JPH04351304A - Hydraulic driving device - Google Patents

Hydraulic driving device

Info

Publication number
JPH04351304A
JPH04351304A JP3152281A JP15228191A JPH04351304A JP H04351304 A JPH04351304 A JP H04351304A JP 3152281 A JP3152281 A JP 3152281A JP 15228191 A JP15228191 A JP 15228191A JP H04351304 A JPH04351304 A JP H04351304A
Authority
JP
Japan
Prior art keywords
differential pressure
flow rate
valve
flow control
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3152281A
Other languages
Japanese (ja)
Inventor
Takeshi Ichiyanagi
健 一柳
Masami Ochiai
落合 正己
Takashi Kanai
隆史 金井
Toichi Hirata
東一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP3152281A priority Critical patent/JPH04351304A/en
Publication of JPH04351304A publication Critical patent/JPH04351304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To eliminate instability of load sensing control in a hydraulic driving device. CONSTITUTION:Flow rate control valves 5a, 5b are opened on the basis of signals output from operating quantity sensors 7a, 7b. When hydraulic cylinders 4a, 4b are driven, a controller 11 takes in a differential pressure of the flow rate control valves from differential pressure sensors 8a, 8b, to carry out load sensing control with respect to a hydraulic pump 1 on the basis of a minimum differential pressure. Simultaneously, a valve opening degree of the flow rate control valves is reduced in proportion to a value of a square root of a ratio of a set differential pressure to a differential pressure of the flow rate control valves other than the minimum differential pressure. Consequently, a pressure compensating valve becomes unnecessary, and stable control can be achieved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は1つの可変容量油圧ポン
プで複数の油圧アクチュエータを駆動する油圧駆動装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydraulic drive system for driving a plurality of hydraulic actuators with one variable displacement hydraulic pump.

【0002】0002

【従来の技術】1つの可変容量油圧ポンプ(以下、単に
油圧ポンプという。)の圧油により複数の油圧アクチュ
エータを同時に駆動する油圧駆動装置としては、種々の
方式のものがある。これら方式のうち、西独特許明細書
第3321483号、特公昭60−11706号公報、
特開平2−261902号公報等により提案されている
、いわゆるロードセンシング方式の油圧駆動装置は、油
圧ポンプと各流量制御弁との間に圧力補償弁を備え、こ
の圧力補償弁により流量制御弁の入口圧と出口圧との差
(差圧)が所定の圧力になるように補償するとともに、
油圧ポンプの吐出圧力を、圧力補償弁および流量制御弁
の圧損分だけ負荷圧力より高めるように、油圧ポンプの
吐出流量を制御する構成となっている。この構成により
、各油圧アクチュエータの複合操作時、それらに供給す
る圧油の流量を流量制御弁の開口面積に比例した値とす
る適正な分流制御を行うことができ、油圧アクチュエー
タを負荷圧の変動に影響されることなく安定して制御す
ることができるという優れた特徴を発揮することができ
る。
2. Description of the Related Art There are various types of hydraulic drive devices that simultaneously drive a plurality of hydraulic actuators using pressure oil from a single variable displacement hydraulic pump (hereinafter simply referred to as a hydraulic pump). Among these systems, West German Patent Specification No. 3321483, Japanese Patent Publication No. 11706/1983,
The so-called load sensing type hydraulic drive device proposed in Japanese Patent Application Laid-Open No. 2-261902 and others is equipped with a pressure compensation valve between the hydraulic pump and each flow control valve, and the pressure compensation valve controls the flow rate control valve. In addition to compensating the difference (differential pressure) between inlet pressure and outlet pressure to a predetermined pressure,
The discharge flow rate of the hydraulic pump is controlled so that the discharge pressure of the hydraulic pump is higher than the load pressure by the pressure loss of the pressure compensation valve and the flow rate control valve. With this configuration, during combined operation of each hydraulic actuator, it is possible to perform appropriate branch flow control in which the flow rate of pressure oil supplied to them is proportional to the opening area of the flow control valve, and the hydraulic actuator can be controlled by changes in load pressure. It is possible to demonstrate the excellent feature of being able to perform stable control without being affected by the

