JPS61199078A - Surface treating apparatus - Google Patents

Surface treating apparatus

Info

Publication number
JPS61199078A
JPS61199078A JP60039955A JP3995585A JPS61199078A JP S61199078 A JPS61199078 A JP S61199078A JP 60039955 A JP60039955 A JP 60039955A JP 3995585 A JP3995585 A JP 3995585A JP S61199078 A JPS61199078 A JP S61199078A
Authority
JP
Japan
Prior art keywords
electrode
plasma
electrodes
voltage
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60039955A
Other languages
Japanese (ja)
Inventor
Kiyoushiyoku Kin
金 京植
Masao Ito
正雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anelva Corp filed Critical Anelva Corp
Priority to JP60039955A priority Critical patent/JPS61199078A/en
Publication of JPS61199078A publication Critical patent/JPS61199078A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE:To uniformalize density distribution of plasma, by generating a specified magnetic field to one electrode, in the titled apparatus in which high frequency voltage and negative DC voltage are impressed respectively to a pair electrodes covered with insulator excluding opposed surface in a vacuum vessel. CONSTITUTION:A pair of the electrodes 12, 13 are opposed in the vacuum vessel 11 maintaining earth voltage, high frequency voltage and negative DC voltage are impressed by sources 15, 16 respectively, and the parts excluding opposed surface of both electrodes are covered with insulators 17, 18. By providing coils 19, 20 outside the vessel 11 and conducting AC to the coils, an AC mag netic field parallel to the opposed surface of the electrode 12 is generated. The gases of bombs 21-23 are introduced to the vessel 11 at a prescribed mixing ratio, on the other hand, a prescribed pressure is maintained by a vac uum pump 28. By plasma in vacuum generated by discharge, the treatments such as film piling, etching, sputtering, cleaning are applied to the substrate surface mounted on the electrode 12.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、放電によって真空中にプラズマを発生させ
、このプラズマを用いて被処理物表面にr4M 堆a、
エツチング、スパッタリングあるいは清浄化等の処理を
施す表面処理装置に関する。
Detailed Description of the Invention (Industrial Application Field) This invention generates plasma in a vacuum by electric discharge, and uses this plasma to apply r4M deposits,
This invention relates to a surface treatment device that performs treatments such as etching, sputtering, and cleaning.

(従来の技術) 真空中のプラズマを用いて被処理物の表面を処理する場
合には、そのプラズマπ度と処理速度とが比例する。し
かし、従来の2電極放電方式の装置で、電極間の電力を
増加させて高富度プラズマを得ようとすると、その非接
地電極の負電圧の絶対値が増加するので、処理効率が低
下するとともに、イオン衝撃が強くなって被処理物を大
きく損傷する問題があった。
(Prior Art) When treating the surface of a workpiece using plasma in a vacuum, the plasma pi degree and the processing speed are proportional. However, in a conventional two-electrode discharge system, when attempting to obtain high-enrichment plasma by increasing the power between the electrodes, the absolute value of the negative voltage of the non-grounded electrode increases, resulting in a decrease in processing efficiency and However, there was a problem in that the ion bombardment became strong and the object to be treated was seriously damaged.

そこで、電極間の電力を増加させずに高密度プラズマを
得るために、第6図に示す装置が従来から知られている
Therefore, in order to obtain high-density plasma without increasing the power between the electrodes, an apparatus shown in FIG. 6 has been conventionally known.

この第6図の装置は、接地電位を保持する真空容器lに
、一対の電極2,3を対向させるとともに、一方の電極
2には高周波電源4を接続し、他方の電極3は直流電源
5のマイナス側に接続している。
The device shown in FIG. 6 has a pair of electrodes 2 and 3 facing each other in a vacuum container l that holds a ground potential, and one electrode 2 is connected to a high frequency power source 4, and the other electrode 3 is connected to a DC power source 5. Connected to the negative side of

そして、上記一方の電極2は、他方の電極3との対向面
以外の部分を絶縁物6で覆うようにするとともに、この
電極2上に記号Bで示す方向の磁界を発生させるように
している。
The one electrode 2 has an insulating material 6 covering a portion other than the surface facing the other electrode 3, and generates a magnetic field in the direction indicated by symbol B on this electrode 2. .

