JPS61196587A - Direct-current superconducting quantum interference device - Google Patents

Direct-current superconducting quantum interference device

Info

Publication number
JPS61196587A
JPS61196587A JP60037084A JP3708485A JPS61196587A JP S61196587 A JPS61196587 A JP S61196587A JP 60037084 A JP60037084 A JP 60037084A JP 3708485 A JP3708485 A JP 3708485A JP S61196587 A JPS61196587 A JP S61196587A
Authority
JP
Japan
Prior art keywords
insulating layer
critical current
main coil
hand
upper electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60037084A
Other languages
Japanese (ja)
Inventor
Kunio Ookawa
大川 訓生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60037084A priority Critical patent/JPS61196587A/en
Publication of JPS61196587A publication Critical patent/JPS61196587A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices

Abstract

PURPOSE:To enable a critical current value of a junction to be controlled as required during the operation of a device, by providing a control means for equalizing the critical current values of two tunnel-type Josephson junctions. CONSTITUTION:A direct-current superconducting quantum interference device (DC-SQUID) comprises, in addition to components identical with those of a conventional device, a main coil 1, a modulation coil 7 provided on the main coil 1 with electrical isolation therefrom, an insulation layer 2, a Josephson junction 3, an insulation layer 8 covering an upper electrode 4 and a shunt resistance 5, and control lines 9 provided over the tunnel-type Josephson junctions 3. Control current IC1 and IC2 is supplied to right-hand and left-hand control lines 9 so that the critical current values 1o of the right-hand and left- hand tunnel-type Josephson junctions 3 are controlled by means of magnetic fields produced by the control current IC1 and IC2. In this manner, the right-hand and left-hand critical current values Io can be equalized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えば微弱磁界の検出に用いられる直流駆
動型超伝導量子干渉素子(以後DC−3QUIDと呼ぶ
)に関し、特にその動作時におけるジョセフソン接合の
臨界電流値の制御に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a DC-driven superconducting quantum interference device (hereinafter referred to as DC-3QUID) used, for example, to detect a weak magnetic field, and in particular to a DC-3QUID during its operation. This study concerns the control of the critical current value of the Son junction.

〔従来の技術〕[Conventional technology]

第6図は例えばアプライド フィジックス レターズ(
Applied Physics Letters、 
VoL43.P、694〜696 、1983) ニ示
された従来(7)DC−3QUIDを示す平面図であり
、図において、1は主コイル、2は該主コイルlの一部
を覆う絶縁層、3は主コイル1上に形成されたトンネル
接合型ジョセフソン接合であり、これは絶縁層2に形成
された窓の大きさによりその接合面積が決定される。4
は上記2つのトンネル接合型ジョセフソン接合3を通し
て主コイル1と接続された上部電極、5は主コイルlと
上部電極4とを絶縁層2に形成された窓を通して短絡す
るシャント抵抗、6は主コイル1上にこれと電気的に絶
縁されて形成された入力コイルである。なお、第6図で
は絶縁層2以外の絶縁層は省略されている。
Figure 6 shows, for example, Applied Physics Letters (
Applied Physics Letters,
VoL43. P, 694-696, 1983) is a plan view showing the conventional (7) DC-3QUID, in which 1 is a main coil, 2 is an insulating layer covering a part of the main coil l, and 3 is an insulating layer that covers a part of the main coil l. This is a tunnel junction type Josephson junction formed on the main coil 1, and its junction area is determined by the size of the window formed in the insulating layer 2. 4
5 is an upper electrode connected to the main coil 1 through the two tunnel junction type Josephson junctions 3, 5 is a shunt resistor that short-circuits the main coil 1 and the upper electrode 4 through a window formed in the insulating layer 2, and 6 is a main This is an input coil formed on the coil 1 and electrically insulated therefrom. Note that insulating layers other than the insulating layer 2 are omitted in FIG.

