JPH01212981A - Automatic focussing device - Google Patents

Automatic focussing device

Info

Publication number
JPH01212981A
JPH01212981A JP63038071A JP3807188A JPH01212981A JP H01212981 A JPH01212981 A JP H01212981A JP 63038071 A JP63038071 A JP 63038071A JP 3807188 A JP3807188 A JP 3807188A JP H01212981 A JPH01212981 A JP H01212981A
Authority
JP
Japan
Prior art keywords
line
light
lens
focussing
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63038071A
Other languages
Japanese (ja)
Inventor
Shoichi Yoshii
正一 吉居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63038071A priority Critical patent/JPH01212981A/en
Publication of JPH01212981A publication Critical patent/JPH01212981A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To rapidly and smoothly control a focussing by using an optical chromatic aberration such as an image pickup lens and discriminating the direction of the deviation of the focussing based on the comparison of the integrating levels of the high frequency components of plural colors included in the light receiving picture signal of an image pickup element. CONSTITUTION:A focussing is controlled by moving the lens 1 so as to focus the light of a (d) line included in the image pickup light to the image pickup element 2. At the time of the deviation of the focussing of a front pin and a back pin, what is called, the light of a short wavelength side from the light of the (d) line and a long wavelength side, for instance, the light of the F line of 486nm in the wavelength and the light of the C line of 656nm in the wavelength are respectively focussed. Based on the separation or the synthesis of the light receiving picture element signals of respective colors included in the light receiving picture signal of the image pickup element 2, the picture signals of the three colors of the respective light colors of the (d) line, the F line, the C line are separated and extracted by a processing circuit 9 to compare the high frequency components of the (d) line, the F line, the C line, decide the front pin and the back pin and discriminate the deviation of the focussing. Thereby, the lens 1 is automatically focussing controlled rapidly and smoothly.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ビデオカメラなどのオートフォーカス装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an autofocus device for a video camera or the like.

〔従来の技術〕[Conventional technology]

従来、カラー撮影用のビデオカメラは、色分離フィルタ
付きの固体撮像素子を備えるとともに、「山登り方式」
と呼ばれる制御方式のオートフォーカス装置を備えてい
る。
Traditionally, color video cameras have been equipped with a solid-state image sensor equipped with a color separation filter, and have also been equipped with a "mountain-climbing" method.
It is equipped with an autofocus device using a control system called .

ところで、前記「山登り方式」の制御は、撮像素子の受
光画像信号の高周波成分が合焦点に近ずく程増加する特
性を利用して行われ、前記従来のオートフォーカス装置
は、受光画像信号が変化する毎に、つぎに説明する4動
作(1) 、 (ID 、 GOD 、(ト)により、
撮像レンズを合焦位置に移動する。
By the way, the above-mentioned "mountain-climbing method" control is performed by utilizing the characteristic that the high-frequency component of the light-receiving image signal of the image sensor increases as it approaches the in-focus point. Each time, according to the following four operations (1), (ID, GOD, (g)),
Move the imaging lens to the in-focus position.

(1)撮像レンズを近点又は遠点の方向に初期移動する
(1) Initially move the imaging lens toward the near point or far point.

(ID初期移動中に得られる受光画像信号の高周波成分
の増減にもとづき、移動前の位置からの移動方向を判別
して決定する。
(The direction of movement from the position before movement is determined and determined based on the increase/decrease in the high frequency component of the received light image signal obtained during the initial movement of the ID.

(IID初期移動前の位置から決定した移動方向に撮像
レンズを移動するとともに、移動中の受光画像信号の増
加から減少への変極点(頂上)を検出する。
(The imaging lens is moved in the determined movement direction from the position before the IID initial movement, and the inflection point (top) of the received light image signal during movement from increase to decrease is detected.

(1v)変極点の位置を記憶しておき、その位置に撮像
レンズを戻して止める。
(1v) Memorize the position of the inflection point, and return the imaging lens to that position and stop.