しかして、上記一方の電極2に高周波電圧を印加し、他
方の電極3に負の直流電圧を印加すると、上記一方の電
極2から放出された電子が、運動線7で示すように、他
方の電極3の負電圧で押し戻されるので、電極2の近傍
での電子のイオン化確率が向上する。しかも、上記記号
B方向の磁界によって、当該電子に擬似サイクロイド運
動を起させ、そのイオン化確率をより一層向上させるこ
とができる。
Therefore, when a high frequency voltage is applied to the one electrode 2 and a negative DC voltage is applied to the other electrode 3, the electrons emitted from the one electrode 2 are transferred to the other electrode as shown by the motion line 7. Since the electrons are pushed back by the negative voltage of the electrode 3, the probability of ionization of electrons near the electrode 2 is improved. Furthermore, the magnetic field in the direction of symbol B causes the electrons to undergo pseudo-cycloid motion, thereby further improving the probability of their ionization.

そして、上記絶縁物6及び真空容器lの側壁の作用で、
この擬似サイクロイド連動を制限又は禁止し 限られた
範囲でプラズマを発生させるようにしている。このよう
に限られた範囲でプラズマを発生させるようにしたのは
、小さなパワーで高密度なプラズマを発生させるためで
ある。
Then, due to the action of the insulator 6 and the side wall of the vacuum container l,
This pseudo-cycloid interlocking is restricted or prohibited to generate plasma within a limited range. The reason why plasma is generated in such a limited range is to generate high-density plasma with small power.

(本発明が解決しようとする問題点) しかし、この従来の装置では、第6図に示すように、擬
似サイクロイド運動前方の密度分布が、その後方の密度
分布よりも高くなり、全体として当該プラズマの密度分
布が不均一になる。
(Problems to be Solved by the Present Invention) However, in this conventional device, as shown in FIG. The density distribution becomes uneven.

もし、密度分布が不均一なプラズマで、被処理物の表面
処理をすれば、その表面処理自体も不均一になるという
問題があった。
If the surface of the object to be treated is treated using plasma with non-uniform density distribution, there is a problem that the surface treatment itself becomes non-uniform.

この発明は、小さなパワーで高密度のプラズマを発生さ
せるとともに、その密度分布を均一化した装置の提供を
目的にする。
An object of the present invention is to provide an apparatus that generates high-density plasma with small power and that has a uniform density distribution.

(問題点を解決するための手段) この発明は、上記の目的を達成するために、接地電位を
保持した真空容器内に一対の電極を対向させるとともに
、一方の電極には高周波電圧を印加し、他方の電極には
直流の負電圧を印加する構成にするとともに、上記一方
の電極であって、他方の電極との対向面以外の部分を絶
縁物で覆ってなる表面処理装置において、上記一方の電
極に対してほぼ平行な交番磁界又は回転磁界を発生させ
る手段をff1ltけている。
(Means for Solving the Problems) In order to achieve the above object, the present invention has a pair of electrodes facing each other in a vacuum container that maintains a ground potential, and a high frequency voltage is applied to one of the electrodes. In the surface treatment apparatus, the other electrode is configured to apply a direct current negative voltage, and a portion of the one electrode other than the surface facing the other electrode is covered with an insulating material. Means for generating an alternating or rotating magnetic field approximately parallel to the electrodes is provided.

(本発明の作用) この装置によるプラズマは、他方の電極の負電圧の作用
と磁界による擬似サイクロイド運動との相乗作用で、高
密度のプラズマが発生するとともに、交番磁界又は回転
磁界の作用で、当該プラズマの分布が分散される。
(Action of the present invention) Plasma produced by this device is generated by the synergistic effect of the negative voltage of the other electrode and the quasi-cycloid motion caused by the magnetic field, and at the same time, by the action of an alternating magnetic field or a rotating magnetic field, The distribution of the plasma is dispersed.