そしてこれらのコイル等は、例えばSi基板上に積層し
て形成され、その積層順は、基板側から順に、シャント
抵抗5−主コイル1−絶縁層2−上部電極4−人力コイ
ル6の順である。また、主コイル1.上部電極4.入力
コイル6はニオブや鉛合金などの超伝導材料により、絶
縁層2はSiOにより、またシャント抵抗5は銅と金の
合金により形成されている。
These coils and the like are formed by stacking them on, for example, a Si substrate, and the stacking order is, from the substrate side, the shunt resistor 5 - the main coil 1 - the insulating layer 2 - the upper electrode 4 - the human powered coil 6. be. Also, main coil 1. Upper electrode 4. The input coil 6 is made of a superconducting material such as niobium or a lead alloy, the insulating layer 2 is made of SiO, and the shunt resistor 5 is made of an alloy of copper and gold.

次に動作について説明する。Next, the operation will be explained.

主コイル1と上部電極4とで形成される超伝導ループ内
の磁束φが、φ=nφ0及びφ−(n+1/2)φ0の
時のDC−3QUIDの電流−電圧特性(以下1−V特
性と呼ぶ)は各々第7図(alに曲線A、Bで示すよう
になり、磁束φの変化に伴なってI−V特性は上記曲線
A、B間を連続的に変化する。そこで、トンネル接合型
ジョセフソン接合3の1個当りの臨界電流値1oの2倍
よりも大きなバイアス電流1bを主コイル1から上部電
極4に向かって流し、DC−3QU I Dを電圧状態
にしておき、この状態で入力コイル6に流れる信号電流
Isにより主コイル1内に生じた磁束の変化を電圧の変
化として取り出すことにする。
Current-voltage characteristics (hereinafter referred to as 1-V characteristics) of DC-3QUID when the magnetic flux φ in the superconducting loop formed by the main coil 1 and the upper electrode 4 is φ=nφ0 and φ−(n+1/2)φ0. ) are shown by curves A and B in Figure 7 (al), and the IV characteristics continuously change between the curves A and B as the magnetic flux φ changes. A bias current 1b larger than twice the critical current value 1o per junction type Josephson junction 3 is caused to flow from the main coil 1 toward the upper electrode 4, and the DC-3QUID is kept in a voltage state. In this case, the change in magnetic flux generated within the main coil 1 due to the signal current Is flowing through the input coil 6 will be extracted as a change in voltage.

この場合、主コイルlと上部電極4とで構成される超伝
導ループ内の磁束と出力電圧との関係は、第7図(b)
に示すように、磁束量子φO(=2.07xな動作は、
式(1)に示すヒステリシスパラメータβCが1より小
さい時に可能である。そこで従来からβcalとするた
めに、シャント抵抗5としてはトンネル接合型ジョセフ
ソン接合3の常伝導抵抗よりも十分小さなものが設けら
れている。
In this case, the relationship between the magnetic flux in the superconducting loop composed of the main coil l and the upper electrode 4 and the output voltage is shown in Fig. 7(b).
As shown in , the magnetic flux quantum φO (=2.07x) is
This is possible when the hysteresis parameter βC shown in equation (1) is smaller than 1. Therefore, conventionally, in order to set βcal, a shunt resistor 5 that is sufficiently smaller than the normal conduction resistance of the tunnel junction type Josephson junction 3 has been provided.

φ0 ここで、Cはジョセフソン接合3の接合容量、Rはシャ
ント抵抗5とジョセフソン接合3とを並列に接続した時
の常伝導抵抗値である。
φ0 Here, C is the junction capacitance of the Josephson junction 3, and R is the normal conduction resistance value when the shunt resistor 5 and the Josephson junction 3 are connected in parallel.

