JPS611983A - Controller for degree of vacuum - Google Patents

Controller for degree of vacuum

Info

Publication number
JPS611983A
JPS611983A JP11976184A JP11976184A JPS611983A JP S611983 A JPS611983 A JP S611983A JP 11976184 A JP11976184 A JP 11976184A JP 11976184 A JP11976184 A JP 11976184A JP S611983 A JPS611983 A JP S611983A
Authority
JP
Japan
Prior art keywords
vacuum
degree
control valve
butterfly type
type control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11976184A
Other languages
Japanese (ja)
Inventor
柴田 岳男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okawara Mfg Co Ltd
Original Assignee
Okawara Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okawara Mfg Co Ltd filed Critical Okawara Mfg Co Ltd
Priority to JP11976184A priority Critical patent/JPS611983A/en
Publication of JPS611983A publication Critical patent/JPS611983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Solid Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は真空乾燥装置、凍結真空乾燥装置などの真空
乾燥槽内の真空度を制御する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for controlling the degree of vacuum in a vacuum drying tank such as a vacuum drying device or a freeze vacuum drying device.

〔従来の技術〕[Conventional technology]

従来この種の真空度制御方法としては、真空ポンプサク
ション側に外気を導入して真空乾燥槽内の真空度を制御
するバリアプルリーク法と、乾燥槽とコールドトラップ
との中間に抵抗を設けて真空乾燥槽内の真空度を制御す
るコンダクタンス法とがある。
Conventional vacuum control methods of this type include the barrier pull leak method, which controls the vacuum inside the vacuum drying tank by introducing outside air into the vacuum pump suction side, and the barrier pull leak method, which controls the vacuum inside the vacuum drying tank by introducing a resistor between the drying tank and the cold trap. There is a conductance method that controls the degree of vacuum in a vacuum drying tank.

コンダクタンス法としては、制御精度を向上させるため
に、第4図(特開昭52−44408号公報)に示すよ
うな第2流路を設ける制御法がある。図において、(1
)は被処理物を収納する真空槽、(2)は真空槽(1)
と真空ポンプを連通ずる配管、0υは主バタフライ型調
節弁、Q功は止弁、031は配管(2)に並設された第
2の配管、a4)は第2のバタフライ型調節弁、(1鴨
は第2の管路03に設は九止弁である。
As the conductance method, there is a control method in which a second flow path is provided as shown in FIG. 4 (Japanese Unexamined Patent Publication No. 52-44408) in order to improve control accuracy. In the figure, (1
) is the vacuum chamber that stores the object to be processed, (2) is the vacuum chamber (1)
0υ is the main butterfly type control valve, Q gong is the stop valve, 031 is the second pipe installed in parallel with the pipe (2), a4) is the second butterfly type control valve, ( 1. A nine-stop valve is installed in the second conduit 03.

次に、動作について説明する。乾燥工程の進行に伴って
、主バタフライ型調節弁01)の開度を徐々に減少する
ようにして真空槽(1)内の真空度を制御し、乾燥の終
期にその開度が所定値まで減少すると、リミットスイッ
チの作動で真空度調節計からの制御信号の主バタフライ
型調節弁0υへの入力を停止し、制御信号に応じて第2
のバタフライ型調節弁(14)のみを作動させ、被処理
物からの放出量の減少に応じて面積が小さな第2の配管
0■のコンダクタンスを調節することにより、所定の制
御精度を得ることができる。
Next, the operation will be explained. As the drying process progresses, the degree of vacuum in the vacuum chamber (1) is controlled by gradually decreasing the degree of opening of the main butterfly type control valve 01), and at the end of the drying, the degree of opening reaches a predetermined value. When it decreases, the limit switch is activated to stop inputting the control signal from the vacuum controller to the main butterfly type control valve 0υ, and the second
A predetermined control accuracy can be obtained by operating only the butterfly type control valve (14) and adjusting the conductance of the second pipe 0, which has a small area, in accordance with the decrease in the amount of discharge from the object to be treated. can.