一方、たとえば特開昭61−239780号公報(H0
4N 5/232)には、圧電素子などを用いた振動機
構により、撮像素子の受光面を撮像レンズの光軸方向に
常時微小振動するとともに、振動による受光画像信号の
レベル変化から焦点ずれの方向を判別し、撮像レユ/ズ
を合焦位置に移動するオートフォーカス装置が記載され
ている。
On the other hand, for example, Japanese Patent Application Laid-Open No. 61-239780 (H0
4N 5/232) uses a vibration mechanism using a piezoelectric element to constantly vibrate the light-receiving surface of the image sensor in the direction of the optical axis of the imaging lens. An autofocus device is described that determines the image pickup lens and moves the imaging lens to a focusing position.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記従来の「山登り方式」のオートフォーカ
ス装置の場合、撮像レンズを初期移動して焦点ずれの方
向を決定した後、撮像レンズが合焦位置に移動され、迅
速かつ滑らかなフォーカス制御が行えない問題点がある
By the way, in the case of the conventional "mountain-climbing" autofocus device, the imaging lens is initially moved to determine the direction of defocus, and then the imaging lens is moved to the in-focus position, allowing quick and smooth focus control. There are some problems.

一方、前記公報に記載のオートフォーカス装置の場合、
焦点ずれの方向決定の動作が省け、「山登り方式」の装
置より迅速に制御が行えるが、圧電素子などの振動機構
を要し、構成が複雑化し、しかも、撮像レンズのズーム
位置、焦点位置、F値などによっては、撮像素子の振動
が、とくに静止画の撮像画面上にフリッカ現象として出
現し、撮像画面に悪影響を与える問題点がある。
On the other hand, in the case of the autofocus device described in the above publication,
This eliminates the need to determine the direction of defocus, allowing for faster control than a "mountain-climbing" system, but it requires a vibration mechanism such as a piezoelectric element, which complicates the configuration. Depending on the F value, etc., there is a problem in that vibration of the image sensor appears as a flicker phenomenon, especially on the imaging screen of still images, and has an adverse effect on the imaging screen.

本発明は、振動機構などを設けることなく、しかも、撮
像画面に悪影響を与えることなく、迅速かつ滑らかなフ
ォーカス制御を行うオートフォーカス装置を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide an autofocus device that performs quick and smooth focus control without providing a vibration mechanism or the like and without adversely affecting an imaging screen.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するための手段を、実施例に対応する第
1図を参照して以下に説明する。
Means for achieving the above object will be explained below with reference to FIG. 1, which corresponds to an embodiment.

本発明は、撮像レンズ(1]の撮像光を色分解フィルタ
を介して受光するカラー撮像素子(2)と、前記撮像素
子(2)の受光画像信号に含まれた複数色の高周波成分
を分離抽出するバイパスフィルタ部(3)と、 前記各高周波成分の一定周期の積分レベルを比較して焦
点ずれの方向を判別し1合焦制御信号を出力する判別処
理部(4)と、 前記合焦制御信号にしたがって前記レンズを移動するレ
ンズ駆動部(5)と を備えたことを特徴とするオートフォーカス装置を提供
するものである。
The present invention includes a color imaging device (2) that receives imaging light from an imaging lens (1) via a color separation filter, and separates high-frequency components of multiple colors included in a received image signal of the imaging device (2). a bypass filter section (3) for extracting; a discrimination processing section (4) for comparing the integral levels of the respective high frequency components at a constant period to determine the direction of defocus and outputting a single focus control signal; The present invention provides an autofocus device characterized by comprising a lens drive section (5) that moves the lens according to a control signal.

〔作用〕[Effect]

したがって、光学的な色収差にもとづき、フィルタ部(
3)の各色の出力信号のレベルが、レンズ(1)の焦点
ずれに応じて変化するとともに、処理部(4)により、
各色の出力信号の一定周期の積分レベルの比較にもとづ
き、焦点ずれの方向が迅速かつ適確に検出され、従来の
「山登り方式」の初期移動を行うことなく、合焦制御信
号にもとづく駆動部(5)の動作により、レンズ(1)
が合焦位置に引込まれる。
Therefore, based on optical chromatic aberration, the filter section (
The level of the output signal of each color in step 3) changes according to the focal shift of the lens (1), and the processing unit (4)
The direction of defocus is quickly and accurately detected based on a comparison of the integral levels of the output signals of each color at a fixed period. By the operation of (5), lens (1)
is pulled into focus.

〔実施例〕〔Example〕

つぎに、本発明を、そのl実施例を示した第1図ないし
第4図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 4 showing an embodiment thereof.