上記のように動作するDC−3QUIDにおいては、そ
の感度は式(2)により示される磁束−電圧変換係数α
により決まる。
In the DC-3QUID that operates as described above, its sensitivity is expressed by the magnetic flux-voltage conversion coefficient α
Determined by

φ0 ここで、ΔVはDC−3QUI Dの出力電圧の振幅で
あり、このΔVの値は、左、右の接合の臨界電流1oが
そろっている時、式(3)のようになり、2つの臨界電
流値1oがばらつくと、式(3)で与えられる値よりも
小さくなる。
φ0 Here, ΔV is the amplitude of the output voltage of DC-3QUID, and the value of this ΔV is as shown in equation (3) when the critical currents 1o of the left and right junctions are the same, and the two When the critical current value 1o varies, it becomes smaller than the value given by equation (3).

Δ■ユIo−R・・・(3) このため、高感度化を図るには、左右の接合の臨界電流
値1oを等しくする必要がある。さらに、DC−5QU
I Dのエネルギー分解能は式(4)が満足される時に
最小になることが低温物理誌(Journalof L
ow Temperature Physics、Vo
L29.P、301〜331゜1977)に報告されて
いる。
Δ■U Io-R (3) Therefore, in order to achieve high sensitivity, it is necessary to make the critical current values 1o of the left and right junctions equal. Furthermore, DC-5QU
According to the Journal of Low Temperature Physics, the energy resolution of ID is minimized when equation (4) is satisfied.
ow Temperature Physics, Vo
L29. P., 301-331° 1977).

Lp ・IoΣ1/2φ0       ・・・(4)
ここで、t、pは主コイルlと上部電極4とで構成され
た超伝導ループの自己インダクタンスである。
Lp ・IoΣ1/2φ0 ... (4)
Here, t and p are the self-inductances of the superconducting loop composed of the main coil l and the upper electrode 4.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のDC−3QUIDは以上のように構成されている
ので、素子を2つのジョセフソン接合の臨界電流10の
値が等しく、しかも上記式(4)を満足するように形成
しなければならず、製作が困難であり、さらに素子作成
後に経時変化によりi。
Since the conventional DC-3QUID is configured as described above, the device must be formed so that the values of the critical currents 10 of the two Josephson junctions are equal and also satisfy the above formula (4). It is difficult to manufacture, and furthermore, it may change over time after the device is fabricated.

の値が増加してβCの値が1を超え、そのためI−■特
性上にヒステリシスが生じて正常な動作ができなくなる
などの問題内があった。
The value of .beta.C increases and the value of .beta.C exceeds 1, which causes problems such as hysteresis occurring on the I--characteristics and failure to operate normally.

この発明は上記のような問題点を解消するためになされ
たもので、動作時において2つのジョセフソン接合の臨
界電流値Ioを左右等しく、しかもLl)”toΣ1/
2φ0.βc<lを満足するように制御することができ
るDC−3QU I Dを。
This invention was made in order to solve the above-mentioned problems, and during operation, the critical current values Io of the two Josephson junctions can be made equal on the left and right sides, and Ll)"toΣ1/
2φ0. DC-3QUID that can be controlled to satisfy βc<l.

得ることを目的とする。The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るDC−3QUIDは、2つのトンネル接
合型ジョセフソン接合の臨界電流値を等しくするための
磁界を発生させる制御手段を設けたものである。
The DC-3QUID according to the present invention is provided with a control means for generating a magnetic field to equalize the critical current values of two tunnel junction type Josephson junctions.

〔作用〕[Effect]

この発明におけるDC−3QUI Dでは、制御手段を
流れる電流により発生した磁界が、トンネル接合型ジョ
セフソン接合内に侵入して接合内部の電流分布を変化さ
せ、2つの接合の臨界電流値IOをこれらが等しくなる
ように制御する。
In the DC-3QUID of this invention, the magnetic field generated by the current flowing through the control means enters the tunnel junction type Josephson junction and changes the current distribution inside the junction, thereby changing the critical current value IO of the two junctions. control so that they are equal.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図はこの発明の第1の実施例を示す平面図、第2図
は第1図中の一点鎖線で囲んだ部分の拡大平面図、第3
図は第2図のm−m線断面図である。
FIG. 1 is a plan view showing a first embodiment of the invention, FIG. 2 is an enlarged plan view of the portion surrounded by a dashed line in FIG. 1, and FIG.
The figure is a sectional view taken along line mm in FIG. 2.

