JPS61198894A - Automatic focus detector - Google Patents

Automatic focus detector

Info

Publication number
JPS61198894A
JPS61198894A JP60039971A JP3997185A JPS61198894A JP S61198894 A JPS61198894 A JP S61198894A JP 60039971 A JP60039971 A JP 60039971A JP 3997185 A JP3997185 A JP 3997185A JP S61198894 A JPS61198894 A JP S61198894A
Authority
JP
Japan
Prior art keywords
signal
focus
output
gate
photoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60039971A
Other languages
Japanese (ja)
Inventor
Masahiko Kato
雅彦 加藤
Shizuka Ishibashi
静 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60039971A priority Critical patent/JPS61198894A/en
Publication of JPS61198894A publication Critical patent/JPS61198894A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain automatic focus detection and adjustment from a video signal without using a special optical system and a photoelectric element by providing a gate signal generating circuit and a gate circuit outputting a chrominance signal from a video amplifier when the gate signal is inputted so as to input the chrominance signal through the gate circuit. CONSTITUTION:Only when the incident luminous intensity of the 3 primary colors is equal in a video signal, the gate circuit 6 is opened and a 3-primary color photoelectric output is fed to a comparison discrimination circuit 7. Then a green light signal output is large, red and blue signal outputs are small and equal nearly to each other at focusing, and when the focus is at front focus, the blue incident light is focused on the photoelectric plane, the blue output is large and the green and red lights are fogged, then the photoelectric output is small. In case of rear focus, the red incident light is focused on the photoelectric plane, the red output is large and the blue and green lights are fogged, then the photoelectric output is small. Thus, the focusing, front focus or rear focus is detected depending on the output ratio of the three primary colors from the comparison discriminating circuit 7, a driver 8 discriminates the focusing state from the detected outputs to move the lens in the focusing direction thereby applying focus adjustment automatically.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はビデオカメラの自動合焦検出装置に関し、さら
に詳しくは色収差を持たせたレンズを通した撮像装置を
用いるビデオカメラの簡易自動合焦検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an automatic focus detection device for a video camera, and more particularly to a simple automatic focus detection device for a video camera that uses an imaging device through a lens having chromatic aberration. This invention relates to a detection device.

「従来の技術」 対物レンズを通過した互に波長の異る2種の光束が各光
束の焦点面に設けられたビシホールを通過するとき、そ
の各通過光量が各波長の光束の合焦状態において最も多
くなることを利用し、両川力の一致点を利用して合焦検
出を行うレンズの色収差による合焦位置検出方式が提案
されている(特公昭59−16247)。
``Prior art'' When two types of light beams with different wavelengths pass through an objective lens and pass through a bisihole provided at the focal plane of each light beam, the amount of each passing light changes when the light beams with each wavelength are in focus. A method of detecting the focus position based on the chromatic aberration of the lens has been proposed (Japanese Patent Publication No. 59-16247), which detects the focus by using the coincidence point of the Ryokawa forces.

「発明が解決しようとする問題点」 しかしながらこの方式によると各分光光束毎の焦点位置
に受光素子を設けなくてはならず、各分光光束の大きさ
に差があるとその分だけ精度が悪くなる。
``Problem to be solved by the invention'' However, according to this method, a light receiving element must be provided at the focal position of each spectral beam, and if there is a difference in the size of each spectral beam, the accuracy will deteriorate accordingly. Become.

