JPS61198530A - Electron emission cathode - Google Patents

Electron emission cathode

Info

Publication number
JPS61198530A
JPS61198530A JP60036670A JP3667085A JPS61198530A JP S61198530 A JPS61198530 A JP S61198530A JP 60036670 A JP60036670 A JP 60036670A JP 3667085 A JP3667085 A JP 3667085A JP S61198530 A JPS61198530 A JP S61198530A
Authority
JP
Japan
Prior art keywords
electron
electrons
channel
semiconductor substrate
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60036670A
Other languages
Japanese (ja)
Inventor
Yuji Kiuchi
木内 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP60036670A priority Critical patent/JPS61198530A/en
Publication of JPS61198530A publication Critical patent/JPS61198530A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cold Cathode And The Manufacture (AREA)

Abstract

PURPOSE:To facilitate the control of an emitted electron flow and make it possible to reduce an electron emission area and perform integration, by providing an N channel region in the surface of at least a part of a P type semiconductor substrate, and providing a means for emitting electrons from the exposed portion of the substrate. CONSTITUTION:A source 2 of a high-concentration N type region for implanting electrons and an insulator layer 3 made of SiO2 or the like and having a thickness of 0.1mum are provided at one end of a P-Si substrate 1. An Al film, which becomes metal layers as gate electrodes G1.4 and G2.5, is provided. When a positive voltage of 5V or the like is applied to the gate electrode G1.4, an N channel 7 is produced on the boundary between the insulator layer 3 and the semiconductor substrate 1. When a high positive voltage of 10V or the like is applied to the gate electrode G2.5 in addition to the application of the positive voltage of 5V or the like, a potential well right under the gate electrode G2.5 is deepened to accelerate electrons in the N channel 7 so that the electrons reach a semiconductor surface 6 and are emitted into a vacuum. As a result, an electron flow 9 can be generated by applying an accelerating voltage to an anode 8.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、真空管、放電管その他種々の真空電子装置
の電子源となる電子放射陰極に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron emitting cathode that serves as an electron source for vacuum tubes, discharge tubes, and various other vacuum electronic devices.

〔発明の技術的背景およびその問題点〕従来、真空電子
装置の電子源として用いられている電子放射陰極には、
大別して熱陰極および冷陰極がある。熱陰極にはタング
ステン金属陰極、トリウムタングステン単原子層陰極、
バリウム・ストロンチウム・カルシウム酸化物陰極およ
びバリウム含浸形陰極などが周知であり、比較的取扱い
易く、広く実際に使われている。
[Technical background of the invention and its problems] Conventionally, electron emitting cathodes used as electron sources in vacuum electronic devices include:
Broadly speaking, there are hot cathodes and cold cathodes. The hot cathode is a tungsten metal cathode, a thorium tungsten monoatomic layer cathode,
Barium-strontium-calcium oxide cathodes and barium-impregnated cathodes are well known, relatively easy to handle, and widely used in practice.

しかし、これらは1000〜2000°Cの温度に加熱
する必要があり、熱の発散、耐熱、電力消費、寿命など
に問題があり、また取り出された電子の初速度分散が大
きい欠点がある。
However, these require heating to a temperature of 1,000 to 2,000°C, and have problems with heat dissipation, heat resistance, power consumption, lifespan, etc., and also have the drawback that the initial velocity dispersion of the extracted electrons is large.

一方、冷陰極では強電界電子放射陰極、MgO形陰極、
トンネル陰極などが過去に種々の試みがなされてきたが
、実用になっているものは少なく、放射電子の初速度分
散が大きく、雑音や電子ビーム集束などに問題がある。
On the other hand, cold cathodes include strong field electron emission cathodes, MgO type cathodes,
Various attempts have been made in the past to use tunnel cathodes, but few have been put to practical use, and they have problems such as large initial velocity dispersion of emitted electrons, noise, and electron beam focusing.