第1図において、(1)は撮像レンズ、(2]はレンズ
(1)の後方の撮像面の位置に設けられたカラー撮像素
子であり、色フィルタ付きCCDなどの固体撮像素子か
らなり、レンズ(υの光軸に直角な受光面に垂直走査に
したがって受光面の全画素を走査し、毎フィールドに、
各色の受光画素信号からなる1フイールドの受光画像信
号を出力する。
In Fig. 1, (1) is an imaging lens, and (2) is a color imaging device installed at the imaging surface behind the lens (1), which is composed of a solid-state imaging device such as a CCD with a color filter. (All pixels on the light receiving surface are scanned perpendicularly to the optical axis of υ, and in each field,
One field of light-receiving image signals consisting of light-receiving pixel signals of each color is output.

(6)は撮像素子(2)の受光画像信号をビデオ信号に
変換して出力する撮像処理回路、(7)は処理回路(6
)に接続された同期分離回路、(8)は同期分離回路(
7)に接続されたゲート回路であり、毎フィールドの画
面中央部分のタイミングでゲート信号を出力する。
(6) is an image processing circuit that converts the image signal received by the image sensor (2) into a video signal and outputs it, and (7) is a processing circuit (6
) is connected to the synchronous separation circuit, (8) is connected to the synchronous separation circuit (
7), which outputs a gate signal at the timing of the center part of the screen of each field.

(9)は撮像素子(2)の受光画像信号が入力される色
別処理回路であり、受光画像信号に含まれる特定の3色
の信号成分を分離出力する。αQは処理回路(9)に接
続されたゲート回路であり、ゲート回路(8)のゲート
信号にもとづき、毎フィールドの画面中央部分のときの
処理回路(9)の各出力信号のみを出力する。
(9) is a color-specific processing circuit to which the received light image signal of the image sensor (2) is input, and separates and outputs signal components of three specific colors included in the received light image signal. αQ is a gate circuit connected to the processing circuit (9), and based on the gate signal of the gate circuit (8), outputs only each output signal of the processing circuit (9) at the center of the screen of each field.

aυ、a4.α1はゲート回路αQを介した処理回路(
9)の各出力信号それぞれが入力される3個のバイパス
フィルタ、(3)は処理回路(9)、ゲート回路Oq及
びフィルタaυ〜側からなるバイパスフィルタ部である
aυ, a4. α1 is a processing circuit (
Three bypass filters are inputted with each output signal of (9), and (3) is a bypass filter section consisting of a processing circuit (9), a gate circuit Oq, and a filter aυ~ side.

Q4) 、 Q51 、α→はフィルタ01)〜α]そ
れぞれに接続された3個の検波回路、α力、α印、θ侍
は検波回路Q褐〜Q6それぞれに接続された3個の積分
回路、m、al)、(ハ)は積分回路αη〜Q’Jそれ
ぞれに接続された3個のA/D変換回路、(ハ)、(ハ
)、(ハ)は変換回路(イ)〜(イ)それぞれに接続さ
れた3個のメモリ、(イ)はメモリー〜(ハ)に接続さ
れたマイクロプロセッサ(以下CPUと称する)であり
、合焦制御信号を出力する。(4)は検波回路α舶〜0
Q、積分回路aη〜Qつ、変換回路四〜(財)、メモリ
@〜(ハ)、CPUfiからなる判別処理部である。
Q4), Q51, α→ are three detection circuits connected to filters 01) to α], α power, α mark, and θ Samurai are three integration circuits connected to detection circuits Qbro to Q6, respectively. , m, al), (c) are the three A/D conversion circuits connected to the integrating circuits αη to Q'J, respectively, and (c), (c), and (c) are the conversion circuits (a) to ( (a) Three memories connected to each; (a) is a microprocessor (hereinafter referred to as CPU) connected to the memory to (c), and outputs a focusing control signal. (4) is the detection circuit α~0
This is a discrimination processing section consisting of Q, integrating circuits aη~Q, converting circuits 4~ (goods), memories @~(c), and CPUfi.

(ハ)はCPUの合焦制御信号が入力されるフォーカス
モータ制御回路、弼は制御回路(イ)によって駆動され
るフォーカスモータであり、レンズ(υを光軸方向に移
動する。(5)は制御回路(イ)、モータ(イ)からな
るレンズ駆動部である。
(C) is a focus motor control circuit into which the focus control signal of the CPU is input, and (2) is a focus motor driven by the control circuit (A), which moves the lens (υ) in the optical axis direction. (5) This is a lens drive unit consisting of a control circuit (A) and a motor (A).