「問題を解決するための手段」 本発明はこのような問題を解決するために、適度の色収
差を持たせた対物レンズを通して被写体像を撮像してこ
れを電気信号として出力する撮像装置と、これからのビ
デオ信号を増巾するビデオアンプと、このビデオアンプ
の出力からNTSC信号を発生するエンコーダとから成
る比較的精度を要しないビデオ信号発生装置において、
エンコーダからのクロマ信号(色成分のみの信号)を入
力し、ビデオ信号の各フレーム中の無彩色部に対応する
巾の単数または複数の矩形波出力を発生するゲート信号
発生回路と、このゲート信号が入力されたときにビデオ
アンプからの色信号を通過出力するゲート回路と、ゲー
ト回路を通った色信号を入力し、緑信号が最も大きくて
、赤と青の信号が小さく略等しくなったとき合焦信号を
発生する自動焦点検出装置を提供する。
"Means for Solving the Problem" In order to solve such problems, the present invention provides an imaging device that captures a subject image through an objective lens with appropriate chromatic aberration and outputs the image as an electrical signal, and a future improvement. In a video signal generation device that does not require relatively high precision, it consists of a video amplifier that amplifies the video signal of the video amplifier, and an encoder that generates an NTSC signal from the output of the video amplifier
A gate signal generation circuit that inputs a chroma signal (a signal containing only color components) from an encoder and generates one or more rectangular wave outputs with a width corresponding to the achromatic portion in each frame of a video signal, and this gate signal. A gate circuit that passes and outputs the color signal from the video amplifier when input is input, and a color signal that has passed through the gate circuit is input, and when the green signal is the largest and the red and blue signals are small and approximately equal. An automatic focus detection device that generates a focus signal is provided.

1作用」 本発明は上述の手段により、無彩色信号中に含まれる緑
、赤および青のほぼ等しい成分が、合焦か否かによって
それら三色の成分比が変ることで合焦検出しようとする
ものである。
1. The present invention uses the above-described means to detect focus by changing the ratio of the nearly equal green, red, and blue components contained in the achromatic signal depending on whether or not the three colors are in focus. It is something to do.

「実施例」 以下図を用いて本発明の詳細な説明する。第1図は本発
明の実施例を示す略図であり、第2図はその各部の信号
波形であり、第6図は合焦および非合焦時の6原色信号
の大きさの比較図である。第1図において1は映像の解
像度に支障を来さない程度の色収差を持たせた撮影レン
ズ、2は撮像管あるいは半導体撮像素子等の撮像装置で
、合焦時に緑色光p;撮像装置の光電面上に焦゛点が合
う配置になっている。6は撮像装置からの電気信号を増
巾するビデオアンプ、4はNTSC信号を発生するエン
コーダであり、これらは公知のビデオ信号発生装置であ
る。5はエンコーダ4から色成分のみの信号であるクロ
マ信号を入力し、ビデオ信号の各フレーム中の無彩色部
に対応する部分の矩形波出力をゲート信号として生ずる
ゲート信号発生回路であり、6はゲート信号が入力して
いるときすなわち無彩色信号がエンコーダ4から発生さ
れているときにビデオアンプ6からの緑、赤、青の6原
色信号をパスさせるゲート回路であシ、7はゲート回路
6から入力された3原色信号の太きさを比較し、それら
の大きさの関係から合焦か前ピンか後ピ4よ判定する比
較判定回路、8は比較判定回路の出力に応じて合焦する
方向にレンズ1を駆動するドライバー、9はレンズを駆
動するモーターである。
"Example" The present invention will be described in detail below using the figures. Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a signal waveform of each part thereof, and Fig. 6 is a comparison diagram of the magnitude of six primary color signals in in-focus and out-of-focus states. . In Fig. 1, 1 is a photographing lens with chromatic aberration to the extent that it does not affect the resolution of the image, 2 is an imaging device such as an image pickup tube or a semiconductor image sensor, and when focusing, green light p; The arrangement is such that the focus is on the surface. 6 is a video amplifier that amplifies the electric signal from the imaging device, and 4 is an encoder that generates an NTSC signal, and these are known video signal generators. 5 is a gate signal generation circuit which inputs a chroma signal, which is a signal containing only color components, from the encoder 4 and generates a rectangular wave output of a portion corresponding to an achromatic portion in each frame of the video signal as a gate signal; 7 is a gate circuit that passes the six primary color signals of green, red, and blue from the video amplifier 6 when the gate signal is input, that is, when the achromatic color signal is generated from the encoder 4. A comparison judgment circuit compares the thickness of the three primary color signals input from 4 and determines focus, front focus, or rear focus based on the relationship of their sizes. 8 is a comparison judgment circuit that determines focus according to the output of the comparison judgment circuit. 9 is a motor that drives the lens.