近年開発されている負電子親和力陰極(以下NEA陰極
)は、半導体のP−N接合を利用し、N領域からP領域
に注入された電子がP形表面の低い電子障壁(電子親和
力)を越えて真空中に放射される現象を用いたもので、
常温で使用でき、電子の初速度分散も小さいため注目さ
れているが、陰極表面の安定化やP領域の厚さを電子の
拡散長以下にすることなどの困難さや、バイアス電流を
必要として、それが陰極近くに集中するなどの問題があ
り、まだ広く実用になるまでには至らない。
Negative electron affinity cathodes (hereinafter referred to as NEA cathodes), which have been developed in recent years, utilize the P-N junction of semiconductors to allow electrons injected from the N region to the P region to cross the low electron barrier (electron affinity) of the P-type surface. This method uses the phenomenon of radiation being emitted into a vacuum.
It is attracting attention because it can be used at room temperature and has a small initial velocity dispersion of electrons, but it is difficult to stabilize the cathode surface and make the thickness of the P region less than the electron diffusion length, and it requires a bias current. It has problems such as concentration near the cathode, so it has not yet been put into widespread use.

〔発明の1−1的〕 この発明は上記の点に対処してなされたもので放射電流
の制御が容易であり、電子放射面積を小さくできると共
に、集積化も可能な電子放射陰極を提供するものである
[Object 1-1 of the invention] This invention has been made in view of the above-mentioned points, and provides an electron-emitting cathode in which the emission current can be easily controlled, the electron-emitting area can be reduced, and the cathode can be integrated. It is something.

〔発明の概要〕[Summary of the invention]

すなわち、この発明はP形半導体基板の少なくとも一部
の表面にnチャンネル領域を形成し、このnチャンネル
の一部に−I−記P形半導体基板の露出部から電子を放
射する手段を設け、電子放射陰極を得るものである。
That is, the present invention forms an n-channel region on at least a part of the surface of a P-type semiconductor substrate, and provides a part of this n-channel with means for emitting electrons from the exposed portion of the P-type semiconductor substrate described in -I-, This is to obtain an electron emitting cathode.

本発明による電子放射陰極は冷陰極であり、半導体の負
電子親和力(NEA)あるいは、これに近い状態を利用
する点では前記のNEA陰極に類似しているが、NEA
陰極の如<P−N接合ではなく、従ってP領域を薄くす
る必要もなく、更にバイアス電流の集中もないMO3構
造をとっていることが本質的に違っており、ゲート電極
電圧で放射電流の制御が容易にでき、効率も高くできる
The electron emitting cathode according to the present invention is a cold cathode, and is similar to the above-mentioned NEA cathode in that it utilizes the negative electron affinity (NEA) of a semiconductor or a state close to it.
The essential difference is that the cathode is not a P-N junction, so there is no need to thin the P region, and there is no concentration of bias current. It can be easily controlled and highly efficient.

本発明による電子放射陰極をその他の陰極に較べてみて
も、常温動作で低消費電力であり、電子の初速度分散も
小さく、陰極の微小な部分からの電子放射が可能であり
、さらにこれを集積化できるなど、従来達成できなかっ
た性能が得られ、かつ通常の半導体技術で十分製造可能
である。
Comparing the electron emitting cathode of the present invention with other cathodes, it can be operated at room temperature, has low power consumption, has a small initial velocity dispersion of electrons, and can emit electrons from minute parts of the cathode. It provides performance that could not be achieved in the past, such as the ability to be integrated, and can be manufactured using normal semiconductor technology.

〔発明の実施例〕[Embodiments of the invention]

本発明による電子放射陰極の実施例を第1図を参照して
説明する。
An embodiment of the electron emitting cathode according to the present invention will be described with reference to FIG.

