are operated to move the sample in a direction that eliminates the interference fringes. A structure in which the angle is tilted is known. (
(For example, Japanese Patent Application Laid-Open No. 15152/1983) However, l!
In the configuration described in IT, the sample tilting means must be operated while checking the image, and no consideration was given to operability.

また、通常試料面の傾ぎを補正する構成とじては、直角
2方向の傾斜手段を組合せたものとなっているが、該試
料面の傾とが前記各傾斜手段の傾斜方向とず0ている場
合の補正作業はさらに煩雑となる。こrを解決するもの
として、試料を回転させ得る回転手段を設け、該試料の
傾斜力向を回転させることによって変える構成のものが
知られ。
Further, the structure for correcting the inclination of the sample surface is usually a combination of inclination means in two directions at right angles to each other, but the inclination of the sample surface is not the same as the inclination direction of each of the above-mentioned inclination means. The correction work becomes even more complicated when there are. As a solution to this problem, there is known a structure in which a rotating means capable of rotating the sample is provided, and the direction of the tilting force on the sample is changed by rotating.

ている。(例えば実開昭57−194060号公報)と
ころが、試料の回転角度の割出し等については、その開
示がなく、前述のものと同様操作面における配慮がなさ
れていなかった。
ing. (For example, Japanese Utility Model Application Publication No. 57-194060) However, there is no disclosure regarding the determination of the rotation angle of the sample, and like the above-mentioned one, no consideration was given to the operational aspects.

〔発明の目的〕[Purpose of the invention]

本発明の目的とするところは、試料面が傾斜して配置さ
nた場合において、該試料面の角度補正が容易に行なえ
、操作性のよい超音波顕微鏡を提供することにある。
An object of the present invention is to provide an ultrasonic microscope with good operability, in which the angle of the sample surface can be easily corrected when the sample surface is arranged at an angle.

〔発明の概要〕[Summary of the invention]

観察しようとする試料を試料台上に設置した状態におい
て、該試料の上面すなわち試料面は音波レンズとの相対
的な走査方向に対してずれて傾斜しているのが大半であ
る。したがって、1iff記状態で撮像を行なうと画像
には干渉縞が生じる。該干渉縞は前述の走査方向と傾斜
方向とのすn、tcよって斜めに描と出さrる。この干
渉縞の傾まを、試料を回転させることによりなくして垂
直あるいは水平に位置させると、試料の傾斜方向は走査
方向と一致する。すなわち、試料面の傾斜を走査方向の
一方だけにすることがでとる。本発明は、前述の二よに
看目し、試料面の角度を変更し得る手段と、試料面の角
度を保持した状態で回転させ得る手段と、干渉縞の傾#
により試料の必要回転角度を演算する手段とから成り、
試料面の傾斜方向を所定の方向に労わせるように該試料
を回転させ、一致した状態で前記傾斜を補正するように
したことを特徴とするものである。
In most cases, when a sample to be observed is placed on a sample stage, the upper surface of the sample, that is, the sample surface, is tilted and deviated from the scanning direction relative to the sonic lens. Therefore, when imaging is performed in the 1iff state, interference fringes occur in the image. The interference fringes are drawn obliquely due to the above-mentioned scanning direction and tilt direction. If the inclination of the interference fringes is eliminated by rotating the sample and the sample is positioned vertically or horizontally, the inclination direction of the sample coincides with the scanning direction. That is, this can be achieved by tilting the sample surface only in one direction in the scanning direction. The present invention can be seen from the above-mentioned two points, and includes a means for changing the angle of the sample surface, a means for rotating the sample surface while maintaining the angle, and an inclination of interference fringes.
means for calculating the required rotation angle of the sample by
The present invention is characterized in that the sample is rotated so that the inclination direction of the sample surface is forced in a predetermined direction, and the inclination is corrected when the inclination direction of the sample surface is aligned.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明による一実施例を第1図ないし第6図によ
り説明する。同図において、前記従来例と同一符号は同
一部材を示すものである。14aは前述の試料台】4上
に圧電素子】7および固定子】8を介して支持さnた試
料傾斜台である。
An embodiment according to the present invention will be described below with reference to FIGS. 1 to 6. In the figure, the same reference numerals as in the conventional example indicate the same members. Reference numeral 14a denotes a sample tilting table which is supported on the sample table 4 described above via a piezoelectric element 7 and a stator 8.