(本発明の効果) 上記のように高密度のプラズマが分散されるので1時間
的に捉えれば、当該プラズマの密度分布は均一化する。
(Effects of the Present Invention) Since high-density plasma is dispersed as described above, the density distribution of the plasma becomes uniform in terms of one hour.

したがって、効率的かつ高速な表面処理が可能になる。Therefore, efficient and high-speed surface treatment becomes possible.

また、限られた範囲でプラズマを発生させるので、その
使用電力も小さくてすむとともに、使用電力を小さくし
た分、イオン衝撃が少なくなるので、被処理物を損傷す
ることもなくなる。
In addition, since plasma is generated in a limited range, the power consumption can be reduced, and the reduced power consumption reduces ion bombardment, so that the object to be processed is not damaged.

(本発明の実施例) 第1図の装置は、接地電位を保持した真空容器II内に
、一対の電極12、!3を対向させている。
(Embodiment of the present invention) The apparatus shown in FIG. 1 includes a pair of electrodes 12, !, in a vacuum vessel II that maintains a ground potential. 3 are facing each other.

そし゛て、一方の電極12には、インピーダンス整合回
路14を介して高周波電源15に接続し、他方の電極1
3は負電圧を供給する直流電源16に接続するとともに
、両電極!2.13の対向面12a、13a以外の部分
を絶縁物17.1日で覆っている。
Then, one electrode 12 is connected to a high frequency power source 15 via an impedance matching circuit 14, and the other electrode 12 is connected to a high frequency power source 15 via an impedance matching circuit 14.
3 is connected to the DC power supply 16 that supplies negative voltage, and both electrodes! The portions other than the opposing surfaces 12a and 13a of 2.13 are covered with an insulator 17.1.

なお、この実施例では真空容器11を接地させることで
、当該真空容器11を接地電極として機能ぎせている。
In this embodiment, by grounding the vacuum container 11, the vacuum container 11 ceases to function as a ground electrode.

内部に一対の電極を設けた真空容器11の外側にはコイ
ル19.20を設け、このコイル19.20に交番電流
を流すことで、電極12の対向面12aに平行な交番磁
界を発生させるようにしている。
A coil 19.20 is provided on the outside of the vacuum vessel 11, which has a pair of electrodes inside, and by passing an alternating current through the coil 19.20, an alternating magnetic field parallel to the facing surface 12a of the electrode 12 is generated. I have to.

このようにした真空容器11には、複数のガスボンへ2
1〜23のガスを所定の混合比にして、バルブ24、バ
リアプルリーク25及びガス導入口28を経由して導入
する一方、バルブ27を介して真空ポンプ28で排気し
、この真空容器ll内を所定の圧力に維持する。
The vacuum container 11 thus constructed has two gas cylinders connected to each other.
The gases 1 to 23 are introduced at a predetermined mixing ratio through the valve 24, the barrier pull leak 25, and the gas inlet 28, while being evacuated by the vacuum pump 28 through the valve 27, and the inside of the vacuum container 11 is is maintained at a predetermined pressure.

しかして、一方の電極12に基板を29を載置しつつ、
真空容器ll内に処理ガスを導入する。そして、コイル
19.20に交流電流を流して電極12の対向面12a
に平行なり方向の交番磁界を作る。この交番磁界を作っ
た状態で、インピーダンス整合回路!4を介して高周波
電源15の高周波電力を電極12に供給し、他方の電極
13には直流電源1Bからの負の電圧を供給する。
Thus, while placing the substrate 29 on one electrode 12,
A processing gas is introduced into the vacuum container 11. Then, by passing an alternating current through the coils 19 and 20, the facing surface 12a of the electrode 12 is
Create an alternating magnetic field parallel to . With this alternating magnetic field created, an impedance matching circuit! 4, high frequency power from a high frequency power source 15 is supplied to the electrode 12, and the other electrode 13 is supplied with a negative voltage from the DC power source 1B.