【0003】0003

【発明が解決しようとする課題】上記ロードセンシング
方式で使用される圧力補償弁は、負荷圧(又は油圧ポン
プ圧)が変動しても流量を一定に保持する機能を持たせ
られるため、本来、弁が有する減衰効果を無効にするよ
うに作動する。さらに、ロードセンシング方式自体差圧
を一定に維持する制御である。これらの理由により、ロ
ードセンシング方式は油圧系制御の安定性に難点があり
、ハンチングを生じ易い。これを防止するため、従来、
圧力補償弁のスプールを特殊の形状に加工し、又は適宜
のダンパを設ける手段が採用されていたが、前者の手段
は加工困難、後者の手段はコストの増大を招くという問
題があった。本発明の目的は、上記従来技術における課
題を解決し、圧力補償弁を使用することなく、安定した
制御を行うことができる油圧駆動装置を提供するにある
[Problems to be Solved by the Invention] The pressure compensation valve used in the load sensing method has the function of keeping the flow rate constant even if the load pressure (or hydraulic pump pressure) fluctuates. It operates to override the damping effect of the valve. Furthermore, the load sensing method itself is a control that maintains the differential pressure constant. For these reasons, the load sensing method has problems with the stability of hydraulic system control and is prone to hunting. To prevent this, conventionally,
Methods have been adopted in which the spool of the pressure compensating valve is machined into a special shape or a suitable damper is provided, but the former method is difficult to process, and the latter method increases costs. SUMMARY OF THE INVENTION An object of the present invention is to provide a hydraulic drive device that solves the problems in the prior art described above and can perform stable control without using a pressure compensation valve.

【0004】0004

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、可変容量油圧ポンプと、この可変容量油
圧ポンプの圧油で駆動される複数の油圧アクチュエータ
と、これら油圧アクチュエータの駆動を制御する各流量
制御弁とを備えた油圧駆動装置において、前記各流量制
御弁における差圧を検出する差圧検出器と、これら差圧
検出器で検出された差圧のうち最小差圧と予め定められ
た設定差圧との差に基づいて前記可変容量油圧ポンプの
吐出流量を制御する流量制御手段と、前記最小差圧を発
生している流量制御弁以外の流量制御弁の弁開度を前記
設定差圧と当該流量制御弁の差圧との比の平方根に比例
して低減する弁開度修正制御手段とを設けたことを特徴
とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a variable displacement hydraulic pump, a plurality of hydraulic actuators driven by pressure oil of the variable displacement hydraulic pump, and a drive system for driving these hydraulic actuators. In a hydraulic drive device, the hydraulic drive device is equipped with a differential pressure detector that detects a differential pressure in each of the flow control valves, and a minimum differential pressure among the differential pressures detected by these differential pressure detectors. a flow rate control means for controlling the discharge flow rate of the variable displacement hydraulic pump based on a difference from a predetermined set differential pressure; and a valve opening degree of a flow control valve other than the flow control valve generating the minimum differential pressure. The present invention is characterized in that it is provided with a valve opening correction control means for reducing the pressure difference in proportion to the square root of the ratio between the set differential pressure and the differential pressure of the flow control valve.

【0005】[0005]

【作用】複合駆動されている油圧アクチュエータの各流
量制御弁の差圧を取込み、それら差圧のうち最小差圧を
用いて可変容量油圧ポンプに対しロードセンシング制御
を行う。即ち、流量制御手段により当該最小差圧と設定
差圧との差に基づいて油圧ポンプの吐出流量を制御する
。同時に、弁開度修正制御手段は、最小差圧以外の差圧
に基づいて当該各差圧に対応する流量制御弁の弁開度を
修正する制御を行う。この修正は、前記設定差圧とそれ
ぞれの差圧との比の平方根に比例して弁開度を小さくす
ることにより行われる。
[Operation] The differential pressure of each flow control valve of the hydraulic actuator that is being driven in combination is taken, and the minimum differential pressure among those differential pressures is used to perform load sensing control on the variable displacement hydraulic pump. That is, the flow rate control means controls the discharge flow rate of the hydraulic pump based on the difference between the minimum differential pressure and the set differential pressure. At the same time, the valve opening correction control means performs control to correct the valve opening of the flow control valve corresponding to each differential pressure, based on the differential pressure other than the minimum differential pressure. This correction is performed by reducing the valve opening in proportion to the square root of the ratio between the set differential pressure and each differential pressure.