P形半導体、例えばp−3iを基板1とし、この基板1
の一端に電子を注入するための高濃度のN形領域(n十
領域)のソース2を形成する。上記基板1−Lおよびソ
ース2上に絶縁層3、例えばSiO2を厚さ例えば0.
1μmに形成し、さらに、この絶縁層3」二にゲート電
極Gし4およびゲート電極G2・5の金属層、例えばM
膜を形成する。これらゲート電極は第1図に示すように
ソース2の周辺Sに一部重なるか、近接して形成し、原
理的には1個でもよいが、第1図の実施例では2個備え
ている。
The substrate 1 is a P-type semiconductor, for example, p-3i.
A highly doped N-type region (n+ region) source 2 for injecting electrons is formed at one end of the wafer. An insulating layer 3, e.g. SiO2, is formed on the substrate 1-L and the source 2 to a thickness of e.g.
The insulating layer 3 is formed to have a thickness of 1 μm, and the gate electrode G 4 and the metal layer of the gate electrodes G2 and 5, for example, M
Forms a film. As shown in FIG. 1, these gate electrodes are formed partially overlapping or close to the periphery S of the source 2, and in principle, one gate electrode may be provided, but in the embodiment shown in FIG. 1, two gate electrodes are provided. .

P形基板1のソース2とは逆の端6は真空中に露出して
いる表面である。この表面は清浄化されていることが望
ましい。清浄化の手段は例えば結晶を真空中で襞間する
か、真空中加熱、ガス出し、ボンバード、エツチングな
どで表面6を清浄化することができる。
The end 6 of the P-type substrate 1 opposite the source 2 is the surface exposed in vacuum. It is desirable that this surface be clean. The cleaning can be carried out by, for example, folding the crystal in a vacuum, or cleaning the surface 6 by heating in a vacuum, degassing, bombarding, etching, or the like.

また上記表面6の結晶面指数はSlの場合(100)が
望ましい。さらに−に記表面6」二にCsおよびOの単
原子層やそれらを交互につけた多原子層をつけることに
より表面障壁を下げることもできる。
Further, the crystal plane index of the surface 6 is preferably (100) in the case of Sl. Furthermore, the surface barrier can be lowered by forming a monoatomic layer of Cs and O or a polyatomic layer of alternating layers of Cs and O on the surface 6''.

ゲート電極G1・4に正電圧例えば5vを印加すると、
絶縁層3と半導体基板1との境界にnチャンネル7が形
成される。さらにゲート電極G2・5に高い正電圧例え
ばIOVを印加するとその直下の電位の井戸が深くなり
、nチャンネル7中の電子は図で右の方に加速され、半
導体表面6に達し、真空中に放射され、陽極8に加速電
圧を印加することにより電子流9を形成することができ
る。従って上記表面6が電子放射面となる。
When a positive voltage, for example 5V, is applied to the gate electrodes G1 and G4,
An n-channel 7 is formed at the boundary between the insulating layer 3 and the semiconductor substrate 1. Furthermore, when a high positive voltage, for example, IOV, is applied to the gate electrodes G2 and 5, the potential well just below it deepens, and the electrons in the n-channel 7 are accelerated to the right in the figure, reach the semiconductor surface 6, and enter the vacuum. By applying an accelerating voltage to the anode 8, an electron current 9 can be formed. Therefore, the surface 6 becomes an electron emitting surface.