14bは該試料傾斜台14a上に設置さr、た試料回転
台である。なお、面記圧電素子】7は印加する電圧にこ
よってその軸方向への伸縮層が変化するものであり、第
6図に示すように所定の間隔を隔てて対向配置さnてい
る。】6は前記受信器10からのビデオ信号と試料台協
動部13からの走査位置データとを入力としてlfff
f1圧電素子17の伸縮層および試料回転台14bの回
転階を演算して該圧電素子17および試料回転台14b
を制御する演算制御器である。なお、ここで、該演算制
御器】6の演算内容をこついて詳述すると、試料7の上
面の傾斜は走査方向に対してずれて配置されることが多
い。したがって、第4図(a)C示すように表示装置1
2に表示される画像には干渉縞30a。
14b is a sample rotating table installed on the sample tilting table 14a. The planar piezoelectric elements 7 have elastic layers that change in the axial direction depending on the applied voltage, and are arranged facing each other at a predetermined interval as shown in FIG. ] 6 inputs the video signal from the receiver 10 and the scanning position data from the sample stage cooperating section 13;
The elastic layer of the f1 piezoelectric element 17 and the rotation stage of the sample rotating table 14b are calculated, and the piezoelectric element 17 and the sample rotating table 14b are
It is an arithmetic controller that controls the Here, the calculation contents of the calculation controller [6] will be explained in detail.The slope of the upper surface of the sample 7 is often disposed offset with respect to the scanning direction. Therefore, as shown in FIG. 4(a)C, the display device 1
The image displayed at 2 has interference fringes 30a.

30bが曳われる。この干渉縞30aの位置には走査平
面に対して平行なA点B点をつなぐ線すなわち、試料面
上の一平面上の線分がある。また、走査軸上のA点から
B点までの距離XおよびyIは既知であるため、走査方
向と前記干渉縞30aとの角度θ鳳はθ+= tan 
” Xt/)’  で求められる。この角度θ・分だけ
前記試料回転台14bを回転すれば、前記A点からB点
までの線分は走査方向と一致し、第4図(b)rこ示す
状態となる。この状態における画像−こ対応する試料面
の状況は第4図(cJc示す状態となっている。この時
の試料面の傾斜は走査方向のみであり、その傾斜角度#
謂は隣接した干渉縞30a、30bの間隔X、から求め
らする。すなわち、前記干渉縞30a 、30bの高さ
方向の変位はλ/2であるため、傾斜角度#嘗はθ口!
tan ”λ/2・Xsによって求めろjる。また、i
tr記演算演算制御器16成について第2図により詳述
するセ、前記ビデオ信号と走査位置データとの突含せを
行なうとともに記憶する画像メモリ16a、第4図Ia
l に示す走査線20上のA点と走査線21上で前記A
点と輝度の同じB点な設定する位置設定器16b、前記
回転角#亀をfR算する演算器16c、該演算器16c
から出力される回転角−鳳の値によって試料回転台14
aを制御する指令制御器16dから成る回転制御部と、
第4 FA tb)に示す走査゛線22上の半波長分だ
け高さの差すなわち2方向における差を有したB点と0
点を設定する位置設定器36e、傾斜角θ會を演算して
前記圧電素子】7の伸縮lに換算(第6図の寸法lの位
置に配置された圧電索子]7の伸縮1hは傾斜角#雪の
場合h=lXtana會 で求めらnる。)する演算器
16f。
30b is towed. At the position of this interference fringe 30a, there is a line connecting point A and point B parallel to the scanning plane, that is, a line segment on one plane on the sample surface. Furthermore, since the distances X and yI from point A to point B on the scanning axis are known, the angle θ between the scanning direction and the interference fringes 30a is θ+= tan
" The state of the sample surface corresponding to the image in this state is as shown in Fig. 4 (cJc).The inclination of the sample surface at this time is only in the scanning direction, and the inclination angle #
This is determined from the distance X between adjacent interference fringes 30a and 30b. That is, since the displacement in the height direction of the interference fringes 30a and 30b is λ/2, the inclination angle # is θ!
Find tan by λ/2・Xs.Also, i
The configuration of the tr arithmetic operation controller 16 will be explained in detail with reference to FIG.
The point A on the scanning line 20 and the point A on the scanning line 21 shown in
a position setter 16b for setting point B having the same brightness as the point; a computing unit 16c for calculating fR of the rotation angle #tortoise; and the computing unit 16c
The sample rotating table 14 is
a rotation control unit consisting of a command controller 16d that controls a;
Point B and 0 have a height difference of half a wavelength on the scanning line 22 shown in 4th FA tb), that is, a difference in two directions.
The position setting device 36e for setting the point calculates the inclination angle θ and converts it into the expansion/contraction 1 of the piezoelectric element]7 (piezoelectric cable placed at the position of dimension l in FIG. 6). In the case of angle #snow, h = lXtana.