【0006】[0006]

【実施例】以下、本発明を図示の実施例に基づいて説明
する。図1は本発明の実施例に係る油圧駆動装置の系統
図である。図で、1は油圧ポンプ、1aは油圧ポンプ1
のおしのけ容積可変機構(以下、斜板で代表する。)、
2は斜板1aを駆動する油圧シリンダ、3a、3bは油
圧シリンダ2の駆動を制御する電磁弁である。油圧シリ
ンダ2および電磁弁3a、3bにより油圧ポンプ1のレ
ギュレータが構成される。4a、4bは油圧ポンプ1に
より駆動される油圧シリンダ、5a、5bは油圧シリン
ダ4a、4bに供給する圧油の流量を制御する流量制御
弁、6a、6bは各流量制御弁5a、5bと機械的に連
結された方向切換弁である。7a、7bは油圧シリンダ
4a、4bを操作する操作レバーの操作量センサであり
、操作レバーの操作量に比例した電気信号を出力する。 なお、各操作レバーは直接的には流量制御弁5a、5b
の弁開度を制御する。8a、8bは差圧センサであり、
各流量制御弁5a、5bの入口側の圧力と出口側の圧力
とを入力し、両者の差の圧力に比例した電気信号を出力
する。9は油圧ポンプ1の吐出圧力を検出しその値に比
例した電気信号を出力する圧力センサ、10はブリード
弁、11は種々の制御を行うコントローラである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the illustrated embodiments. FIG. 1 is a system diagram of a hydraulic drive device according to an embodiment of the present invention. In the figure, 1 is a hydraulic pump, 1a is a hydraulic pump 1
variable displacement mechanism (hereinafter represented by the swash plate);
2 is a hydraulic cylinder that drives the swash plate 1a, and 3a and 3b are electromagnetic valves that control the drive of the hydraulic cylinder 2. A regulator of the hydraulic pump 1 is configured by the hydraulic cylinder 2 and the electromagnetic valves 3a and 3b. 4a and 4b are hydraulic cylinders driven by the hydraulic pump 1; 5a and 5b are flow control valves that control the flow rate of pressure oil supplied to the hydraulic cylinders 4a and 4b; and 6a and 6b are the flow control valves 5a and 5b and the machine. This is a directional valve connected to the Reference numerals 7a and 7b are operating amount sensors for operating levers that operate the hydraulic cylinders 4a and 4b, and output electrical signals proportional to the operating amounts of the operating levers. Note that each operating lever directly controls the flow rate control valves 5a and 5b.
Controls the valve opening degree. 8a and 8b are differential pressure sensors;
The pressure on the inlet side and the pressure on the outlet side of each flow control valve 5a, 5b are inputted, and an electric signal proportional to the pressure difference between the two is outputted. 9 is a pressure sensor that detects the discharge pressure of the hydraulic pump 1 and outputs an electric signal proportional to the value; 10 is a bleed valve; and 11 is a controller that performs various controls.