本発明による電子放射手段の他の実施例を第2図fa)
、(b)および(C)により説明する。第1図と同一部
分は同一・番号で示す。+21図はゲート電極10を1
個にし、絶縁層の厚さを電子放射面6に近づくにつれて
薄くして電位の井戸を深くし、電子を電子放射面6に向
けて加速する。(1))図は絶縁層の厚さを一定にして
おく代り1こ、電子放射面6に近いP形゛16導体基板
1の絶縁層3との界面にP形不純物をイオン注入した領
域11を形成して電rを加速し放射する例である。CC
1図はnチャンネルを絶縁層3と半導体基板1の界面よ
り内側に形成し、転送効率を」;げるため半導体表面を
わずかにN形にして埋め込みチャンネル13を形成した
ものである。
Another embodiment of the electron emitting means according to the present invention is shown in FIG.
, (b) and (C). The same parts as in Fig. 1 are indicated by the same numbers. +21 figure shows gate electrode 10 as 1
The thickness of the insulating layer is made thinner as it approaches the electron emitting surface 6 to deepen the potential well and accelerate electrons toward the electron emitting surface 6. (1)) The figure shows a region 11 in which P-type impurities are ion-implanted into the interface with the insulating layer 3 of the P-type conductor substrate 1 near the electron emitting surface 6, instead of keeping the thickness of the insulating layer constant. This is an example of accelerating and radiating electric current r by forming an electric current r. C.C.
In FIG. 1, an n-channel is formed inside the interface between an insulating layer 3 and a semiconductor substrate 1, and a buried channel 13 is formed by making the semiconductor surface slightly N-shaped in order to increase transfer efficiency.

電子放射陰極の他の実施例を第3図に示す。この構造で
はソース14およびドレイン15を設けたMO5構造の
ため集積化が容易で、多数の電子放射面31を集積化し
た大面積の電子放射陰極を作ることもできる。
Another embodiment of the electron emitting cathode is shown in FIG. In this structure, since it is an MO5 structure provided with a source 14 and a drain 15, integration is easy, and a large-area electron-emitting cathode can be fabricated by integrating a large number of electron-emitting surfaces 31.

実際の電子管に適用する−1−で、第4図の構造の電子
放射陰極は極めて有効である。第1図乃至第3図と同一
部分は同一番号で示す。この場合P形半導体は棒状、針
状あるいは刃状をなす。刃状陰極では、ソース14およ
びドレイン15を設け、電界で電子を加速することもで
きる。
When applied to an actual electron tube, the electron emitting cathode having the structure shown in FIG. 4 is extremely effective. The same parts as in FIGS. 1 to 3 are designated by the same numbers. In this case, the P-type semiconductor is rod-shaped, needle-shaped, or blade-shaped. In the blade-shaped cathode, a source 14 and a drain 15 can be provided, and electrons can be accelerated by an electric field.

以1−の実施例の説明ではゲート電極に直流電圧を印加
する例をのべたが、ゲート電極に交流電圧またはパルス
電圧を印加することにより過渡的に電位の井戸を深くし
て電子放射を高めることもでき、また磁界をかけて電子
を電子放射面に向け、放射効率を七げることもできる。
In the explanation of Embodiment 1 below, an example was described in which a DC voltage is applied to the gate electrode, but by applying an AC voltage or a pulse voltage to the gate electrode, the potential well is transiently deepened and electron emission is increased. It is also possible to apply a magnetic field to direct the electrons toward the electron emission surface, thereby increasing the radiation efficiency.

また半導体材料としてP形層1、絶縁層材料としてSi
O2の実施例をのべたが、他の半導体材料、特にIIT
 −V族化合物半導体と、各種の酸化物、窒化物の絶縁
層材料が使用できることはいうまでもない。またデバイ
ス構造においても−に記の実施例以外に、この発明から
逸脱することなく他に種々の変形がありうることはいう
までもない。
In addition, P-type layer 1 is used as a semiconductor material, and Si is used as an insulating layer material.
Although the example of O2 has been described, other semiconductor materials, especially IIT
It goes without saying that insulating layer materials such as -V group compound semiconductors and various oxides and nitrides can be used. It goes without saying that the device structure may be modified in various ways other than the embodiments described above without departing from the present invention.

塩1−1本発明による電子放射陰極は電子親和力の低い
P形゛16導体を使いMISまたはMO3構造をとるこ
とによりnチャンネルを形成して1・分な電rをP形半
導体表面に流すことができるので、極めて効率的に電子
を放射することが可能となる。
Salt 1-1 The electron emitting cathode according to the present invention uses a P-type 16 conductor with low electron affinity and has an MIS or MO3 structure to form an n-channel and allow 1.minute of electric current r to flow on the surface of the P-type semiconductor. This makes it possible to emit electrons extremely efficiently.