図中、1〜6は上記従来装置と全く同一のものであり、
7は主コイル1上にこれと電気的に絶縁されて設けられ
た変調コイル、8は上記主コイルl。
In the figure, 1 to 6 are exactly the same as the above conventional device,
7 is a modulation coil provided on the main coil 1 and electrically insulated therefrom, and 8 is the main coil 1.

絶縁層2.ジョセフソン接合3.上部電極4及びシャン
ト抵抗5を覆う絶縁層、9はトンネル接合型ジョセフソ
ン接合3の上部に絶縁層8を介して設けられた制御線で
ある。なお、第1図、第2図では絶縁層2.絶縁層8以
外の絶縁層は省略されている。
Insulating layer 2. Josephson junction 3. An insulating layer 9 covering the upper electrode 4 and the shunt resistor 5 is a control line provided above the tunnel junction type Josephson junction 3 via an insulating layer 8. Note that in FIGS. 1 and 2, the insulating layer 2. Insulating layers other than insulating layer 8 are omitted.

そして上記主コイル1等は例えばSiや5i02等の基
板上に積層して形成され、これらの積層順は基板側から
順に、例えばシャント抵抗5−主コイルl−絶縁層2−
ジョセフソン接合3−上部電極4−絶縁層8−人力コイ
ル6、変調コイル7゜制御線9である。また、主コイル
1j上部電極4゜入力コイル6.変調コイル7、制御線
9は例えばニオブや鉛合金などの超伝導材料により、絶
縁層2.8は例えばSiOにより、シャント抵抗5は例
えばAuIn2などの抵抗体により形成されている。
The main coil 1 and the like are formed by laminating them on a substrate made of, for example, Si or 5i02, and the order of lamination is from the substrate side, for example, shunt resistor 5 - main coil l - insulating layer 2 -
Josephson junction 3 - upper electrode 4 - insulating layer 8 - human power coil 6, modulation coil 7° control line 9. In addition, main coil 1j upper electrode 4° input coil 6. The modulation coil 7 and control line 9 are made of a superconducting material such as niobium or a lead alloy, the insulating layer 2.8 is made of SiO, for example, and the shunt resistor 5 is made of a resistor such as AuIn2.

次に作用効果について説明する。Next, the effects will be explained.

上記のように構成されたDC−3QUI Dにおいて、
左右の制御線9に制御電流I cl 、  I c2を
流し、この制御電流Ic1.Ic2により発生した磁界
により、左右のトンネル接合型ジョセフソン接合3の臨
界電流値!0を制御する。
In the DC-3QUID configured as above,
Control currents I cl and I c2 are passed through the left and right control lines 9, and the control currents Ic1. Due to the magnetic field generated by Ic2, the critical current value of the left and right tunnel junction Josephson junctions 3! Controls 0.

第4図は制御線9によるトンネル接合型ジョセフソン接
合3の臨界電流値Ioの制御を説明するための図であり
、図中WHは制御線9の線巾、dはトンネル接合型ジョ
セフソン接合3のバリア層の膜厚、λ1.λ2はそれぞ
れ主コイルl及び上部電極4を構成する超伝導体のロン
ドン磁界侵入長、lは制御線9と上記バリア層との距離
である。
FIG. 4 is a diagram for explaining the control of the critical current value Io of the tunnel junction type Josephson junction 3 by the control line 9. In the figure, WH is the line width of the control line 9, and d is the tunnel junction type Josephson junction. The film thickness of the barrier layer of No. 3, λ1. λ2 is the London magnetic field penetration depth of the superconductor constituting the main coil 1 and the upper electrode 4, respectively, and 1 is the distance between the control line 9 and the barrier layer.