【0007】次に、本実施例の動作を図2、図3および
図4を参照しながら説明する。図2は図1に示すコント
ローラ11の内容の一部を説明するブロック図、図3は
図2に示す弁開度修正制御部における演算を示す図、図
4は弁開度指令値と流量の関係を示す特性図である。各
操作レバーが操作されると、操作量センサ7a、7bか
らの信号がコントローラ11に入力され、コントローラ
11はこれら信号に応じて流量制御弁5a、5bを開く
。これにより油圧シリンダ4a、4bは供給された流量
に応じた速度で駆動される。この状態で、差圧センサ8
a、8bは各流量制御弁5a、5bの差圧を検出し、こ
れらをコントローラ11へ入力する。コントローラ11
は図2に示す最小差圧選択部110において入力された
差圧のうち小さい方の差圧ΔPiminを選択してロー
ドセンシング制御部111へ入力する。ロードセンシン
グ制御部111は当該差圧ΔPiminおよび予め設定
された差圧(設定差圧)に基づいて電磁弁3a、3bに
対して所要の信号を出力し、油圧ポンプ1の吐出流量を
制御するロードセンシング制御を行う。さらに、本実施
例では、他方の流量制御弁に対して弁開度修正制御を行
う。 即ち、図2において、最小差圧選択部110で最小差圧
ΔPiminが選択されると、それ以外の差圧信号は弁
開度修正制御部112へ入力される。なお、図2には差
圧センサ8a〜8nが示されているが、図1に示す構成
の場合、差圧センサは8a、8bの2つである。したが
って、最小差圧選択部110で一方の差圧が選択される
と、他方の差圧は弁開度修正制御部112へ入力される
ことになる。ここで、弁開度修正制御部112で実行さ
れる演算を、図3に示す数式を参照して説明する。
Next, the operation of this embodiment will be explained with reference to FIGS. 2, 3, and 4. 2 is a block diagram explaining part of the contents of the controller 11 shown in FIG. 1, FIG. 3 is a diagram showing calculations in the valve opening correction control section shown in FIG. 2, and FIG. 4 is a diagram showing the calculation of the valve opening command value and flow rate. It is a characteristic diagram showing a relationship. When each operating lever is operated, signals from the operating amount sensors 7a, 7b are input to the controller 11, and the controller 11 opens the flow control valves 5a, 5b in response to these signals. As a result, the hydraulic cylinders 4a and 4b are driven at a speed corresponding to the supplied flow rate. In this state, the differential pressure sensor 8
a and 8b detect the differential pressure between each flow control valve 5a and 5b, and input these to the controller 11. Controller 11
The minimum differential pressure selection section 110 shown in FIG. The load sensing control unit 111 outputs a required signal to the solenoid valves 3a and 3b based on the differential pressure ΔPimin and a preset differential pressure (set differential pressure), and controls the load flow rate of the hydraulic pump 1. Perform sensing control. Furthermore, in this embodiment, valve opening degree correction control is performed on the other flow control valve. That is, in FIG. 2, when the minimum differential pressure ΔPimin is selected by the minimum differential pressure selection section 110, other differential pressure signals are input to the valve opening correction control section 112. Although differential pressure sensors 8a to 8n are shown in FIG. 2, in the configuration shown in FIG. 1, there are two differential pressure sensors 8a and 8b. Therefore, when one differential pressure is selected by the minimum differential pressure selection section 110, the other differential pressure is input to the valve opening correction control section 112. Here, the calculations executed by the valve opening correction control section 112 will be explained with reference to the formula shown in FIG. 3.