しかもnチャンネルの先端から電子が放出できるので放
射面積は極めて小さくできる。もし大面積が必要ならば
、このようなMO8構造の陰極を多数集積することも容
易である。また本発明による電子放射陰極は常温で動作
が可能であるから、消費電力は少く、放射電子の初速度
分散も小さいため、真空管をはじめ各種の真空電子装置
に高性能の電子放射陰極を提供することができる。
Moreover, since electrons can be emitted from the tip of the n-channel, the emission area can be made extremely small. If a large area is required, it is easy to integrate a large number of cathodes having the MO8 structure. Furthermore, since the electron emitting cathode according to the present invention can be operated at room temperature, power consumption is low and the initial velocity dispersion of emitted electrons is small, so it provides a high performance electron emitting cathode for various vacuum electronic devices including vacuum tubes. be able to.

〔発明の効果〕〔Effect of the invention〕

以−1ユ説明したように、本発明によれば、放射電子流
の制御が容易で、電子放射面積を小さくでき必要に応じ
て多数個の集積も容易である新規の電子放射陰極を得る
ことができる。
As explained above, according to the present invention, it is possible to obtain a novel electron-emitting cathode that allows easy control of the emitted electron flow, reduces the electron-emitting area, and facilitates the integration of a large number of cathodes as required. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る電子放射陰極の実施例を説明する
ための陰極断面図。第2図(al (b)FC+は第1
図の他の実施例説明図。第3図は第1図の他の実施例説
明図。第4図は第3図の実際の真空管や真空電子装置等
に適した実施例説明図である。 1、  P形半導体基板 20+ソース電極 3、 絶縁層 4、 ゲート電極G1 5、 ゲート電極G2 6、電子放射面 7、nチャンネル 8、 陽極 9、放射電子流 10、  ゲート電極 11、P形不純物イオン注入層 12、N形層 13、埋め込みnチャンネル 14、  ソース電極 15、  ドレイン電極 第1図 第2図 (α)       (b)       (C)第3
図 第4図
FIG. 1 is a cathode sectional view for explaining an embodiment of the electron emitting cathode according to the present invention. Figure 2 (al (b) FC+ is the first
Another example explanatory diagram of the figure. FIG. 3 is an explanatory diagram of another embodiment of FIG. 1. FIG. 4 is an explanatory diagram of an embodiment suitable for the actual vacuum tube, vacuum electronic device, etc. shown in FIG. 1. P-type semiconductor substrate 20 + source electrode 3, insulating layer 4, gate electrode G1 5, gate electrode G2 6, electron emission surface 7, n-channel 8, anode 9, radiated electron current 10, gate electrode 11, P-type impurity ion Injection layer 12, N-type layer 13, buried n-channel 14, source electrode 15, drain electrode Figure 1 Figure 2 (α) (b) (C) Third
Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)P形半導体表面の少なくとも一部の表面にnチャ
ンネル領域を形成し、このnチャンネルの一部に上記P
形半導体基板の露出部を形成し、この露出部から電子を
放射する手段とを具備してなることを特徴とする電子放
射陰極。
(1) An n-channel region is formed on at least a part of the surface of a P-type semiconductor, and a part of this n-channel is
1. An electron-emitting cathode comprising means for forming an exposed portion of a shaped semiconductor substrate and emitting electrons from the exposed portion.
(2)P形半導体基板の表面に形成するnチャンネル領
域は、上記P形半導体基板の表面に絶縁体層を設け、該
絶縁体層上に少なくとも一つの電極を設け、この電圧に
正電圧を印加することにより形成したものである特許請
求の範囲第1項記載の電子放射陰極。
(2) The n-channel region formed on the surface of the P-type semiconductor substrate is formed by providing an insulator layer on the surface of the P-type semiconductor substrate, providing at least one electrode on the insulator layer, and applying a positive voltage to this voltage. An electron emitting cathode according to claim 1, which is formed by applying an electric current.
(3)P形半導体基板の露出部から電子を放射する手段
はnチャンネル領域の上記露出部に係合する部分におい
て電位の井戸が深くなるようにしたものである特許請求
の範囲第1項および第2項記載の電子放射陰極。
(3) The means for emitting electrons from the exposed portion of the P-type semiconductor substrate is such that a potential well becomes deep in a portion of the n-channel region that engages with the exposed portion. 2. Electron-emitting cathode according to item 2.
(4)nチャンネル領域の露出部に係合する部分におい
て電位の井戸を深くする手段は、電極下の絶縁体層の、
厚さを薄くする構造、電極を複数に分割し露出部に係合
する部分の電極に高電圧を印加する手法、上記nチャン
ネル領域の上記露出部に係合する一部分近傍に高濃度の
P形領域を形成する構造のいずれか一つまたは組合せで
ある特許請求の範囲第3項記載の電子放射陰極。
(4) The means for deepening the potential well in the portion that engages with the exposed portion of the n-channel region is the insulator layer below the electrode.
A method of dividing the electrode into a plurality of parts and applying a high voltage to the part of the electrode that engages with the exposed part; 4. The electron emitting cathode according to claim 3, which is any one or a combination of structures forming regions.
JP60036670A 1985-02-27 1985-02-27 Electron emission cathode Pending JPS61198530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036670A JPS61198530A (en) 1985-02-27 1985-02-27 Electron emission cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036670A JPS61198530A (en) 1985-02-27 1985-02-27 Electron emission cathode