訂記仲sth分伸縮させる印加電圧を出力する指令制御
器162から成る試料傾斜制御部とから構成されている
and a sample tilt control section consisting of a command controller 162 that outputs an applied voltage that causes the sample to expand or contract by an amount corresponding to sth.

このような構成りおいて、その制御動作について説明す
る。まず、試料7を試料回転台14b上1こセットし、
この状態で撮像を行ない演算制御器16を作動させる。
With such a configuration, its control operation will be explained. First, place the sample 7 on the sample rotating table 14b,
In this state, imaging is performed and the arithmetic controller 16 is activated.

該演算制御器16の動作は、最初に受信器10からのビ
デオ信号と試料台駆動g5】3からの走査位置データと
を突キ含わせ画像メモ!116aに記憶する。次に、任
意位置設定器]6bにより萌述の如く第4図La)に示
すA点、B点を設定しその点の相対位置から寸法Xsと
yを求め演算器16Cによって回転角aIを求め、この
結果によって指令制御器16dへ信号を出力して試料回
転台14bを回転させる。!I′iY記動作が一回で完
了しない場合には、繰返して行なう。この動作により試
料7の試料面は走査平面に対してその一走査軸のみが平
行にセットされたことになる。
The operation of the arithmetic controller 16 is as follows: First, the video signal from the receiver 10 and the scanning position data from the sample stage drive g5] are combined to produce an image memo! 116a. Next, point A and point B shown in Fig. 4 La) are set using the arbitrary position setter] 6b as described above, and the dimensions Xs and y are determined from the relative positions of the points, and the rotation angle aI is determined using the calculator 16C. Based on this result, a signal is output to the command controller 16d to rotate the sample rotating table 14b. ! If the operation I'iY is not completed in one go, it is repeated. By this operation, the sample surface of the sample 7 is set so that only one scanning axis thereof is parallel to the scanning plane.

次に、前記試料面を前記走査軸に直交する走査軸につい
て傾斜の補正を行なう。まず、!j&像して演算制御器
16を作動させる。そして、受信器10からのビデオ信
号と試料台駆動部13からの走査位置データとを突#労
せ画像メモリ16aC記憶する。該画像メモ!716a
内の画像に干渉縞が2本以上表わjた場合には、該各干
渉縞関の画像上での間隔および高さの差(λ/ 2 )
 cよって傾斜角#−を求める。この際、第4図(b)
のx1寸法だけ離れたB点と0点を任意位置設定器16
eK−より設定し、演算器16fCより傾斜角0歯を求
め、Xs寸法を第6因の1寸法に換算して補正寸法を求
め指令制御器】6タヘ信号を出力し、該指令制御器16
へ信号を出力し、該指令制御器162cよって圧電素子
17を伸縮させ傾斜を補正する。なお、画像に干渉縞が
2本以上表われない場合には、第6図の傾斜角のある走
査軸X方向に走査しながら音波レンズ1と試料7との間
の距離をZ方向に変化させ撮像するいわゆるX−Zモー
ドで表面の傾ぎ角を求めて前述のように補正すれ、ばよ
い。@3図の表示装置12IC示さ0た画像の干渉縞に
おける〆が傾斜角で任意位置設定器16eによりλ′点
Next, the tilt of the sample surface is corrected with respect to a scanning axis perpendicular to the scanning axis. first,! j& and activates the arithmetic controller 16. Then, the video signal from the receiver 10 and the scanning position data from the sample stage drive section 13 are stored in the image memory 16aC. The image memo! 716a
If two or more interference fringes appear in the image, the difference in spacing and height of each interference fringe on the image (λ/2)
c, the inclination angle #- is determined. At this time, Fig. 4(b)
Arbitrary position setter 16 sets point B and point 0, which are separated by x1 dimension.
Set from eK-, obtain the inclination angle 0 tooth from the calculator 16fC, convert the Xs dimension to the 1st dimension of the 6th factor to obtain the corrected dimension, and output the command controller]6tahe signal, and the command controller 16
The command controller 162c expands and contracts the piezoelectric element 17 to correct the inclination. If two or more interference fringes do not appear in the image, change the distance between the sonic lens 1 and the sample 7 in the Z direction while scanning in the X direction of the scanning axis with an inclination angle as shown in Fig. 6. It is sufficient to obtain the inclination angle of the surface in the so-called X-Z mode of imaging and correct it as described above. @3 The end of the interference fringe of the image shown on the display device 12IC in Figure 3 is the inclination angle and is set to the λ' point by the arbitrary position setting device 16e.