ところで、レンズ(υなどの光学的な色収差にもとづき
、撮像光の波長毎に最良像面の位@(最小錯乱円の位置
)などが微小に異なる。
By the way, based on optical chromatic aberration such as the lens (υ), the position of the best image plane @ (position of the circle of least confusion) differs slightly for each wavelength of imaging light.

そして、撮像素子(2)が設けられる撮像位置などの光
学的条件は、一般の光学機器と同様、特定の波長の光、
すなわちd線と呼ばれる波長587nmの光を基準にし
て設定される。
The optical conditions such as the imaging position where the image sensor (2) is installed are similar to those of general optical equipment, such as light of a specific wavelength,
That is, it is set based on light with a wavelength of 587 nm called d-line.

したがって、フォーカス制御は、撮像光に含まれるd線
の光が撮像素子(2)に合焦するように、レンズ(1)
を移動して行われる。
Therefore, focus control is performed by adjusting the lens (1) so that the d-line light included in the imaging light is focused on the imaging device (2)
This is done by moving the

そして、いわゆる前ピン、後ピンの焦点ずれのときは、
diの光より短波長側、長波長側の光。
And when there is a so-called front focus/back focus shift,
Light on the shorter wavelength side and longer wavelength side than the light of di.

たとえば波長4861mのF線の光、波長6561mの
C線の光それぞれが合焦状態になる。
For example, F-line light with a wavelength of 4861 m and C-line light with a wavelength of 6561 m are each brought into focus.

すなわち、被写体の位置及び前ピン、後ピンのときのレ
ンズ(1)の焦点位置をPO及びpl、 P2とし、か
つ、レンズ(1)を通過して撮像素子(2)に焦光され
るd線、F線、C線の光路を1点破線、2点破線、破線
それぞれで示すと、前ピンのときは各線の光路が第2図
(a)に示すようになり、合焦、後ピンのときは各線の
光路が同図(b) 、 (C)それぞれに示すようにな
る。
That is, let the focal positions of the lens (1) at the position of the subject, front focus, and rear focus be PO, pl, and P2, and d, which passes through the lens (1) and is focused on the image sensor (2). When the optical paths of line, F line, and C line are shown as one-dot dashed line, two-dot dashed line, and dashed line, respectively, when the front focus is on, the optical path of each line becomes as shown in Fig. 2 (a), and when the front focus is In this case, the optical path of each line becomes as shown in FIG.

そのため、第2図(a) 、 (b) 、 (C)のと
きそれぞれにば、場&(相)ぷ尤νはめ1;匂・1市廠
、r亘。
Therefore, in the case of Fig. 2 (a), (b), and (C), respectively, the field & (phase) is 1;

CfLe+”J−e*彰lk分et’、’f+3 EJ
 (4)+ Cb)、(すX4zThlニー示すように
なる。
CfLe+"J-e*昭LK 文ET','f+3 EJ
(4) + Cb), (SuX4zThl knee).

fx b、第3図(a)〜(C)ニオイテ、d 、F、
Cはd線、F線、C線それぞれのレベルを示す。
fx b, Figure 3 (a) to (C) Nioite, d, F,
C indicates the levels of the d-line, F-line, and C-line.

したがって、撮像素子(2)の受光画像信号に含まれた
前記3線の光の高周波成分をレベル比較すれば、レンズ
(1)の前ピン、合焦、後ピンを識別し、レンズ(1)
の焦点ずれの方向を判別することができる。
Therefore, by comparing the levels of the high frequency components of the three lines of light included in the image signal received by the image sensor (2), the front focus, focus, and back focus of the lens (1) can be identified, and the lens (1)
The direction of defocus can be determined.

そこで、処理回路(9)により、撮像素子(2)の受光
画像信号に含まれた各色の受光画素信号の分離又は合成
にもとづき、はぼd線、F課、C線それぞれの光色の3
色の画像信号が受光画像信号から分層抽出される。
Therefore, the processing circuit (9) separates or combines the light-receiving pixel signals of each color included in the light-receiving image signal of the image sensor (2), and calculates the three light colors of each of the D-line, F section, and C-line.
A color image signal is extracted in layers from the received light image signal.