このようにすれば、電極13の負バイアスの作用とコイ
ル19.20による磁界の作用とで、電極12上で電子
が擬似サイクロイド運動を起すが、この運動方向前方に
おいては、上記絶縁物17と真空容器11の側壁とで、
その擬似サイクロイド運動が禁止又は制限される。
In this way, the electrons cause a pseudo-cycloid movement on the electrode 12 due to the negative bias of the electrode 13 and the magnetic field from the coils 19 and 20, but in the forward direction of this movement, the electrons move against the insulator 17. With the side wall of the vacuum container 11,
The pseudo-cycloid movement is prohibited or restricted.

ただし、この実施例では、上記のように交番磁界を発生
させているので、電極12上の電子がこの交番磁界の作
用で分散させられる。そのために電極12近傍のプラズ
マの密度分布は、時間的に平均してみれば均一化したも
のとなり、したがって。
However, in this embodiment, since an alternating magnetic field is generated as described above, the electrons on the electrode 12 are dispersed by the action of this alternating magnetic field. Therefore, the plasma density distribution near the electrode 12 becomes uniform when averaged over time.

全体的には高密度のプラズマが均一に発生することにな
る。
Overall, high-density plasma is uniformly generated.

この状態で真空容器!!にCHF3+5%C02ガスを
導入して、5i02膜をエツチングすれば、そのエツチ
ング速度は基板29の表面各箇所においてほとんど均一
になる。
Vacuum container in this state! ! If the 5i02 film is etched by introducing CHF3+5% CO2 gas into the substrate 29, the etching rate becomes almost uniform at each location on the surface of the substrate 29.

なお、上記真空容器ll内にプラズマCVDに用いる所
定のガスを導入すれば、一方の電極12に置かれた基板
28に薄膜を堆積させることができるが、その導入ガス
と堆積させうる薄膜とを例示すると次のようになる。
Note that a thin film can be deposited on the substrate 28 placed on one of the electrodes 12 by introducing a predetermined gas used for plasma CVD into the vacuum vessel 11, but if the introduced gas and the thin film that can be deposited are An example is as follows.

S iH4+N2 +NH3→5iNa膜SiH4又は
Si2H6等−+aeSi:H膜S iH4+N20 
   +S +02膜また、この実施例では、プラズマ
を分散させるので、両電極12、!3の対向面12a、
13aの面積を等しくしなくても、当該プラズマの密度
分布を均一化させることができる。
SiH4+N2 +NH3→5iNa film SiH4 or Si2H6 etc.-+aeSi:H film SiH4+N20
+S +02 film Also, in this embodiment, since the plasma is dispersed, both electrodes 12,! 3 facing surface 12a,
Even if the area of 13a is not made equal, the density distribution of the plasma can be made uniform.

そして、上記第1図の装置では交番磁界の作用でプラズ
マを分散させたが、第2図に示すように磁界を矢印30
の方向に回転させて当該プラズマを分散させるようにし
てもよい、この回転磁界を発生させる手段を示したのが
第3〜5図である。
In the apparatus shown in FIG. 1, the plasma was dispersed by the action of an alternating magnetic field, but as shown in FIG.
3 to 5 show a means for generating this rotating magnetic field, which may be rotated in the direction of 1 to disperse the plasma.

第3図は、3つの対称コイル31〜33に3和文番電流
を流して回転磁界を発生させる例、第4図は2組のコイ
ル34と35.3Bと37のそれぞれに、位相を90度
ずらして交番電流を流して回転磁界を発生させる例であ
る。
Fig. 3 shows an example of generating a rotating magnetic field by passing a 3-way current through three symmetrical coils 31 to 33, and Fig. 4 shows an example in which two sets of coils 34, 35.3B, and 37 have a phase of 90 degrees. This is an example in which a rotating magnetic field is generated by flowing an alternating current at different angles.