【0008】今、Cv を流量制御弁の流量係数、A(
x)を流量制御弁のストロークxに対する弁開度、ρを
油の密度、ΔPi を他方の流量制御弁の差圧とすると
、当該流量制御弁の通過流量Qi は図3の(1)式で
表される。本実施例では、当該(1)式における弁開度
A(x)を、図3の(2)式に示す弁開度A(xm )
に修正する制御を行う。(2)式で、xm は修正後の
流量制御弁のストローク、ΔPLSは設定差圧である。 (1)式における値A(x)に(2)式の値A(xm 
)を代入して弁開度修正後の流量Qimを求めると、こ
の流量Qimは図3の(3)式で表される。(1)式と
(3)式を比較すると、前者における差圧ΔPi が後
者では設定差圧ΔPLSとなっている。即ち、修正後の
流量Qimは、設定差圧ΔPLSが固定された値である
ので、ストロークxm にのみ依存することとなる。換
言すれば、最小差圧を生じている流量制御弁以外の流量
制御弁に対しては、その差圧が設定差圧ΔPLSになる
ように弁開度が修正されることとなり、圧力補償弁が用
いられているのと同じ状態となる。上記の修正動作の意
味を図4を参照して説明する。図4で、横軸には弁開度
指令値(操作レバーの操作量又は流量制御弁のストロー
ク量)が、縦軸には流量がとってある。各曲線は流量制
御弁のある差圧における弁開度指令値と流量との関係を
示す曲線であり、ΔPi はある差圧における曲線、Δ
PLSは設定差圧における曲線を示す。弁開度修正制御
部112により制御される流量制御弁の差圧がΔPi 
であり、その流量制御弁に対する弁開度指令値がxi 
である場合、何等の制御も行わない状態では流量は(1
)式に示すように曲線ΔPi上の点aに対応する値Qi
 であるが、弁開度修正制御部112の制御により、弁
開度指令値は値xm に修正され、流量は(2)式に示
す値Qimとなる。即ち、上記制御は、弁開度指令値x
i に対する曲線ΔPLS上の点bを曲線ΔPi 上の
点cに移動させる制御であり、このときの流量が値Qi
m、弁開度指令値が値xm となる。なお、上記弁開度
修正制御は、流量制御弁の差圧ΔPi が設定差圧ΔP
LS以上のとき行い、設定差圧ΔPLS未満のときには
行わない。
Now, Cv is the flow coefficient of the flow control valve, A(
x) is the valve opening degree with respect to the stroke x of the flow control valve, ρ is the oil density, and ΔPi is the differential pressure between the other flow control valves, then the flow rate Qi passing through the flow control valve is expressed by equation (1) in Fig. 3. expressed. In this example, the valve opening degree A(x) in the equation (1) is changed to the valve opening degree A(xm) shown in the equation (2) in FIG.
control to correct it. In equation (2), xm is the corrected stroke of the flow control valve, and ΔPLS is the set differential pressure. The value A(x) in equation (1) is added to the value A(xm
) is substituted to determine the flow rate Qim after the valve opening degree is corrected, this flow rate Qim is expressed by equation (3) in FIG. Comparing equations (1) and (3), the differential pressure ΔPi in the former is the set differential pressure ΔPLS in the latter. That is, since the set differential pressure ΔPLS is a fixed value, the corrected flow rate Qim depends only on the stroke xm. In other words, for flow control valves other than the flow control valve producing the minimum differential pressure, the valve openings are corrected so that the differential pressure becomes the set differential pressure ΔPLS, and the pressure compensation valve is It will be in the same condition as it is used. The meaning of the above correction operation will be explained with reference to FIG. In FIG. 4, the horizontal axis shows the valve opening command value (the operating amount of the operating lever or the stroke amount of the flow rate control valve), and the vertical axis shows the flow rate. Each curve is a curve showing the relationship between the valve opening command value and the flow rate at a certain differential pressure of the flow control valve, ΔPi is the curve at a certain differential pressure, Δ
PLS shows the curve at the set differential pressure. The differential pressure of the flow control valve controlled by the valve opening correction control section 112 is ΔPi
, and the valve opening command value for the flow control valve is xi
, the flow rate is (1
), the value Qi corresponding to point a on the curve ΔPi is
However, under the control of the valve opening correction control section 112, the valve opening command value is corrected to the value xm, and the flow rate becomes the value Qim shown in equation (2). That is, the above control is based on the valve opening command value x
This control moves point b on the curve ΔPLS for i to point c on the curve ΔPi, and the flow rate at this time is the value Qi
m, the valve opening command value becomes the value xm. In addition, in the above-mentioned valve opening correction control, the differential pressure ΔPi of the flow control valve is set to the set differential pressure ΔP.
It is performed when the differential pressure is LS or more, and is not performed when the differential pressure is less than the set differential pressure ΔPLS.

【0009】このように、本実施例では、各流量制御弁
のうちの最小差圧に基づいてロードセンシング制御を行
い、併せて最小差圧を生じている流量制御弁以外の流量
制御弁に対しては弁開度修正制御を行うようにしたので
、圧力補償弁を使用することなく実質的にロードセンシ
ング制御と同様の制御を行うことができ、圧力補償弁の
使用によるハンチングの発生等の制御の不安定性を解消
することができる。又、圧力補償弁を使用しないので、
全体構造を簡素化することができる。なお、上記実施例
の説明では、流量制御弁と方向切換弁とが機械的に連結
された構成について説明したが、これに限ることなく、
1つの流量制御弁を使用することもできる。
As described above, in this embodiment, load sensing control is performed based on the minimum differential pressure of each flow control valve, and at the same time, load sensing control is performed for the flow control valves other than the flow control valve generating the minimum differential pressure. Since the valve opening correction control is performed in the case of a pressure compensation valve, control similar to load sensing control can be performed without using a pressure compensation valve, and the occurrence of hunting etc. can be controlled by using a pressure compensation valve. The instability of can be eliminated. Also, since no pressure compensation valve is used,
The overall structure can be simplified. In addition, in the description of the above embodiment, the configuration in which the flow rate control valve and the directional switching valve are mechanically connected has been described, but the present invention is not limited to this.
A single flow control valve can also be used.