さらに、処理回路(9)の3色の出力信号がゲート回路
αqを介してフィルタα珍〜頭それぞれに入力され、こ
のとき、合焦精度を高めるため、ゲート回路(8)のゲ
ート信号にもとづき、ゲート回路Oqにより、処理回路
(9)の各出力信号の画面中央部分のみが抽出される。
Furthermore, the three color output signals of the processing circuit (9) are input to each of the filters α through the filter α through the gate circuit αq. , gate circuit Oq extracts only the central portion of the screen of each output signal of the processing circuit (9).

そして、フィルタαυ〜a3により、各色の信号の高周
波成分が抽出されるとともに、フィルタ(n)〜α艷か
ら出力された各色の高周波成分が検波回路Q4)〜Qf
19それぞれで包絡線検波され、検波回路α冶〜αQか
ら積分回路Q″7′)〜0りに、各色の高周波成分それ
ぞれのレベルの検波信号が出力される。
Then, the high frequency components of the signals of each color are extracted by the filters αυ~a3, and the high frequency components of each color output from the filters (n)~αυ are detected by the detection circuits Q4)~Qf.
Envelope detection is performed in each of the high-frequency components of each color, and detection signals of the respective levels of the high frequency components of each color are output from the detection circuits α to αQ to the integrating circuits Q''7' to Q.

さらに、積分回路αη〜α1により、各色の険波信号そ
れぞれが、一定周期すなわちlフィールドの周期で積分
され、積分回路αη)01から変換回路の〜(イ)に、
各色の検波信号の各1フイールドの積分値の信号、すな
わち撮像領域内の色偏差による各色の誤差を平均化した
信号が出力され、各積分値の信号がデジタルデータに変
換される。
Furthermore, each of the steep wave signals of each color is integrated by the integrating circuits αη to α1 at a constant period, that is, the period of the l field, and from the integrating circuit αη)01 to the conversion circuit ~(a),
A signal of the integral value of each field of the detection signal of each color, that is, a signal obtained by averaging errors of each color due to color deviation within the imaging region is output, and the signal of each integral value is converted into digital data.

そして、変換器(4)〜(イ)のデジタルデータが一時
保持用のメモリー〜(ハ)それぞれを介してCPU(J
に入力され、このとき、CPU(イ)は第4図のフロー
チャートにしたがって動作する。
The digital data of the converters (4) to (a) is then sent to the CPU (J) through temporary storage memory to (c).
At this time, the CPU (a) operates according to the flowchart in FIG.

すなわち、62g 、 F線、C線の高周波成分のデジ
タルデータをSd 、 Sf 、 Scとすると、各デ
ータSd 、 Sf 、 Scを比feシ、5d(Sf
、Scであれば、Sf≦Sc 、 Sf )Scによっ
て前ビニ/、後ピンそれぞれと判定して焦点ずれの方向
を判別する。
That is, if the digital data of high frequency components of 62g, F line, and C line are Sd, Sf, and Sc, then each data Sd, Sf, and Sc can be expressed as 5d(Sf).
, Sc, then Sf≦Sc, Sf) It is determined that front focus/rear focus is determined by Sc, respectively, and the direction of defocus is determined.

さらに、判別結果にしたがってレンズ(1)の移動用の
合焦制御信号を制御回路−に出力し、モータ(ハ)を駆
動してレンズ(1)を遠点方向又は近点方向に移動する
とともに、該移動によってデータSf、Scの大小関係
が逆転する頂上すなわち変極点を検出したときに、変極
点の位置にレンズ(1)を微動補正し、レンズ(1)の
移動を停止する。
Furthermore, according to the determination result, a focus control signal for moving the lens (1) is output to the control circuit -, and the motor (c) is driven to move the lens (1) toward the far point or near point. , When the peak or inflection point at which the magnitude relationship of the data Sf and Sc is reversed due to the movement is detected, the lens (1) is slightly moved to the position of the inflection point and the movement of the lens (1) is stopped.

したがって、レンズ(υなどの光学的な色収差を利用し
た焦点ずれの方向判別にもとづき、はぼ従来の「山登り
方式」の初期移動を省いた制御により、迅速かつ滑らか
にレンズ(1)のオートフォーカス制御が行われる。
Therefore, based on the determination of the direction of defocus using optical chromatic aberrations such as the lens (υ), autofocus of the lens (1) can be performed quickly and smoothly using control that eliminates the initial movement of the conventional "mountain climbing method". Control takes place.