第2図は第1図の各部の信号波形を示し、(ム)はNT
SC信号の1フレームの波形、(g)はNTSC信号中
の色成分のみの色差変調信号すなわちクロマ信号の波形
、CG)はクロマ信号ヲエンベロープ検波した波形でC
の部分はカラー信号部分で、mの部分は無彩色部分であ
る。(船はエンベロープ検波波形の中の無彩色部分mに
対応する部分品の巾を有するゲート信号波形である。
Figure 2 shows the signal waveforms of each part in Figure 1, and (mu) is the NT
The waveform of one frame of the SC signal, (g) is the waveform of the color difference modulation signal of only the color components in the NTSC signal, that is, the chroma signal, and CG) is the waveform of the envelope-detected chroma signal.
The part is a color signal part, and the part m is an achromatic part. (The ship is a gate signal waveform having a width of a component corresponding to the achromatic portion m in the envelope detection waveform.

このような構成における動作を次に説明する。The operation in such a configuration will be explained next.

今レンズが合焦位置にあるとすると、被写体からの入射
光のうち緑色光は撮像面上に結像しく合焦)、赤色光は
撮像面よシ後方に、そして青色光は撮像面よシ前方に焦
点が合うので赤および青の光は共にぼけた状態になる。
Assuming that the lens is in the focus position now, of the incident light from the subject, the green light will form an image on the imaging surface, the red light will be focused behind the imaging surface, and the blue light will be focused behind the imaging surface. Since the focus is on the front, both red and blue light become blurred.

したがってこれら3原色の入射光の強さが等しければ撮
像装置からの出力光は、緑色光の出力が大きく、赤色光
と青色光の出力は小さくなる。入射光に色がついている
ときは3原色の各光電出力は異ってしまうので、このよ
うな関係にはならない。第1図の構成によればビデオ信
号の中、無彩色すなわち3原色の入射光強度が等しいと
きのみゲート回路6が開かれて3原色光電出力がゲート
回路6を通して比較判定回路7に加えられるので、合焦
時には緑色光信号出力は大きく、赤と青の信号出力は小
さくかつほぼ等しくなシ(第3図(a))、前ピンのと
きは青色入射光が光電面上に焦点を結び、青色光の出力
は大きく、緑と赤の光はぼけるのでこれらの光電出力は
小さくなシ(第3図(b))、後ピンのときは赤色入射
光が光電面上に焦点を結び、赤色光の出力は大きく、青
と緑の光はぼけるのでこれらの光電出力は小さくなる。
Therefore, if the intensities of the incident lights of these three primary colors are equal, the output light from the imaging device will have a large output of green light and a small output of red light and blue light. When the incident light is colored, the photoelectric outputs of the three primary colors are different, so this relationship does not exist. According to the configuration shown in FIG. 1, the gate circuit 6 is opened only when the incident light intensity of the achromatic color, that is, the three primary colors in the video signal is equal, and the three primary color photoelectric outputs are applied to the comparison judgment circuit 7 through the gate circuit 6. , when in focus, the green light signal output is large, and the red and blue signal outputs are small and almost equal (Figure 3 (a)); when the front focus is on, the blue incident light is focused on the photocathode, The output of the blue light is large, and the green and red lights are blurred, so their photoelectric output is small (Figure 3 (b)).When the rear focus is on, the red incident light is focused on the photocathode, The light output is large, and the blue and green lights are blurred, so their photoelectric output is small.