上部電極4と制御線9とのなす角が例えば、第2図、第
4図のように直角の場合には、制御電流■C1により発
生する磁界はトンネル接合型ジョセフソン接合3の付近
ではX方向のみであり、その大きさHxは、/<<WH
の場合には、式(5)のようになる。
For example, when the angle between the upper electrode 4 and the control line 9 is a right angle as shown in FIGS. 2 and 4, the magnetic field generated by the control current C1 becomes direction only, and its magnitude Hx is /<<WH
In this case, equation (5) is obtained.

WH ここで例えば、lを9000 (人)、WHを20μm
とすれば、l<<WHの条件は十分に成立すると言える
。この時、トンネル接合型ジョセフソン接合3内部の電
流密度分布がHxにより変化し、臨界電流値Ioは式(
6)、 +7)のように変化する。
WH Here, for example, l is 9000 (person) and WH is 20μm
If so, it can be said that the condition l<<WH is fully satisfied. At this time, the current density distribution inside the tunnel junction type Josephson junction 3 changes due to Hx, and the critical current value Io is calculated by the formula (
6), +7).

・・・(7) ここでμO(=4πxlOH/m)は真空の透磁率、w
yはトンネル接合型ジョセフソン接合3のX方向の巾、
ioは外部から磁界が加わらない時の臨界電流値である
。このため、制御電流1c1を変化させることにより、
臨界電流1oを式(8)の範囲で制御することができる
...(7) Here, μO (=4πxlOH/m) is the magnetic permeability of vacuum, w
y is the width of the tunnel junction type Josephson junction 3 in the X direction,
io is the critical current value when no external magnetic field is applied. Therefore, by changing the control current 1c1,
The critical current 1o can be controlled within the range of equation (8).

0≦io≦io              ・・・(
8)制御電流1c2の効果についてもIclの場合と全
く同様である。
0≦io≦io...(
8) The effect of the control current 1c2 is also exactly the same as in the case of Icl.

このように本実施例装置では、素子作成時に、左右のト
ンネル接合型ジョセフソン接合3の臨界電流値1oがば
らついていても、動作時に制御電流1(1,IC2を流
すことにより、左右の臨界電流値IOをそろえることが
できる。さらに、DC−3QUIDのエネルギー分解能
が最小になる最適駆動条件Lplo=1/2φOを満足
するように臨界電流Ioを制御することができる。
In this way, in the device of this embodiment, even if the critical current value 1o of the left and right tunnel junction type Josephson junctions 3 varies during device fabrication, by flowing the control current 1 (1, IC2) during operation, the left and right critical current values can be adjusted. The current values IO can be made uniform.Furthermore, the critical current Io can be controlled so as to satisfy the optimum drive condition Lplo=1/2φO, which minimizes the energy resolution of the DC-3QUID.

−例として、λl =1370 (人)、λ2 = 7
00(人)、d=80  (人)、Wy=5μm、WH
−5μmとすれば、φX=φ0とするために必要なIc
1の値は、約16(mA)であり、コノ時、■0の値を
零まで減少させることができる。
- For example, λl = 1370 (people), λ2 = 7
00 (person), d=80 (person), Wy=5μm, WH
-5μm, Ic required to set φX=φ0
The value of 1 is about 16 (mA), and in this case, the value of 0 can be reduced to zero.