また、第5図はマグネット38.39を鉄製の円形部材
40に取付け、この円形部材40で磁気回路を構成させ
ている。そして、この第5図の場合には、円形部材40
とともに磁石を回転させるか、あるいは電極12を回転
させるかして、回転磁界を作るようにしている。
Further, in FIG. 5, magnets 38 and 39 are attached to a circular member 40 made of iron, and this circular member 40 constitutes a magnetic circuit. In the case of this FIG. 5, the circular member 40
At the same time, the magnet is rotated or the electrode 12 is rotated to create a rotating magnetic field.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示すもので、第1図は交番磁
界を用いた装置の概略的な断面図、第2図は回転磁界の
方向を示す平面図、第3〜5図のそれぞれは、回転磁界
を発生させる異なった手段を示した原理図、第6図は従
来の装置の概略的な断面図である。 11・・・真空容器、12・・・一方の電極、13・・
・他方の電極、14・・・高周波電源、16・・・直流
電源、17.18・・・絶縁物。
The drawings show an embodiment of the present invention, in which Fig. 1 is a schematic cross-sectional view of a device using an alternating magnetic field, Fig. 2 is a plan view showing the direction of a rotating magnetic field, and Figs. , a principle diagram showing different means for generating a rotating magnetic field, and FIG. 6 a schematic cross-sectional view of a conventional device. 11... Vacuum container, 12... One electrode, 13...
- Other electrode, 14... High frequency power supply, 16... DC power supply, 17.18... Insulator.

Claims (1)

【特許請求の範囲】[Claims] 接地電位を保持した真空容器内に一対の電極を対向させ
るとともに、一方の電極には高周波電圧を印加し、他方
の電極には直流の負電圧を印加する構成にするとともに
、上記一方の電極であって、他方の電極との対向面以外
の部分を絶縁物で覆ってなる表面処理装置において、上
記一方の電極に対してほぼ平行な交番磁界又は回転磁界
を発生させる手段を設けてなる表面処理装置。
A pair of electrodes are placed opposite each other in a vacuum container holding a ground potential, and a high frequency voltage is applied to one electrode, and a negative direct current voltage is applied to the other electrode. A surface treatment device comprising a surface treatment device in which a portion other than the surface facing the other electrode is covered with an insulating material, the surface treatment comprising a means for generating an alternating magnetic field or a rotating magnetic field substantially parallel to the one electrode. Device.
JP60039955A 1985-02-28 1985-02-28 Surface treating apparatus Pending JPS61199078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039955A JPS61199078A (en) 1985-02-28 1985-02-28 Surface treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039955A JPS61199078A (en) 1985-02-28 1985-02-28 Surface treating apparatus

Publications (1)

Publication Number Publication Date
JPS61199078A true JPS61199078A (en) 1986-09-03

Family

ID=12567373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039955A Pending JPS61199078A (en) 1985-02-28 1985-02-28 Surface treating apparatus

Country Status (1)