B′点を設定し、x/ 、 y/  寸法から演算器1
6flCよりσ′を求め y/寸法を第6図の7寸法に
換算して補正寸法を求め指令制御器162へ信号を出力
し、該指令制御器】6りによって圧電素子17を伸縮さ
せて傾斜を補正する。
Set point B' and calculate from x/ and y/ dimensions using calculator 1.
Calculate σ' from 6flC, convert the y/dimension to the 7th dimension in Fig. 6 to obtain the corrected dimension, and output a signal to the command controller 162, which expands and contracts the piezoelectric element 17 and tilts it. Correct.

このような構成によれば、試料7の上面すなわち試料面
を音波レンズ1との相対的な走査面に対して平行に位置
させることができる。したがって精度の調い観察が行な
える。なお、前記一実施例においては、試料7の傾斜手
段に圧を素子を用いた例について説明したが、用いる超
音波の周波数が低い場合は、ねじ機構等を使用した精度
の低いものでも同様な効果が得られる。また、前述のX
−2モードで直角2方向について、それぞれ傾斜角を求
めて補正しても同様な効果が得られる。さらに、画像の
任意の点を表示装置12の同位置1こ保持したい場合ト
こは、回転ステージJ4bの上にXY方向に位置決め可
能なステージを設けて、その位置を回転中心に−oわせ
でやれば問題はないう〔発明の効果〕 以上説明したよう心太発明によ0.ば、試料面が傾斜し
た状態で試料が配置さnても、該試料面を走査平面−こ
対して平行にでと、かつ、自動的rこ作業が行なわ1、
試料面の角度補正が容易1こ行なえるため、操作性を大
#IAに向上できる。
According to such a configuration, the upper surface of the sample 7, that is, the sample surface can be positioned parallel to the scanning plane relative to the sonic lens 1. Therefore, accurate observation can be performed. In the above embodiment, an example was explained in which a pressure element was used as the means for tilting the sample 7, but if the frequency of the ultrasonic wave used is low, a less precise method using a screw mechanism etc. may also be used. Effects can be obtained. In addition, the aforementioned
A similar effect can be obtained by calculating and correcting the inclination angles in the two orthogonal directions in -2 mode. Furthermore, if you want to hold any point on the image at the same position on the display device 12, you can set up a stage that can be positioned in the X and Y directions on the rotation stage J4b, and align the position with the center of rotation. If you do it, there will be no problem. [Effects of the invention] As explained above, Shinta's invention has resulted in 0. For example, even if the sample is placed with the sample surface inclined, the sample surface can be made parallel to the scanning plane and the scanning operation can be performed automatically.
Since the angle of the sample surface can be easily corrected, operability can be improved to a large degree.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は大発明による超音波顕微鏡の一実施例を示すブ
ロック図、第2図は第1図Vこおける演算制御器の詳細
を示すブロック図、第3図はX−Zモードにおける画像
を示す図、第4図は試料面の傾斜補正時における画像お
よび試料面の状況を示す図、第5図は第1図に示す超音
波顕微鏡rこおける試料支持部の側面図、第6図は第5
図のアーア部平面図、第7図は従来の超音波顕微鏡の原
理を示すブロック図、第8図は従来の試料支持状況を示
す側面図である。 矛1口 第5口 牙乙図 オフ図 オ8凶
Fig. 1 is a block diagram showing an embodiment of the ultrasonic microscope according to the great invention, Fig. 2 is a block diagram showing details of the arithmetic controller in Fig. 1, and Fig. 3 shows an image in the X-Z mode. 4 is a diagram showing an image and the state of the sample surface during tilt correction of the sample surface, FIG. 5 is a side view of the sample support part in the ultrasonic microscope r shown in FIG. 1, and FIG. Fifth
FIG. 7 is a block diagram showing the principle of a conventional ultrasonic microscope, and FIG. 8 is a side view showing a conventional sample support situation. Spear 1 Mouth 5th Mouth Tooth Diagram Off Diagram O8 Ko

