JPS61196306A - Guide controller for traveling object - Google Patents

Guide controller for traveling object

Info

Publication number
JPS61196306A
JPS61196306A JP60036316A JP3631685A JPS61196306A JP S61196306 A JPS61196306 A JP S61196306A JP 60036316 A JP60036316 A JP 60036316A JP 3631685 A JP3631685 A JP 3631685A JP S61196306 A JPS61196306 A JP S61196306A
Authority
JP
Japan
Prior art keywords
speed
image
traveling
signal
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60036316A
Other languages
Japanese (ja)
Inventor
Toshiaki Makino
俊昭 牧野
Hideki Tanaka
秀樹 田中
Sueo Kawai
末男 河合
Naoto Hashimoto
直人 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60036316A priority Critical patent/JPS61196306A/en
Publication of JPS61196306A publication Critical patent/JPS61196306A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0272Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising means for registering the travel distance, e.g. revolutions of wheels

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To improve the stop positioning accuracy of a traveling object by attaching an automatic zoom mechanism at the front of an image pickup device which picks up the drive path surface of the traveling object and controlling said zoom mechanism in response to the detected traveling speed of the object. CONSTITUTION:The detection signal given from a traveling speed detector consisting of a rotary encoder 28a and a traveling speed converter 28b is transmitted to a picture processing part 19 via a traveling speed command signal generator 27. The focal distance of an automatic zoom mechanism 20 is changed in response to the speed of an unmanned truck. The mechanism 20 reduces or enlarges the picture signal of an image pickup device 6a. An optimum subject area of the device 6a can be set by the speed of the unmanned truck. Thus it is possible to detect a track shift and the traveling state of the truck with high accuracy.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は予定走行路に沿って走行する無人搬送車等の移
動体を走行操舵させるための移動体の誘導制御*[C関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to guidance control*[C] of a moving body for running and steering a moving body such as an automatic guided vehicle traveling along a scheduled travel route.

〔発明の背景〕[Background of the invention]

移動体を予定走行路に沿って走行させる移動体の誘導装
置としては、各種のものが知られている。
2. Description of the Related Art Various types of guiding devices for a moving object that cause the moving object to travel along a planned travel route are known.

この中で、走行路上tこ走行用のマークを貼付し、撮像
装置t(例えば、ITVカメラ)Cよってこのマークを
画像として入力し、この画像信号を演算処理して移動体
の走行状態量(予定走行路からの軌道ずnkk、姿勢角
等)を求め、この走行状態量を利用して操舵緻を求めて
移動体を誘導するものがある。この様な路面上のマーク
を画像入力して移動体を誘導制御する技術は、例えば特
公昭57−10445号公報1こ開示されている。さら
に、鏡とITVカメラを組甘せることで、路面上の連続
した誘導帯tこおける遠近2つの視野を視覚認識して移
動体を高精度−こ誘導するものもある。これは、例えば
、特開昭58−155419号公報に開示されている。
In this, a mark for traveling on the traveling road is pasted, this mark is input as an image by an imaging device (for example, an ITV camera), and this image signal is arithmetic processed to calculate the traveling state quantity of the moving object ( There is a system that calculates the trajectory (kk, attitude angle, etc.) from the planned travel route, and uses these driving state quantities to determine steering accuracy and guide the moving body. A technique for guiding and controlling a moving object by inputting images of marks on a road surface is disclosed, for example, in Japanese Patent Publication No. 57-10445. Furthermore, there is also a system that uses a mirror and an ITV camera to visually recognize two fields of view, near and far, in a continuous guidance zone on the road surface to guide a moving object with high precision. This is disclosed, for example, in Japanese Patent Application Laid-Open No. 155419/1983.