また、第5図(特開昭52−44408号公報)に示す
ような、抵抗弁自体を2段階に開閉する構造のものもあ
る。図において、(2)は真空槽(1)から真空ポンプ
へ連通する排気管路、(16m)は管路(2)中に配設
された主バタフライ型調節弁、(16II)はバタフラ
イ型調節弁(16m)の中心部に取付けられた小径の副
バタフライ型調節弁、(16h)は副バタフライ型調節
弁(1611)で開閉される主バタフライ型調節弁(1
6m)に設けられた穴である。このように形成された抵
抗弁(16)は、真空度調節計の制御信号で先ず主バタ
フライ型調節弁(16m)を作動させて真空度を制御し
、被処理物からの放散量が減少して調節弁(16m)が
聞方に移動し、所定角度まで達するとリミットスイッチ
等の信号で主バタフライ型調節弁(16m)は作動を停
止し、以後は制御信号で副バタフライ型調節弁(16m
)が作動し、放散量が減少した真空槽内圧力を小口径小
面積の副バタフライ型調節弁(16m)で高精度に制御
することができる。
There is also a structure in which the resistance valve itself is opened and closed in two stages, as shown in FIG. 5 (Japanese Patent Laid-Open No. 52-44408). In the figure, (2) is the exhaust pipe connecting the vacuum chamber (1) to the vacuum pump, (16m) is the main butterfly type control valve installed in the pipe (2), and (16II) is the butterfly type control valve. The small diameter secondary butterfly type control valve (16h) is installed in the center of the valve (16m), and the main butterfly type control valve (16h) is opened and closed by the secondary butterfly type control valve (1611).
6m). The resistance valve (16) formed in this way first operates the main butterfly type control valve (16m) using the control signal from the vacuum degree controller to control the degree of vacuum, thereby reducing the amount of radiation emitted from the workpiece. When the control valve (16m) moves in the opposite direction, and reaches a predetermined angle, the main butterfly type control valve (16m) stops operating with a signal from a limit switch, etc., and after that, the sub butterfly type control valve (16m) stops operating with a control signal.
) is activated, and the pressure inside the vacuum chamber, which has a reduced amount of radiation, can be controlled with high precision using a small-diameter, small-area secondary butterfly type control valve (16 m).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

真空乾燥、凍結真空乾燥において、真空乾燥槽内の真空
度は、被処理物の乾燥時間や製品品質に対して大きな影
響を与える。特に、凍結真空乾燥においては、凍結した
被処理物の品温と真空度が平衡した状態で棚加熱がなさ
れている時に、0)乾燥槽内圧力が上昇すれば空隙等の
熱伝導がよくなって被処理物への熱流入が増加し、乾燥
速度が増加する。そして、被処理物の品温は槽内圧力に
対応する温度に上昇する。
In vacuum drying and freeze-vacuum drying, the degree of vacuum within the vacuum drying tank has a large effect on the drying time and product quality of the processed material. In particular, in freeze-vacuum drying, when shelf heating is performed with the temperature of the frozen processed material and the degree of vacuum in equilibrium, 0) if the pressure inside the drying tank increases, heat conduction through voids, etc. will improve. This increases the heat flow into the workpiece and increases the drying rate. Then, the temperature of the object to be treated rises to a temperature corresponding to the pressure inside the tank.

(ロ)一方、乾燥槽内の圧力が減少すると、被処理物へ
の熱流入が減少し、乾燥速度は低下して品温は槽内圧力
に対応する温度まで下降する。
(b) On the other hand, when the pressure inside the drying tank decreases, the flow of heat into the material to be processed decreases, the drying speed decreases, and the product temperature drops to a temperature corresponding to the pressure inside the tank.

(ハ)品温が上昇すると、凍結材料の融解ないし凍結構
造の崩壊につながり製品品質の劣化を生じる。
(c) When the product temperature rises, the frozen material may melt or the frozen structure may collapse, resulting in deterioration of product quality.

従って、凍結乾燥においては、凍結材料が融解ないし凍
結構造の崩壊が生じない範囲で、できるだけ高い圧力、
品温で処理することが望ましく、このため真空度制御を
確実に精度よく行うことが必要となる。
Therefore, in freeze-drying, the pressure must be as high as possible without causing the frozen material to melt or the frozen structure to collapse.
It is desirable to process at product temperature, and for this reason, it is necessary to reliably and accurately control the degree of vacuum.