DC−3QU I D全体の駆動方法は従来のものと同
様であり、一般的にはDC−3QU I Dの入出力関
係を線形化するために、主コイル1と上部電極4とで構
成される超伝導ループ内の磁束がn・φ0又は(n+1
/2)φ0に固定されるように、変調コイル7内にフィ
ードバック電流を流して駆動する。この駆動方法につい
ては、例えば低温物理誌(Journal of Lo
w Temperature Physics、ν0L
25、 P、99〜′144.1976)などに詳しい
The driving method of the entire DC-3QUID is the same as the conventional one, and generally consists of a main coil 1 and an upper electrode 4 in order to linearize the input/output relationship of the DC-3QUID. The magnetic flux in the superconducting loop is n・φ0 or (n+1
/2) A feedback current is passed through the modulation coil 7 to drive it so that it is fixed at φ0. This driving method is described in, for example, the Journal of Low Temperature Physics.
w Temperature Physics, ν0L
25, P, 99-'144.1976).

なお、上記実施例では上部電極4と制御線9とのなす角
度θが90°の場合について説明したが、O≦θく90
°としても、制御電流1cl、Ic2により臨界電流1
oを制御することができる。
In the above embodiment, the case where the angle θ between the upper electrode 4 and the control line 9 was 90° was explained, but if O≦θ, 90°
Even if the critical current is 1 due to the control current 1cl and Ic2
o can be controlled.

第5図は本発明の第2の実施例を示し、本実施例では上
記第1の実施例と同様に制御線9を配設し、さらに主コ
イルlの下に絶縁層10を設け、該絶縁層10の下に超
伝導グランドプレーン11を設けており、この超伝導グ
ランドプレーン11と制御線9とで制御手段が構成され
ている。なお、本実施例では上部電極4と制御線9との
なす角度θが90°の場合を示しており、また第5図に
おいては、絶縁層lO以外の絶縁層は記載を省略した。
FIG. 5 shows a second embodiment of the present invention. In this embodiment, a control line 9 is provided in the same manner as in the first embodiment, and an insulating layer 10 is further provided under the main coil l. A superconducting ground plane 11 is provided under the insulating layer 10, and the superconducting ground plane 11 and the control line 9 constitute a control means. In this embodiment, the angle θ between the upper electrode 4 and the control line 9 is 90°, and insulating layers other than the insulating layer IO are not shown in FIG.

本実施例では、制御電流1c1と、超伝導グランドプレ
ーンll内に誘導されたIclのイメージ電流−Ic1
とがX方向に磁界を生じる。又、トンネル接合型ジョセ
フソン接合3に流れる電流Ijのイメージ電流−IJが
X方向に磁界を生じる。これらのX方向、X方向の磁界
がジョセフソン接合3内に侵入するため、臨界電流1o
は式(9)〜(11)に示すようになり、超伝導グラン
ドプレーン11が無い時と同様、ICI、Ic2により
左右の臨界電流値を制御することができる。なお、Wx
はジョセフソン接合3のX方向の幅である。
In this example, the control current 1c1 and the image current -Ic1 of Icl induced in the superconducting ground plane ll
generates a magnetic field in the X direction. Further, an image current -IJ of the current Ij flowing through the tunnel junction type Josephson junction 3 generates a magnetic field in the X direction. Since these X-direction and X-direction magnetic fields invade the Josephson junction 3, the critical current 1o
are as shown in equations (9) to (11), and the left and right critical current values can be controlled by ICI and Ic2, as in the case without the superconducting ground plane 11. In addition, Wx
is the width of the Josephson junction 3 in the X direction.

・・・(9) ・・・QOI ・・・(11) このように本実施例では、超伝導グランドプレーン11
がそのマイスナー効果により、制御線9の発生した磁束
を該制御線9と超伝導グランドプレーン11との間に閉
じ込め、制御線9とジョセフソン接合3との磁気結合効
率を向上させ、このため、臨界電流値IOの制御がさら
に容易になる。
...(9) ...QOI ...(11) In this way, in this embodiment, the superconducting ground plane 11
Due to the Meissner effect, the magnetic flux generated by the control line 9 is confined between the control line 9 and the superconducting ground plane 11, improving the magnetic coupling efficiency between the control line 9 and the Josephson junction 3, and thus, Control of the critical current value IO becomes easier.