Publications (1)

Publication Number Publication Date
JPS61198530A true JPS61198530A (en) 1986-09-02

Family

ID=12476288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036670A Pending JPS61198530A (en) 1985-02-27 1985-02-27 Electron emission cathode

Country Status (1)

Country Link
JP (1) JPS61198530A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136438A (en) * 1986-11-27 1988-06-08 Canon Inc Electron emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63136438A (en) * 1986-11-27 1988-06-08 Canon Inc Electron emitting device

Similar Documents

Publication Publication Date Title
US4683399A (en) Silicon vacuum electron devices
JPS60241626A (en) Display unit having electron current generating semiconductor device
US5561077A (en) Dielectric element isolated semiconductor device and a method of manufacturing the same
US3581151A (en) Cold cathode structure comprising semiconductor whisker elements
JPS60180040A (en) Semiconductor device for generating electron beam
US4801994A (en) Semiconductor electron-current generating device having improved cathode efficiency
JPH0145694B2 (en)
JPH0794105A (en) Field emission type electrostatically shielded microelectronic device
JP2782587B2 (en) Cold electron emission device
JPH0636679A (en) Inversion-mode electron emission device
JP2003338624A (en) Semiconductor device
JPS61198530A (en) Electron emission cathode
JP2781918B2 (en) Method for manufacturing MOS type semiconductor device
JP3341890B2 (en) Method of manufacturing field emission device
CA1253260A (en) Semiconductor device for generating an electron beam
JP2735118B2 (en) Cold cathode vacuum tube
EP0904595B1 (en) Electron tube having a semiconductor cathode
JP2835434B2 (en) Cold electron emission device
EP1071109A1 (en) Field-emission electron source
JPH10255645A (en) Cold-electron emitting element
JP3102783B2 (en) A cold cathode electron-emitting device that activates electron emission using an external electric field
JPH01235124A (en) Field emission type electrode
JP3405773B2 (en) Micro field emission cathode device and method of manufacturing the same
KR100235318B1 (en) Emitter array of field emission device and manufacturing method thereof
JPH11102637A (en) Mosfet type electron emission element