したがって比較判定回路7の6原色の出力比から合焦か
前ピンか後ピンかの検出ができる。ドライバー8はこれ
らの検出出力がら合焦状態を判断してレンズを合焦方向
に動がし自動的に焦点調節を行う。比較判定回路7がら
の出力を図示しない表示装置に入力させれば上述の三つ
の状態から、合焦、前ピンおよび後ピンの表示を行うこ
とも出来る。なお比較判定回路7は例えばCPUを用い
て構成し、赤、緑、青の入力電圧をそれぞれvR,VG
、VBとすると、合焦すなわちvG>vRキVBのとき
ドライバーへの2本の出力線に0,0の出力を送出し、
前ピンすなわちvR>VBのとき1.0の出力を送出し
、後ピンすなわちVB>vRのとき0,1の出力を送出
する。そしてドライバー8は入力が00のときはモータ
ー9への出力を0とし、入力が1.0のときモーター9
に正転方向の電流を供給してレンズを後方に駆動し、入
力が0,1のときモーター9に逆転方向の電流を供給し
てレンズを前方に駆動させる。このようにして合焦駆動
が行われる。
Therefore, it is possible to detect focus, front focus, or rear focus from the output ratio of the six primary colors of the comparison/judgment circuit 7. The driver 8 determines the in-focus state based on these detection outputs, moves the lens in the in-focus direction, and automatically adjusts the focus. By inputting the output from the comparison/judgment circuit 7 to a display device (not shown), it is possible to display in-focus, front focus, and rear focus from the three states mentioned above. Note that the comparison/judgment circuit 7 is configured using, for example, a CPU, and input voltages of red, green, and blue are respectively vR and VG.
, VB, when in focus, that is, vG>vRkiVB, outputs of 0 and 0 are sent to the two output lines to the driver,
When the front pin, that is, vR>VB, outputs 1.0, and when the rear pin, that is, VB>vR, outputs 0 and 1. When the input is 00, the driver 8 outputs 0 to the motor 9, and when the input is 1.0, the output to the motor 9 is 0.
A current in the forward direction is supplied to the motor 9 to drive the lens backward, and when the input is 0 or 1, a current in the reverse direction is supplied to the motor 9 to drive the lens forward. Focusing drive is performed in this way.

この装置によればビデオ信号のうち青色と赤色の焦点は
ぼけることになるが、ビデオ信号をディスプレイした場
合、緑色に比し青色と赤色のボケは緑色のボケに比し肉
眼観察上のボケの影響は少く、かつビデオの場合にはス
チール写真に比しボケの影響ははるかに小さいだめ、実
用上支障を来さない程度で自動合焦検出および自動焦点
調節を行うことができる。
According to this device, the blue and red parts of the video signal will be out of focus, but when the video signal is displayed, the blue and red parts will be out of focus compared to the green part when observed with the naked eye. The effect of blurring is small, and in the case of videos, the effect of blurring is much smaller than that of still photos, so automatic focus detection and automatic focus adjustment can be performed to a degree that does not cause any practical problems.

「発明の効果」 以上説明したように本発明によれば、レンズに適宜の色
収差を持たせること以外特別な光学系や光!素子を用い
ることなく、ビデオ信号から自動合焦検出および調節が
出来る効果を有する。
"Effects of the Invention" As explained above, according to the present invention, in addition to providing the lens with appropriate chromatic aberration, a special optical system and light! This has the effect that automatic focus detection and adjustment can be performed from a video signal without using an element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す略図、第2図はその各部
の信号波形の図、第6図は合焦および前ピンおよび後ピ
ンのときの6原色の光電出力の大きさの比較図である。 1・・・・・・レンズ       2・・・・・・撮
像装置6・・・・・・ビデオアンプ    4・・・・
・・エンコーダ5・・・・・・ゲート信号発生回路 6
・・・・・・ゲート回路7・・・・・・比較判定回路 
   8・・・・・・ドライバー出 願 人 京セラ株
式会社 代表者 稲盛和夫 第  1  図 b ゲ′−ト日訃 第  2  図 (b)  −[FC)−く0−    りOマイifり
i形部  3  図 (Q) (b) (C)
Fig. 1 is a schematic diagram showing an embodiment of the present invention, Fig. 2 is a diagram of signal waveforms of each part thereof, and Fig. 6 is a comparison of the magnitude of photoelectric output of six primary colors when in focus, front focus, and rear focus. It is a diagram. 1...Lens 2...Imaging device 6...Video amplifier 4...
...Encoder 5...Gate signal generation circuit 6
......Gate circuit 7...Comparison judgment circuit
8...Driver applicant Kazuo Inamori, representative of Kyocera Corporation Figure 1 Figure b Gate date Figure 2 (b) -[FC] 3 Figure (Q) (b) (C)

Claims (1)