この高精度の制御を行うため、上述のような構造の制御
方法が提案されているが、バタフライ弁を2重に設置し
たり、バイパス管を設ける等のため何れも構造が複雑と
なり、かつ設備コストが高くなる。さらに、主弁から副
弁への切換え時に制御系に一時的な外乱が入力、過渡的
に真空乾燥の圧力が変動して被処理物に影響を与える等
の問題があった。
In order to perform this high-precision control, control methods with the structure described above have been proposed, but all of them require a complicated structure due to the installation of double butterfly valves and the provision of bypass pipes. Cost increases. Further, there are problems such as temporary disturbance input to the control system when switching from the main valve to the sub-valve, and the pressure of vacuum drying transiently fluctuating, which affects the object to be processed.

〔問題を解決するための手段〕[Means to solve the problem]

この発明は、以上のような従来のものの問題点を解決す
るためになされたもので、真空槽からの排気路中に1個
の流量調節弁を介設し、その操作速度を偏差量に応じ変
化させて真空度の制御を行うことによシ、構成を簡単に
すると共に制御系をシンプル化し、かつ制御精度を高め
ることができる真空度制御装置を提供するものである。
This invention was made in order to solve the problems of the conventional ones as described above, and it involves interposing one flow control valve in the exhaust path from the vacuum chamber, and adjusting the operating speed according to the amount of deviation. The purpose of the present invention is to provide a vacuum degree control device that can simplify the configuration, simplify the control system, and improve control accuracy by controlling the degree of vacuum by changing the degree of vacuum.

構成を簡単にする手段としては、バタフライ型ダンパを
用い、上記偏差量に応じてその操作速度を変化させるこ
とも有効で、またバタフライ型ダンパ自身のコンダクタ
ンス特性を補償する意味で、その開度に応じて操作速度
を変化させることも有効である。もちろん上記偏差量と
上記開度相互の関係に基づいて操作速度を変えるよう圧
すれば一層好ましい。
As a means of simplifying the configuration, it is effective to use a butterfly type damper and change its operating speed according to the above deviation amount.Also, in order to compensate for the conductance characteristics of the butterfly type damper itself, it is effective to change its opening degree. It is also effective to change the operating speed accordingly. Of course, it is more preferable to apply pressure to change the operating speed based on the relationship between the deviation amount and the opening degree.

〔実施例〕〔Example〕

以下、この発明による一実施例を図によって説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図において、(1)は被処理物を収納する真空乾燥
槽、(2)は排気路、(3)はバタフライ型調節弁、(
4)はコールドトラップ、(5)は真空ポンプ、(6)
は真空槽(1)内の真空度を検出するビラニ真空計、(
7)は非直線の真空計(6)の出力(0〜10mVD、
C)を直線化するりニヤライザ、(8)はPID型(比
例十積分士微分動作)の圧力指示調節計で、設定値とp
v値との偏差量が予め設定した所定値に達すると、バタ
フライ型調節弁(3)の開閉操作速度を切換えるスピー
ド設定信号を発生する機構が付設されている。(9)は
バタフライ型調節弁(3)の操作用駆動モータで、SC
R速度可変コントローラを有している。員はスピード設
定信号に応じてモータ(9)の速度を所定速度に調節す
るスピードコントローラである。
In Fig. 1, (1) is a vacuum drying tank for storing objects to be processed, (2) is an exhaust path, (3) is a butterfly type control valve, (
4) is a cold trap, (5) is a vacuum pump, (6)
is a Virani vacuum gauge that detects the degree of vacuum in the vacuum chamber (1), (
7) is the output of the non-linear vacuum gauge (6) (0 to 10 mVD,
C) is a linearizer, and (8) is a PID type (proportional ten integrator differential operation) pressure indicating controller, which adjusts the set value and p.
A mechanism is provided that generates a speed setting signal to switch the opening/closing operation speed of the butterfly type control valve (3) when the deviation amount from the v value reaches a predetermined value. (9) is the drive motor for operating the butterfly type control valve (3).
It has a variable speed controller. The member is a speed controller that adjusts the speed of the motor (9) to a predetermined speed in response to a speed setting signal.