ところで、撮像素子(2)の受光画像信号は、処理回路
(6)でビデオ信号に変換されて記録に用いられるとと
もに、TTL−!;Cホワイトバランス調整回路などに
供給されてホワイトバランスの調整などにも用いられ、
レンズ(1]の撮像光が撮像だけでなくフォーカス制御
、ホワイトバランス調整などに最大限に利用される。
Incidentally, the image signal received by the image sensor (2) is converted into a video signal by the processing circuit (6) and used for recording, and is also used for TTL-! ;C It is supplied to the white balance adjustment circuit and used for white balance adjustment, etc.
The imaging light of the lens (1) is utilized to the maximum extent not only for imaging but also for focus control, white balance adjustment, etc.

そのため、光学系などが簡素化し、簡素かつ安価なビデ
オカメラなどを提供することができる。
Therefore, the optical system and the like can be simplified, and a simple and inexpensive video camera can be provided.

なお、前記実施例では3色の高周波成分を用いたが、2
色又は4色以上の多色の高周波成分を用いて焦点ずれの
方向を判別することもでき、このとき、公理回路(9)
で分離する色の種類などは、判別に用いる波長及び色分
離フィルタの特性などにもとづいて設定すればよい。。
In addition, in the above example, high frequency components of three colors were used, but two
It is also possible to determine the direction of defocus using color or high-frequency components of four or more colors, and in this case, the axiomatic circuit (9)
The types of colors to be separated can be set based on the wavelength used for discrimination, the characteristics of the color separation filter, etc. .

また、撮像素子の受光画像信号をビデオ信号に変換する
際に生成される色差信号の高周波成分を利用してもよい
Alternatively, a high frequency component of a color difference signal generated when converting a light-receiving image signal of an image sensor into a video signal may be used.

さらに、カラー撮像素子に裸イ9管などを用いてもよい
のは勿論である。
Furthermore, it goes without saying that a bare I9 tube or the like may be used as the color image sensor.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明のフォーカス制御装置によると、
撮像レンズなどの光学的な色収差を利用し、撮像素子の
受光画像信号に含まれた複数色の高周波成分の積分レベ
ルの比較にもとづき、焦点ずれの方向を判別して撮像レ
ンズの焦点位置を制御したことにより、撮像素子の振動
機構などを設けることなく、焦点ずれの方向乞迅速かつ
適確に判別することができ、簡素かつ安価な構成で撮像
画面に悪影響を与えることなく、迅速かつ滑らかにフォ
ーカス制御を行うことができるものである。
As described above, according to the focus control device of the present invention,
Controls the focal position of the imaging lens by utilizing optical chromatic aberration of the imaging lens, etc., and determining the direction of defocus based on a comparison of the integration levels of high-frequency components of multiple colors included in the image signal received by the imaging device. As a result, the direction of defocus can be determined quickly and accurately without the need for a vibration mechanism for the image sensor, and with a simple and inexpensive configuration, it can be quickly and smoothly determined without adversely affecting the image capture screen. It is possible to perform focus control.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第4図は本発明のオートフォーカス装置の
1実施例を示し、第1図はブロック図、第2図(a)〜
(C)は色による焦点位置のずれ説明図、@3図図執〜
(C)は第2固執)〜(C)それぞれのときの各色の高
周波成分の説明図、第4図は動作説明のフローチャート
である。 (1)・・・撮像レンズ、(2)・・・カラー撮像素子
、(3)・・・バイパスフィルタ部、(4)・・・判別
処理部、(5)・・・レンズ駆動部。
1 to 4 show one embodiment of the autofocus device of the present invention, FIG. 1 is a block diagram, and FIGS. 2(a) to 4
(C) is an explanatory diagram of the shift in focus position due to color, @3 diagram
(C) is an explanatory diagram of the high frequency components of each color in each case of the second fixation) to (C), and FIG. 4 is a flowchart for explaining the operation. (1)...imaging lens, (2)...color image sensor, (3)...bypass filter section, (4)...discrimination processing section, (5)...lens driving section.