Claims (1)

【特許請求の範囲】[Claims] 1、音波伝播体と、この音波伝播体の端部に形成され、
かつ、所定焦点を有する音波レンズとから成り、前記焦
点近傍に置かれた試料からのじよう乱音波により該試料
を撮像する超音波顕微鏡において、前記試料を支持した
状態で回転させ得る試料回転手段と、該試料回転手段の
回転面を一走査方向について傾斜可能に支持える試料傾
斜手段と、撮像情報の干渉縞の傾きおよび間隔により試
料回転角および試料傾斜角を演算し前記試料回転手段お
よび試料傾斜手段を動作させる演算制御器とを有したこ
とを特徴とする超音波顕微鏡。
1. A sound wave propagating body, formed at the end of this sound wave propagating body,
and a sonic lens having a predetermined focal point, and in an ultrasonic microscope that images a sample by means of turbulent sound waves from a sample placed near the focal point, a sample rotation means capable of rotating the sample while supporting it. , a sample tilting means capable of tilting the rotating surface of the sample rotation means in one scanning direction, and a sample rotation angle and a sample tilt angle calculated based on the inclination and interval of interference fringes of the imaging information. An ultrasonic microscope characterized in that it has a calculation controller that operates a tilting means.
JP60041095A 1985-03-04 1985-03-04 Ultrasonic microscope Pending JPS61200461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60041095A JPS61200461A (en) 1985-03-04 1985-03-04 Ultrasonic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60041095A JPS61200461A (en) 1985-03-04 1985-03-04 Ultrasonic microscope

Publications (1)

Publication Number Publication Date
JPS61200461A true JPS61200461A (en) 1986-09-05

Family

ID=12598915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60041095A Pending JPS61200461A (en) 1985-03-04 1985-03-04 Ultrasonic microscope

Country Status (1)

Country Link
JP (1) JPS61200461A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928463A (en) * 2016-06-08 2016-09-07 广东工业大学 Automatic measuring system and method based on characteristic point matching
CN105928464A (en) * 2016-06-08 2016-09-07 广东工业大学 Automatic measuring system and method based on image splicing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105928463A (en) * 2016-06-08 2016-09-07 广东工业大学 Automatic measuring system and method based on characteristic point matching
CN105928464A (en) * 2016-06-08 2016-09-07 广东工业大学 Automatic measuring system and method based on image splicing
CN105928464B (en) * 2016-06-08 2018-11-09 广东工业大学 Automatic measurement system based on image mosaic and measurement method

Similar Documents

Publication Publication Date Title
JP5155693B2 (en) Ultrasonic inspection equipment
US4459852A (en) Acoustic microscope using line-focus acoustic beam
JP3766210B2 (en) 3D ultrasonic imaging device
WO1997050003A1 (en) Confocal ultrasonic imaging system
JPH04198751A (en) Ultrasonic spectrum microscope
JP6397600B1 (en) POSITION CONTROL DEVICE, POSITION CONTROL METHOD, AND ULTRASONIC VIDEO SYSTEM
JPH0523332A (en) Probe and ultrasonic diagnosing apparatus using the same
EP0293803B1 (en) Fan-shape scanning ultrasonic flaw detecting apparatus
JPH0518942A (en) Ultrasonic sound speed measuring device according to v(z) characteristic and ultrasonic microscope using the same
JPS61200461A (en) Ultrasonic microscope
US5024094A (en) Ultrasonic imaging system of bonding zone
JPH0470562A (en) Transmission type ultrasonic microscope
JPH06174703A (en) Curved surface shape-follow-up type ultrasonic flaw detector and control method for probe attitude
JPH0324982B2 (en)
JP2859659B2 (en) Ultrasonic flaw detector
JPS61223551A (en) Ultrasonic microscope
JP2650737B2 (en) Stress measurement method
JPS60205251A (en) Ultrasonic microscope
JPH0510928A (en) Ultrasonic wave image inspection apparatus
JPH02269962A (en) Ultrasonic inspection device
JP2515804B2 (en) Fan-type scanning ultrasonic flaw detector
JPH076957B2 (en) Ultrasound microscope probe
JP3025614B2 (en) Ultrasound inspection method for the subject
JP3327041B2 (en) Atomic force microscope
JP2000316854A (en) Ultrasonic device