次に1動作について説明する。真空乾燥槽(1)内の真
空度をビラニ真空計(6)で検出し、その非直線出力0
〜10mVD、Cの信号を、リニヤライザ(7)で直線
化して圧力指示調節計(8)に入力する。調節針(8)
は、入力されたpv値と設定値との偏差によυ、最適に
設定された比例ゲイン、積分時定数および微分時間で制
御信号を演算し、モータ(9)を制御信号に応じて駆動
し、バタフライ型調節弁(3)を回転操作して真空乾燥
槽(1)内の真空度が設定値と一致するように制御する
。この乾燥工程において、被処理物からの放散量は、乾
燥の初期と終期とでは変化し、また設定真空度によって
も変化する。
Next, one operation will be explained. The degree of vacuum in the vacuum drying tank (1) is detected by the Virani vacuum gauge (6), and its nonlinear output is 0.
A signal of ~10 mVD, C is linearized by a linearizer (7) and input to a pressure indicating controller (8). Adjustment needle (8)
calculates a control signal with an optimally set proportional gain, integral time constant, and differential time according to the deviation between the input pv value and the set value, and drives the motor (9) according to the control signal. , the butterfly type control valve (3) is rotated to control the degree of vacuum in the vacuum drying tank (1) to match the set value. In this drying process, the amount of radiation from the object to be processed changes between the initial and final stages of drying, and also changes depending on the vacuum setting.

そこで、調節計(8)で生じる偏差量の所定値へ。Therefore, the amount of deviation generated by the controller (8) is set to a predetermined value.

1Lを予め設定し、第3図に示すように、この設定値範
囲内と範囲外とではモータ(9)の速度を切換える信号
を発生してスピードコントローラαOに入力する。ここ
で、速度切換信号に応じてスピードコントローラα1で
設定される速度、例えば〜、ε1範囲内でのモータ速度
を範囲外の速度の1/4程度で駆動する信号を、操作モ
ータ(9)の80R速度可変コン)a−ラに与え、pv
値が設定値SPに近づくと、バタフライ型調節弁(3)
の回転操作速度を約1/4に低下させ、即ち単位制御信
号当シの有効コンダクタンス変化量を小さくして、制御
のオーバシュートを抑えて制御系を安定化させる。一方
、偏差量が大きい場合は、バタフライ型調節弁(3)の
操作速度は速いので、乾燥工程初期の手動操作時や、調
節計(8)の設定変更時あるいは外乱等によ如真空度が
大きく変動したシした時の追従性を損うことはない。こ
うして、特殊な構造でない通常型のバタフライ型調節弁
を1個設けるだけで、制御系にハンチングを生じること
なく、安定して良好な制御結果を得ることができる。
1L is set in advance, and as shown in FIG. 3, a signal is generated to switch the speed of the motor (9) between within and outside the set value range and is input to the speed controller αO. Here, the speed set by the speed controller α1 according to the speed switching signal, for example, a signal that drives the motor speed within the range of ~, ε1 at about 1/4 of the speed outside the range, is applied to the operating motor (9). 80R speed variable controller) a-ra, pv
When the value approaches the set value SP, the butterfly type control valve (3)
The rotational operation speed is reduced to about 1/4, that is, the amount of change in effective conductance of the unit control signal is reduced, thereby suppressing control overshoot and stabilizing the control system. On the other hand, if the amount of deviation is large, the operating speed of the butterfly type control valve (3) is fast, so the degree of vacuum may change during manual operation at the beginning of the drying process, when changing the settings of the controller (8), or due to external disturbances. There is no loss in followability when there is a large fluctuation. In this way, by providing only one normal butterfly type control valve with no special structure, stable and good control results can be obtained without causing hunting in the control system.