Claims (1)

【特許請求の範囲】[Claims] (1)撮像レンズの撮像光を色分解フィルタを介して受
光するカラー撮像素子と、 前記撮像素子の受光画像信号に含まれた複数色の高周波
成分を分離抽出するハイパスフィルタ部と、 前記各高周波成分の一定周期の積分レベルを比較して焦
点ずれの方向を判別し、合焦制御信号を出力する判別処
理部と、 前記合焦制御信号にしたがつて前記レンズを移動するレ
ンズ駆動部と を備えたことを特徴とするオートフォーカス装置。
(1) a color imaging device that receives imaging light from an imaging lens via a color separation filter; a high-pass filter section that separates and extracts high-frequency components of multiple colors included in a received image signal of the imaging device; and each of the high-frequency components. a determination processing unit that compares integral levels of constant periods of components to determine the direction of defocus and outputs a focus control signal; and a lens drive unit that moves the lens in accordance with the focus control signal. An autofocus device characterized by:
JP63038071A 1988-02-20 1988-02-20 Automatic focussing device Pending JPH01212981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038071A JPH01212981A (en) 1988-02-20 1988-02-20 Automatic focussing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038071A JPH01212981A (en) 1988-02-20 1988-02-20 Automatic focussing device

Publications (1)

Publication Number Publication Date
JPH01212981A true JPH01212981A (en) 1989-08-25

Family

ID=12515257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038071A Pending JPH01212981A (en) 1988-02-20 1988-02-20 Automatic focussing device

Country Status (1)

Country Link
JP (1) JPH01212981A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604538A (en) * 1990-09-25 1997-02-18 Canon Kabushiki Kaisha Autofocus apparatus utilizing luma and chroma components to determine whether focusing is possible
JP2000171692A (en) * 1998-11-30 2000-06-23 Hewlett Packard Co <Hp> Automatic focusing lens system using plural spectra
JP2008532449A (en) * 2005-03-07 2008-08-14 ディーエックスオー ラブズ Using color digital images, a method of activating function, ie sharpness change
JP2011174990A (en) * 2010-02-23 2011-09-08 Canon Inc Imaging device
JP2015207021A (en) * 2009-07-17 2015-11-19 株式会社ニコン Focus adjusting device and camera
US9749518B2 (en) 2009-07-17 2017-08-29 Nikon Corporation Focusing device and camera

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604538A (en) * 1990-09-25 1997-02-18 Canon Kabushiki Kaisha Autofocus apparatus utilizing luma and chroma components to determine whether focusing is possible
JP2000171692A (en) * 1998-11-30 2000-06-23 Hewlett Packard Co <Hp> Automatic focusing lens system using plural spectra
JP2008532449A (en) * 2005-03-07 2008-08-14 ディーエックスオー ラブズ Using color digital images, a method of activating function, ie sharpness change
JP2015207021A (en) * 2009-07-17 2015-11-19 株式会社ニコン Focus adjusting device and camera
US9749518B2 (en) 2009-07-17 2017-08-29 Nikon Corporation Focusing device and camera
US10237470B2 (en) 2009-07-17 2019-03-19 Nikon Corporation Focusing device and camera
JP2011174990A (en) * 2010-02-23 2011-09-08 Canon Inc Imaging device

Similar Documents

Publication Publication Date Title
JP3975395B2 (en) Camera system
JP5911531B2 (en) Optical equipment
US8736745B2 (en) Camera
JP2959142B2 (en) Solid-state imaging device
JP2006053545A (en) Optical apparatus
JP4599116B2 (en) Auto focus system
WO2002099498A1 (en) Device for determining focused state of taking lens
WO2002099496A1 (en) Focused state sensor
US7262805B2 (en) Focus detecting system
US7576796B2 (en) Auto focus system
JPH01212981A (en) Automatic focussing device
JP2003270517A (en) Focus state detector
US9800775B2 (en) Focus detection apparatus and method, and image capturing apparatus
US8106992B2 (en) Automatic focusing system using a magnification or reduction optical system
JP2009109792A (en) Autofocusing device and camera using it
JP5475417B2 (en) Image sensor characteristic adjustment method and characteristic adjustment apparatus
JP2003248166A (en) Imaging device, focusing method, control program and storage medium
JP2004212458A (en) Autofocus system
JP2004151608A (en) Autofocus system
JPH09101450A (en) Image pickup device
JP3571853B2 (en) Focus adjustment device
JP2003279847A (en) Focus state detector for photographing lens
JPH01212980A (en) Automatic focussing device
JP2010098586A (en) Camera system with image processing function
JP2007127948A (en) Automatic focus system