なお、第5図の実施例においては、上部電極4と制御線
9とのなす角度θが90°の場合について説明したが、
0≦θ〈90°としても、制御電流1c1.Ic2によ
り臨界電流値IOを制御することができる。
In the embodiment shown in FIG. 5, the case where the angle θ between the upper electrode 4 and the control line 9 was 90° was explained.
Even if 0≦θ<90°, the control current 1c1. The critical current value IO can be controlled by Ic2.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、2つのトンネル接合
型ジョセフソン接合の臨界電流値を等しくするための制
御手段を設けたので、接合の臨界電流値を動作時に自由
に制御することができ、製作プロセス又は経時変化など
によって生じた臨界電流のばらつきを抑制できる効果が
あり、またDC−3QUIDをエネルギー分解能の最も
小さい状態で駆動させることができる効果がある。
As described above, according to the present invention, since the control means for equalizing the critical current values of the two tunnel junction type Josephson junctions is provided, the critical current value of the junction can be freely controlled during operation. This has the effect of suppressing variations in critical current caused by the manufacturing process or changes over time, and also allows the DC-3QUID to be driven in a state with the lowest energy resolution.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例によるDC−3QU 
I Dを示す平面図、第2図は第1図中の−点鎖線部分
を拡大した平面図、第3図は第2図のm−m線断面図、
第4図は制御線9によるトンネル接合型ジョセフソン接
合3の臨界電流値1oの制御を説明するための図、第5
図はこの発明の第2の実施例を示す断面図、第6図は従
来のDC−3QUIDを示す平面図、第7図(a)、 
(b)はそれぞれDC−3QU I Dの一般的なI−
V特性及び磁気応答特性を示す特性図である。 図において、lは主コイル、3はトンネル接合型ジョセ
フソン接合、4は上部電極、8は絶縁層、9は制御線、
lOは絶縁層、11は超伝導グランドプレーンである。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 shows a DC-3QU according to a first embodiment of the present invention.
A plan view showing ID, FIG. 2 is an enlarged plan view of the dashed-dotted line portion in FIG. 1, and FIG.
4 is a diagram for explaining the control of the critical current value 1o of the tunnel junction type Josephson junction 3 by the control line 9,
The figure is a sectional view showing a second embodiment of the present invention, FIG. 6 is a plan view showing a conventional DC-3QUID, and FIG. 7(a).
(b) is the general I- of DC-3QU ID, respectively.
FIG. 3 is a characteristic diagram showing V characteristics and magnetic response characteristics. In the figure, l is the main coil, 3 is a tunnel junction type Josephson junction, 4 is an upper electrode, 8 is an insulating layer, 9 is a control line,
IO is an insulating layer, and 11 is a superconducting ground plane. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (3)