さて、従来公知のこの種誘導制御袋511tこおいては
走行速度の大小にかかわらず、撮像装置がとらえる肢写
体領域と画像変換の分解能が固定されている。このため
、移動体の高速走行と停止位置決めの 低速走行時の 
走行状atの検出精度が同一であり、停止位置決めの精
度を向上させるのに限界があるという問題を残していた
。すなわち、高速走行時における移動体の操舵性能tこ
もとづく軌道ずn1l(蛇行It)を考慮して、大幅な
蛇行走行を回避するために撮像装置の被写体領域を一意
的に決定し、画像変換の分解能(wa/ bi t )
が設定さnているのが普通であり、蛇行社が小さくかつ
停止位置決めを行う低速走行では高精度に位置検出を行
うために必要な分解能が得られない。
Now, in the conventionally known guidance control bag 511t of this type, the limb image area captured by the imaging device and the resolution of image conversion are fixed regardless of the magnitude of the traveling speed. For this reason, during high-speed travel of the moving object and low-speed travel for stopping positioning,
The problem remains that the detection accuracy of the traveling state at is the same, and that there is a limit to improving the accuracy of stop positioning. In other words, in order to avoid large meandering, the object area of the imaging device is uniquely determined, taking into consideration the steering performance of the moving body during high-speed running, and the trajectory deviation n1l (meandering It) due to the steering performance of the moving object. Resolution (wa/bit)
is normally set to n, and the resolution necessary for highly accurate position detection cannot be obtained when the serpentine is small and when traveling at low speeds where stop positioning is required.

〔発明の0的〕 未発明の目的は、移動体を停止位Iに高精度に停止させ
ることのできる移動体の誘導制御装置を提供することで
ある。
[Objective of the Invention] An uninvented object of the present invention is to provide a guidance control device for a movable body that can stop the movable body at the stop position I with high precision.

〔発明の概要〕[Summary of the invention]

未発明は、走行路面を撮像する撮像装置の前面に映像を
縮小または拡大する自動ゼーム機構を取付け、麩に移動
体の走行速度を検出する速度検出器と、該速度検出器の
出力が小さくなるtこ従い該映像を拡大するように該自
動ズーム機構を制御するズーム制御部とを備えたことを
特徴とする。
The uninvented invention is to attach an automatic zoom mechanism for reducing or enlarging the image to the front of an imaging device that captures an image of the traveling road surface, and a speed detector for detecting the traveling speed of the moving object, and the output of the speed detector is reduced. and a zoom control section that controls the automatic zoom mechanism to enlarge the image accordingly.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を具体的な実施例に基づき詳細に説明する
Hereinafter, the present invention will be explained in detail based on specific examples.

まず%第3図?こより移動体の一種である無人搬送車の
全体構成を説明する。第3図は全体斜視図である。1は
無人搬送車であり、走行路2上を走行する。3は走行路
2の両側に引かれた白線である。4a、4bは走行路2
tこ貼付さn、たマークであり、無人搬送車1はこのマ
ーク4a、4hを利用して走行する。6a、6bは無人
搬送車1の前後に取付けらVた撮像装置であり、こn、
tこよりマーク4a、4bをそnぞれ撮像する。5a、
5bは撮像装置i 6 a 、 6 bの視野領域を示
す。7a。
First of all, %Figure 3? The overall configuration of an automatic guided vehicle, which is a type of moving object, will now be explained. FIG. 3 is an overall perspective view. Reference numeral 1 denotes an automatic guided vehicle, which travels on a running path 2. 3 is a white line drawn on both sides of the driving path 2. 4a and 4b are driving path 2
Marks 4a and 4h are pasted on the vehicle 1, and the automatic guided vehicle 1 travels using these marks 4a and 4h. 6a and 6b are vertical imaging devices installed at the front and rear of the automatic guided vehicle 1;
The marks 4a and 4b are each imaged from t. 5a,
5b indicates the field of view of the imaging devices i 6 a and 6 b. 7a.

7bは前後の走行輪9a、9bに取付けられた操舵機構
である。8は無人搬送車1を走行させるための走行装置
であり、走行モータ、走行輪9aを含む。9a、9bは
面後tこ設けらrる走行輪、10a、10bは左右に設
けられる従属輪である。
7b is a steering mechanism attached to the front and rear running wheels 9a, 9b. 8 is a running device for running the automatic guided vehicle 1, and includes a running motor and running wheels 9a. 9a and 9b are running wheels provided at the rear of the surface, and 10a and 10b are subordinate wheels provided on the left and right sides.