また上記実施例では、偏差量の所定値に応じて流量調節
弁の操作速度を切換えるようにしたが、調節弁開度に応
じて切換えてもよい。例えばバタフライ型調節弁の特性
は、第2図に示すように低開度側では有効コンダクタン
ス変化/開度変化の比が大きくなり、乾燥負荷が小さく
かつ操作真空圧が高い、即ちバタフライ型調節弁が低開
度となる時は、所定開度、例えば60度程度に達すると
り之ットスイッチ等の信号をスピードコントローラに入
力し、その信号で操作速度を低下させるようにする。こ
うすると、低開度側における制御系の不安定さを緩和で
き、ハンチングが生じない良好な制御精度を得ることが
できる。また、設定圧力と検出圧力の偏差値及びバタフ
ライ型調節弁の開度相互の関係に応じてダンパ操作速度
を変化させれば、一層精密かつ迅速な真空度制御が行え
ることは言うまでもない。この場合には、例えば次の様
なマトリックスによシ操作速度をコントロールするので
ある。
Further, in the above embodiment, the operating speed of the flow rate regulating valve is switched in accordance with the predetermined value of the deviation amount, but it may be switched in accordance with the opening degree of the regulating valve. For example, the characteristics of a butterfly type control valve are that, as shown in Figure 2, the ratio of effective conductance change/opening change is large on the low opening side, the drying load is small, and the operating vacuum pressure is high. When the opening degree is low, a signal from a doorway switch or the like that reaches a predetermined opening degree, for example, about 60 degrees, is input to the speed controller, and the operating speed is reduced by that signal. In this way, instability of the control system on the low opening side can be alleviated, and good control accuracy without hunting can be obtained. Furthermore, it goes without saying that even more precise and rapid vacuum control can be achieved by changing the damper operation speed according to the relationship between the deviation value between the set pressure and the detected pressure and the opening degree of the butterfly type control valve. In this case, the operating speed is controlled using, for example, the following matrix.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば偏差あるいはパルプ開
度、更にはその両者の関係に応じ、バタフライ型調節弁
の操作速度を切換えて真空度制御を行うようにしたので
、制御系を安定化してハンチングの生じない良好表制御
精度を得ることができ、かつ1個の通常のバタフライ型
調節弁のみですむので、配管構造が単純化されて設備コ
ストを低減化でき、かつ保守も容易となるという効果が
得られる。
As described above, according to the present invention, the degree of vacuum is controlled by switching the operation speed of the butterfly type control valve according to the deviation or the pulp opening degree, or the relationship between the two, thereby stabilizing the control system. It is possible to obtain good table control accuracy without hunting, and since only one regular butterfly type control valve is required, the piping structure is simplified, equipment costs can be reduced, and maintenance is also easy. This effect can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による真空制御装置のシステム図、第
2図はバタフライ型調節弁の開度−実効コンダクタンス
特性図、第3図は偏差とバタフライ型調節弁の操作速度
との関係を示す図、第4図は従来の2流路方式の構成図
、第5図は従来技術による複式バタフライ型調節弁の構
成図である。 (1)・・・真空乾燥槽、(2)・・・排気管路、(3
)・・・バタフライ[11+11節弁、(4)・・・コ
ールドトラップ、(5)・・・真空ポンプ、(6)・・
・ピラニ真空計、(7)・・・リニヤライザ、(8)・
・・圧力指示調節計、(9)・・・操作用駆動モータ、
α1・・・スピードコントローラ、(11)・・・第1
のバタフライ型調節弁、03)・・・第2の管路、α沿
・・・第2のバタフライ型調節弁、(16)・・・複式
バタフライ型調節弁、(16m)・・・主バタフライ型
調節弁、(161)・・・副バタフライ型調節弁、(1
6h)・・・バタフライ弁の穴。
Fig. 1 is a system diagram of a vacuum control device according to the present invention, Fig. 2 is an opening-effective conductance characteristic diagram of a butterfly-type control valve, and Fig. 3 is a diagram showing the relationship between deviation and operating speed of the butterfly-type control valve. , FIG. 4 is a block diagram of a conventional two-channel type control valve, and FIG. 5 is a block diagram of a conventional dual butterfly type control valve. (1)...Vacuum drying tank, (2)...Exhaust pipe, (3
)...Butterfly [11+11 section valve, (4)...Cold trap, (5)...Vacuum pump, (6)...
・Pirani vacuum gauge, (7)...linearizer, (8)・
・・Pressure indicating controller, (9) ・・・Drive motor for operation,
α1...Speed controller, (11)...1st
Butterfly type control valve, 03)...Second pipeline, along α...Second butterfly type control valve, (16)...Double butterfly type control valve, (16m)...Main butterfly Type control valve, (161)...Sub butterfly type control valve, (1
6h)...Butterfly valve hole.