【0010】0010

【発明の効果】以上述べたように、本発明では、複数の
流量制御弁の各差圧のうち最小差圧によりロードセンシ
ング制御を行い、当該最小差圧を生じている流量制御弁
以外の流量制御弁に対しては弁開度修正制御を行うよう
にしたので、圧力補償弁を除去することができ、これに
より制御の不安定性を解消することができる。又、圧力
補償弁を使用しないので、全体構造を簡素にすることが
できる。
As described above, in the present invention, load sensing control is performed based on the minimum differential pressure among the differential pressures of a plurality of flow control valves, and the Since the control valve is controlled to correct the valve opening degree, the pressure compensation valve can be removed, thereby eliminating control instability. Furthermore, since no pressure compensation valve is used, the overall structure can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例に係る油圧駆動装置の系統図で
ある。
FIG. 1 is a system diagram of a hydraulic drive device according to an embodiment of the present invention.

【図2】図1に示すコントローラの一部内容を説明する
ブロック図である。
FIG. 2 is a block diagram illustrating part of the contents of the controller shown in FIG. 1;

【図3】図2に示す弁開度修正制御部で使用される数式
を示す図である。
FIG. 3 is a diagram showing mathematical formulas used in the valve opening correction control section shown in FIG. 2;

【図4】弁開度指令値と流量との関係を示す特性図であ
る。
FIG. 4 is a characteristic diagram showing the relationship between the valve opening command value and the flow rate.

【符号の説明】 1  油圧ポンプ 1a  斜板 4a、4b  油圧シリンダ 5a、5b  流量制御弁 6a、6b  方向切換弁 7a、7b  操作量センサ 8a、8b  差圧センサ 9  圧力センサ 11  コントローラ[Explanation of symbols] 1 Hydraulic pump 1a Swash plate 4a, 4b Hydraulic cylinder 5a, 5b Flow control valve 6a, 6b Directional switching valve 7a, 7b Operation amount sensor 8a, 8b Differential pressure sensor 9 Pressure sensor 11 Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  可変容量油圧ポンプと、この可変容量
油圧ポンプの圧油で駆動される複数の油圧アクチュエー
タと、これら油圧アクチュエータの駆動を制御する各流
量制御弁とを備えた油圧駆動装置において、前記各流量
制御弁における差圧を検出する差圧検出器と、これら差
圧検出器で検出された差圧のうち最小差圧と予め定めら
れた設定差圧との差に基づいて前記可変容量油圧ポンプ
の吐出流量を制御する流量制御手段と、前記最小差圧を
発生している流量制御弁以外の流量制御弁の弁開度を前
記設定差圧と当該流量制御弁の差圧との比の平方根に比
例して低減する弁開度修正制御手段とを設けたことを特
徴とする油圧駆動装置。
1. A hydraulic drive device comprising a variable displacement hydraulic pump, a plurality of hydraulic actuators driven by pressure oil of the variable displacement hydraulic pump, and flow control valves for controlling the driving of these hydraulic actuators, A differential pressure detector detects the differential pressure in each of the flow control valves, and the variable capacity is adjusted based on the difference between the minimum differential pressure and a predetermined set differential pressure among the differential pressures detected by these differential pressure detectors. A flow control means for controlling the discharge flow rate of the hydraulic pump, and a ratio of the valve opening degree of the flow control valve other than the flow control valve generating the minimum differential pressure to the set differential pressure and the differential pressure of the flow control valve. A hydraulic drive device comprising a valve opening correction control means that reduces the opening degree in proportion to the square root of.
JP3152281A 1991-05-29 1991-05-29 Hydraulic driving device Pending JPH04351304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152281A JPH04351304A (en) 1991-05-29 1991-05-29 Hydraulic driving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152281A JPH04351304A (en) 1991-05-29 1991-05-29 Hydraulic driving device