【特許請求の範囲】[Claims] (1)主コイルと上部電極とから構成された超電動リン
グと、上記主コイルと上部電極との間に形成された2つ
のトンネル接合型ジョセフソン接合と、該2つのトンネ
ル接合型ジョセフソン接合の臨界電流値を等しくするた
めの磁界を発生させる制御手段とを備えたことを特徴と
する直流駆動型超伝導量子干渉素子。
(1) A superelectric ring composed of a main coil and an upper electrode, two tunnel junction type Josephson junctions formed between the main coil and the upper electrode, and the two tunnel junction type Josephson junctions. 1. A direct current driven superconducting quantum interference device, comprising: control means for generating a magnetic field to equalize the critical current values of .
(2)上記制御手段は、上部電極の上面に絶縁層を設け
、該絶縁層の上面に上記ジョセフソン接合と磁気的に結
合された制御線を設けてなるものであることを特徴とす
る特許請求の範囲第1項記載の直流駆動型超伝導量子干
渉素子。
(2) A patent characterized in that the control means is provided with an insulating layer on the upper surface of the upper electrode, and a control line magnetically coupled to the Josephson junction on the upper surface of the insulating layer. A direct current driven superconducting quantum interference device according to claim 1.
(3)上記制御手段は、上部電極の上面に絶縁層を設け
、該絶縁層の上面に上記ジョセフソン接合と磁気的に結
合された制御線を設け、上記主コイルの下面に絶縁層を
設け、該絶縁層の下面に超伝導グランドプレーンを設け
てなるものであることを特徴とする特許請求の範囲第1
項記載の直流駆動型超伝導量子干渉素子。
(3) The control means includes an insulating layer provided on the upper surface of the upper electrode, a control line magnetically coupled to the Josephson junction on the upper surface of the insulating layer, and an insulating layer provided on the lower surface of the main coil. , a superconducting ground plane is provided on the lower surface of the insulating layer.
DC-driven superconducting quantum interference device as described in 2.
JP60037084A 1985-02-26 1985-02-26 Direct-current superconducting quantum interference device Pending JPS61196587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60037084A JPS61196587A (en) 1985-02-26 1985-02-26 Direct-current superconducting quantum interference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60037084A JPS61196587A (en) 1985-02-26 1985-02-26 Direct-current superconducting quantum interference device

Publications (1)

Publication Number Publication Date
JPS61196587A true JPS61196587A (en) 1986-08-30

Family

ID=12487681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60037084A Pending JPS61196587A (en) 1985-02-26 1985-02-26 Direct-current superconducting quantum interference device

Country Status (1)

Country Link
JP (1) JPS61196587A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200679A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Superconducting quantum interference device
US5218297A (en) * 1988-02-05 1993-06-08 Hitachi, Ltd. Superconductive quantum interference device in high temperature environments having reduced inductance and improved thermal noise response
US5548130A (en) * 1992-08-11 1996-08-20 Seiko Instruments Inc. DC superconducting quantum interference device with shield layer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01200679A (en) * 1988-02-05 1989-08-11 Hitachi Ltd Superconducting quantum interference device
US5218297A (en) * 1988-02-05 1993-06-08 Hitachi, Ltd. Superconductive quantum interference device in high temperature environments having reduced inductance and improved thermal noise response
US5548130A (en) * 1992-08-11 1996-08-20 Seiko Instruments Inc. DC superconducting quantum interference device with shield layer

Similar Documents

Publication Publication Date Title
JPS61196587A (en) Direct-current superconducting quantum interference device
JP2749048B2 (en) Superconducting quantum interferometer
Husemann et al. Spatially resolved electrical characterization of a YBa2Cu3O7− δ flux transformer
JPH0537037A (en) Superconductive device and manufacture thereof
US5637906A (en) Multi layer thin film magnetic sensor
JP3350288B2 (en) Superconducting quantum interference device
Yamasaki et al. Design and fabrication of multichannel dc SQUIDs for biomagnetic applications
Granata et al. Low critical temperature superconducting quantum interference device with integrated additional positive feedback
JPH0412412A (en) Superconductive conductor
JP3024400B2 (en) Josephson junction device and method of manufacturing the same
JPS61280584A (en) Dc drive type superconductive quantum interferometer
JP3851714B2 (en) High temperature superconducting quantum interference device
JPS63235876A (en) Highly sensitive fluxmeter
JPS63280473A (en) Switching element
JP2943293B2 (en) DC-SQUID magnetometer
JP2989943B2 (en) Superconducting integrated circuit manufacturing method
RU2051445C1 (en) Superconductor current amplifier using josephson effect
JP3212088B2 (en) Superconducting device
JPH0191480A (en) Current controlling element and current controlling method
JPH0351720A (en) Photodetector
JPH01197677A (en) Superconducting magnetometer
JPS63179622A (en) Superconduction switching circuit
JPS63289472A (en) Superconducting quantum interference device
JPH05299713A (en) Current modulation device
JPH0621521A (en) Current modulating device