Claims (3)

【特許請求の範囲】[Claims] (1)被処理物を収納する真空槽から真空源装置に連通
する排気系路中に流量調節弁を介設し、上記流量調節弁
の操作速度を、調節計の設定値と検出真空度との偏差量
と上記流量調節弁の開度との相関関係に応じて変化させ
、真空度の制御を行うことを特徴とする真空度制御装置
(1) A flow rate control valve is interposed in the exhaust line that communicates from the vacuum chamber housing the workpiece to the vacuum source device, and the operating speed of the flow rate control valve is adjusted based on the setting value of the controller and the detected vacuum degree. A degree of vacuum control device, characterized in that the degree of vacuum is controlled by changing the degree of vacuum according to the correlation between the deviation amount of the flow rate control valve and the degree of opening of the flow control valve.
(2)流量調節弁の操作速度が、調節計の設定値と検出
真空度との偏差が小さくなれば遅くなることを特徴とす
る特許請求の範囲第1項記載の真空度制御装置。
(2) The vacuum degree control device according to claim 1, wherein the operating speed of the flow rate control valve becomes slower as the deviation between the set value of the controller and the detected vacuum degree becomes smaller.
(3)流量調節弁の操作速度が、この流量調節弁の開度
が小さくなれば遅くなることを特徴とする特許請求の範
囲第1項記載の真空度制御装置。
(3) The vacuum degree control device according to claim 1, wherein the operating speed of the flow rate control valve becomes slower as the opening degree of the flow rate control valve becomes smaller.
JP11976184A 1984-06-13 1984-06-13 Controller for degree of vacuum Pending JPS611983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11976184A JPS611983A (en) 1984-06-13 1984-06-13 Controller for degree of vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11976184A JPS611983A (en) 1984-06-13 1984-06-13 Controller for degree of vacuum

Publications (1)

Publication Number Publication Date
JPS611983A true JPS611983A (en) 1986-01-07

Family

ID=14769518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11976184A Pending JPS611983A (en) 1984-06-13 1984-06-13 Controller for degree of vacuum

Country Status (1)

Country Link
JP (1) JPS611983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518236U (en) * 1991-08-26 1993-03-05 三菱電機株式会社 Energization time limiter
JP2017179974A (en) * 2016-03-31 2017-10-05 株式会社モリタホールディングス Work vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0518236U (en) * 1991-08-26 1993-03-05 三菱電機株式会社 Energization time limiter
JP2017179974A (en) * 2016-03-31 2017-10-05 株式会社モリタホールディングス Work vehicle

Similar Documents

Publication Publication Date Title
US2536184A (en) Pressure fluid follow-up servomotor
WO2002048813A3 (en) Improved pressure controller and method
US3586027A (en) Automatic pressure controller
CN113324605A (en) Gas mass flow controller and gas mass flow control method
US4042173A (en) Method and apparatus for controlling volume air flow
JPS611983A (en) Controller for degree of vacuum
JPS5840002B2 (en) Turbine Seigyo Cairo
US4318509A (en) Fluid temperature control system
US4817864A (en) Temperature compensation for vav system
US4346838A (en) Timed rate pneumatic control
US5834654A (en) Torque and temperature control for a water brake dynamometer
JPH11201069A (en) Screw compressor discharge pressure control method
JPS6016283A (en) Controller for quantity of transformation in refrigerator
JP3044205B2 (en) Room pressure control device
JPH04351304A (en) Hydraulic driving device
JPH076962A (en) Gas pressure control method and device
JPH0777168A (en) Pump control device
JP2851585B2 (en) Pressure control valve
JPH01312287A (en) Automatic temp. control valve
JPH0229922B2 (en)
JPH06138954A (en) Pressure controller
JPS62229311A (en) Control valve
JPH03982A (en) Vacuum chamber pressure control system
JPS58102805A (en) Closed loop speed control circuit for oil pressure actuator
JPH04124595A (en) Automatic temperature control device for heat exchanger