Country Link
JP (1) JPS61199078A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894134A (en) * 1987-11-27 1990-01-16 Birken Stephen M Mineral refinement by high RF energy application
JPH0530162U (en) * 1991-09-27 1993-04-20 中外炉工業株式会社 Plate cleaning equipment surface cleaning equipment
US5784682A (en) * 1996-02-16 1998-07-21 Birken; Stephen M. System for separating constituents from a base material
EP1507281A1 (en) * 2003-08-14 2005-02-16 Fuji Photo Film B.V. Arrangement, method and electrode for generating a plasma
KR100843009B1 (en) 2006-03-23 2008-07-01 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus
JP2015207790A (en) * 2004-06-21 2015-11-19 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium capable of being read by computer
US9490105B2 (en) 2004-06-21 2016-11-08 Tokyo Electron Limited Plasma processing apparatus and method
US10529539B2 (en) 2004-06-21 2020-01-07 Tokyo Electron Limited Plasma processing apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155533A (en) * 1980-05-02 1981-12-01 Tohoku Metal Ind Ltd Plasma apparatus
JPS57181376A (en) * 1981-04-30 1982-11-08 Toshiba Corp Dry etching device
JPS57181377A (en) * 1981-04-30 1982-11-08 Toshiba Corp Dry etching device
JPS59208727A (en) * 1983-05-12 1984-11-27 Mitsubishi Electric Corp Plasma etching apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155533A (en) * 1980-05-02 1981-12-01 Tohoku Metal Ind Ltd Plasma apparatus
JPS57181376A (en) * 1981-04-30 1982-11-08 Toshiba Corp Dry etching device
JPS57181377A (en) * 1981-04-30 1982-11-08 Toshiba Corp Dry etching device
JPS59208727A (en) * 1983-05-12 1984-11-27 Mitsubishi Electric Corp Plasma etching apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4894134A (en) * 1987-11-27 1990-01-16 Birken Stephen M Mineral refinement by high RF energy application
JPH0530162U (en) * 1991-09-27 1993-04-20 中外炉工業株式会社 Plate cleaning equipment surface cleaning equipment
US5784682A (en) * 1996-02-16 1998-07-21 Birken; Stephen M. System for separating constituents from a base material
EP1507281A1 (en) * 2003-08-14 2005-02-16 Fuji Photo Film B.V. Arrangement, method and electrode for generating a plasma
US7533629B2 (en) 2003-08-14 2009-05-19 Fuji Photo Film B.V. Arrangement, method and electrode for generating a plasma
JP2015207790A (en) * 2004-06-21 2015-11-19 東京エレクトロン株式会社 Plasma processing apparatus, plasma processing method, and storage medium capable of being read by computer
US9490105B2 (en) 2004-06-21 2016-11-08 Tokyo Electron Limited Plasma processing apparatus and method
US10529539B2 (en) 2004-06-21 2020-01-07 Tokyo Electron Limited Plasma processing apparatus and method
US10546727B2 (en) 2004-06-21 2020-01-28 Tokyo Electron Limited Plasma processing apparatus and method
US10854431B2 (en) 2004-06-21 2020-12-01 Tokyo Electron Limited Plasma processing apparatus and method
KR100843009B1 (en) 2006-03-23 2008-07-01 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus

Similar Documents

Publication Publication Date Title
US5534231A (en) Low frequency inductive RF plasma reactor
US10049861B2 (en) Inductively coupled RF plasma source with magnetic confinement and Faraday shielding
US6076483A (en) Plasma processing apparatus using a partition panel
KR100390540B1 (en) Magnetron plasma etching apparatus
JPS6348952B2 (en)
WO2002023588A2 (en) Capacitively coupled plasma reactor
US4943361A (en) Plasma treating method and apparatus therefor
JPH10270430A (en) Plasma treating device
US6468387B1 (en) Apparatus for generating a plasma from an electromagnetic field having a lissajous pattern
JPS634065A (en) Method and apparatus for sputtering material by high frequency discharge
JPS61199078A (en) Surface treating apparatus
KR100196038B1 (en) Helison wave plasma processing method and device therefor
JP4384295B2 (en) Plasma processing equipment
JPH0525536B2 (en)
JPH0557356B2 (en)
JPS61199077A (en) Surface treating apparatus
JPH0830275B2 (en) Rotating magnetic field type magnetron etching device
JPH08225967A (en) Magnetic neutral line discharge plasma treatment device
JPH0530910B2 (en)
JP4223143B2 (en) Plasma processing equipment
JPH06342698A (en) Two-cycle wave excitation plasma device using rotating magnetic field
JPS6269621A (en) Plasma processor
JPS61163639A (en) Method and device for plasma treatment
Pelletier Distributed ECR: concept, performances and perspectives
JPH0964015A (en) Etching device