Publications (1)

Publication Number Publication Date
JPH04351304A true JPH04351304A (en) 1992-12-07

Family

ID=15537090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152281A Pending JPH04351304A (en) 1991-05-29 1991-05-29 Hydraulic driving device

Country Status (1)

Country Link
JP (1) JPH04351304A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032135A1 (en) 1996-02-28 1997-09-04 Komatsu Ltd. Control device for hydraulic drive machine
JP2007292316A (en) * 2007-06-21 2007-11-08 Kobelco Contstruction Machinery Ltd Self-diagnostic device for hydraulic circuit
JP2008224039A (en) * 2008-04-07 2008-09-25 Komatsu Ltd Control device of hydraulic drive machine
JP2008224038A (en) * 2008-04-07 2008-09-25 Komatsu Ltd Control device of hydraulic drive machine
JP2014098487A (en) * 2012-11-15 2014-05-29 Linde Hydraulics Gmbh & Co Kg Hydrostatic driving system
JP2014170529A (en) * 2013-02-08 2014-09-18 Takasago Thermal Eng Co Ltd Unit and method for controlling control valve and control valve device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997032135A1 (en) 1996-02-28 1997-09-04 Komatsu Ltd. Control device for hydraulic drive machine
EP1553231A2 (en) 1996-02-28 2005-07-13 Komatsu Ltd. Control device for hydraulic drive machine
EP1553231A3 (en) * 1996-02-28 2005-07-20 Komatsu Ltd. Control device for hydraulic drive machine
EP1798346A2 (en) * 1996-02-28 2007-06-20 Komatsu Ltd. Control device for hydraulic drive machine
EP1798346A3 (en) * 1996-02-28 2008-01-09 Komatsu Ltd. Control device for hydraulic drive machine
JP2007292316A (en) * 2007-06-21 2007-11-08 Kobelco Contstruction Machinery Ltd Self-diagnostic device for hydraulic circuit
JP2008224039A (en) * 2008-04-07 2008-09-25 Komatsu Ltd Control device of hydraulic drive machine
JP2008224038A (en) * 2008-04-07 2008-09-25 Komatsu Ltd Control device of hydraulic drive machine
JP2014098487A (en) * 2012-11-15 2014-05-29 Linde Hydraulics Gmbh & Co Kg Hydrostatic driving system
JP2014170529A (en) * 2013-02-08 2014-09-18 Takasago Thermal Eng Co Ltd Unit and method for controlling control valve and control valve device

Similar Documents

Publication Publication Date Title
US7252030B2 (en) Hydraulic control circuit and method thereof
KR970000492B1 (en) Hydraulic driving system in construction machine
EP0462589A2 (en) Control system for load sensing hydraulic drive circuit
WO1993018308A1 (en) Hydraulically driving system
WO1992018711A1 (en) Hydraulic driving system in construction machine
JPH11303147A (en) Controller for hydraulic drive machine
US7373869B2 (en) Hydraulic system with mechanism for relieving pressure trapped in an actuator
WO1990009528A1 (en) Hydraulic circuit for working machines
JPH06123302A (en) Oil pressure controller of construction machine
JPH04351304A (en) Hydraulic driving device
US20030019209A1 (en) Hydraulic driving device
US5533867A (en) Method and hydrostatic drive system for operating an adjustable hydrostatic pump
JPH0763202A (en) Oil pressure circuit of construction machine
JPH0641764B2 (en) Drive control device for hydraulic circuit
JP2903909B2 (en) Construction machine control circuit
JP3113547B2 (en) Hydraulic control circuit
JP3018788B2 (en) Hydraulic pump control circuit
JP3372620B2 (en) Hydraulic drive of hydraulic working machine
JPH07293508A (en) Hydraulic control device
JPH0650309A (en) Hydraulic drive apparatus of construction machine
JPH02217530A (en) Hydraulic circuit of operating machine
JPH0742709A (en) Actuator controller for hydraulic machine
JP2579571B2 (en) Hydraulic circuit with flow control of hydraulic machine
JP2694048B2 (en) Hydraulic drive for construction machinery
JP2569305B2 (en) Flow control system with pressure compensation