【特許請求の範囲】[Claims] 色収差を持たせたレンズを通して被写体像の光分布を電
気信号に変換する撮像装置と、前記撮像装置からのビデ
オ信号を増巾するビデオアンプと、前記ビデオアンプの
出力からNTSC信号を発生するエンコーダとから成る
ビデオ信号発生装置において、前記エンコーダからのク
ロマ信号を入力しビデオ信号の各フレーム中の無彩色部
に対応する出力を発生するゲート信号発生回路と、前記
ゲート信号発生回路からのゲート入力があるときに前記
ビデオアンプから入力する色信号を出力するゲート回路
と、前記ゲート回路からの色信号を入力し緑信号が最も
大きくて赤と青の信号が小さくなることで合焦を検出す
ることを特徴とする自動合焦検出装置。
An imaging device that converts the light distribution of a subject image into an electrical signal through a lens having chromatic aberration, a video amplifier that amplifies a video signal from the imaging device, and an encoder that generates an NTSC signal from the output of the video amplifier. a gate signal generation circuit that receives a chroma signal from the encoder and generates an output corresponding to an achromatic portion in each frame of the video signal; and a gate input from the gate signal generation circuit. A gate circuit outputs a color signal inputted from the video amplifier at a certain time, and the color signal from the gate circuit is inputted, and in-focus is detected when the green signal is the largest and the red and blue signals become smaller. An automatic focus detection device featuring:
JP60039971A 1985-02-27 1985-02-27 Automatic focus detector Pending JPS61198894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60039971A JPS61198894A (en) 1985-02-27 1985-02-27 Automatic focus detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60039971A JPS61198894A (en) 1985-02-27 1985-02-27 Automatic focus detector

Publications (1)

Publication Number Publication Date
JPS61198894A true JPS61198894A (en) 1986-09-03

Family

ID=12567838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60039971A Pending JPS61198894A (en) 1985-02-27 1985-02-27 Automatic focus detector

Country Status (1)

Country Link
JP (1) JPS61198894A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276884A (en) * 1988-04-27 1989-11-07 Nec Corp Video camera focusing device
EP0436511A2 (en) * 1990-01-05 1991-07-10 Canon Kabushiki Kaisha In-focus detecting device
JP2000338385A (en) * 1999-05-28 2000-12-08 Ricoh Co Ltd Automatic focusing device and its focusing method
WO2005024705A1 (en) * 2003-08-25 2005-03-17 Symbol Technologies, Inc. Auto-focusing system and method based on determination of axial chromatic aberration

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276884A (en) * 1988-04-27 1989-11-07 Nec Corp Video camera focusing device
EP0436511A2 (en) * 1990-01-05 1991-07-10 Canon Kabushiki Kaisha In-focus detecting device
JP2000338385A (en) * 1999-05-28 2000-12-08 Ricoh Co Ltd Automatic focusing device and its focusing method
WO2005024705A1 (en) * 2003-08-25 2005-03-17 Symbol Technologies, Inc. Auto-focusing system and method based on determination of axial chromatic aberration

Similar Documents

Publication Publication Date Title
US5805342A (en) Imaging system with means for sensing a filtered fluorescent emission
JPH0548028B2 (en)
JP4612869B2 (en) Focus detection device, imaging device, and focusing method
US20190058837A1 (en) System for capturing scene and nir relighting effects in movie postproduction transmission
JPH04267211A (en) Solid image pick-up device
WO2002099498A1 (en) Device for determining focused state of taking lens
JPH0241723B2 (en)
US4614974A (en) Range finding system suited for video camera
US4716282A (en) Focus state detection method and apparatus with selective statistical processing
US7423684B2 (en) Image pickup apparatus and image pickup system
JPS61198894A (en) Automatic focus detector
US4733062A (en) Focus detecting device
JP2011028177A (en) Imaging apparatus
JPS6175318A (en) Apparatus for processing optical image with different wavelength
JP2004109863A (en) Focus detector, image pickup device provided with the same, and photographing lens
JPS6359274A (en) Automatic focusing device
JPH01212981A (en) Automatic focussing device
JPS62115408A (en) Focusing detector for camera having solid state image pickup element
US8106992B2 (en) Automatic focusing system using a magnification or reduction optical system
JPH06205269A (en) Automatic focus adjustment device and video camera
JP2001016493A (en) Multi-viewing angle camera apparatus
JP2015087494A (en) Imaging device
WO2017056675A1 (en) Autofocusing device, lens device, and autofocusing method
JP2929655B2 (en) Color separation prism and multi-plate imaging apparatus using the prism
JPS5859416A (en) Focusing detection