11は制御盤であり、操舵信号および走行信号を入力し
、操舵機構7a、7bおよび走行装置18を制御する制
御部池を含む。12はデータを処理するデータ処理部で
あり、撮像した情報(iiQi像情報)から走行状態I
t(予定走行路からの軌道ず01、姿勢角および移動量
)を演算する画像処理部と、走行状態量から制御信号を
演算する制御演算部とを含む。13は電力な各装置に供
給するバッチ’J −装置、】4は荷台、15は地上通
信局からの走行指令信号を受信するための無線装置であ
る。
Reference numeral 11 denotes a control panel, which includes a control unit for inputting steering signals and running signals and controlling the steering mechanisms 7a, 7b and the running device 18. Reference numeral 12 denotes a data processing unit that processes data, and calculates the driving state I from the imaged information (iiQi image information).
It includes an image processing unit that calculates t (trajectory deviation 01 from the planned travel route, attitude angle, and amount of movement), and a control calculation unit that calculates a control signal from the travel state quantity. 13 is a batch 'J-device for supplying electric power to each device; 4 is a loading platform; and 15 is a wireless device for receiving travel command signals from a ground communication station.

次tこ、この様な無人搬送車を誘導する本発明の一実施
例を説明する。第1図は本発明の一実施例を示す図面で
ある。なお、第1図では説明を簡単シこするため撮像装
置】aのみを示し、6bについての開示を省略した。1
2はデータ処理部であり、画像処理部】9と制御量演算
部25を含むことは前述したとおりである。制御量演算
部25はプロセッサ、プログラムメモリおよびデータメ
モリとで構成され、入力される走行状態f(例えば、軌
道ずれy、姿勢角 文び移動はx等)により走行制御I
I(例えば、操舵モータ7aへの操舵指令や停止位置決
めの走行モータ8aの低速動作開始時点やブレーキ協動
のタイミング時点)を演算し、制御部26#こ出力する
機能を有する。A/D変換器16は、アナログ画像信号
をディジタル信号に変換する。画像メモリ17は、その
ディジタル画像信号を1フレ一ム分記憶する。画像処理
部】9は、プログラムを記憶するプログラムメモリ18
bと、プログラムメモリ18bの処理手順tこ従って後
述する走行速度指令信号機からの速度信号と画像メモリ
17からの画像信号を入力し、画像信号の処理、走行状
態量の演算及び各種の演算処理を行う画像プロセッサ1
8cと、それらの信号を記憶しておくデータメモリ18
aとで構成される。
Next, an embodiment of the present invention for guiding such an automatic guided vehicle will be described. FIG. 1 is a drawing showing an embodiment of the present invention. In FIG. 1, in order to simplify the explanation, only the imaging device [a] is shown, and the disclosure of the imaging device 6b is omitted. 1
2 is a data processing section, which includes the image processing section [9] and the control amount calculation section 25, as described above. The control amount calculation unit 25 is composed of a processor, a program memory, and a data memory, and performs travel control I based on the input travel state f (for example, trajectory deviation y, attitude angle, movement x, etc.).
It has a function of calculating I (for example, the steering command to the steering motor 7a, the start of low-speed operation of the travel motor 8a for stop positioning, and the timing of brake cooperation) and outputs it to the control unit 26#. A/D converter 16 converts the analog image signal into a digital signal. The image memory 17 stores one frame of the digital image signal. Image processing unit] 9 is a program memory 18 for storing programs.
b, and the processing procedure t of the program memory 18b.Accordingly, the speed signal from the running speed command signal and the image signal from the image memory 17, which will be described later, are input, and the processing of the image signal, the calculation of the running state quantity, and various calculation processes are performed. image processor 1
8c and a data memory 18 for storing those signals.
It consists of a.

撮像装置ii 6 aは図示していないが、固体撮像素
子と負荷抵抗反びプリアンプ等で構成される。20は、
レンズの焦点距離を調整し、被写体5aの縮少又は拡大
を行う自動ズーム機構である。24は自動ズーム機構2
0を駆動させるズーム駆動側一部であり、サーボモータ
21.増幅器22.ズ−ム信号発生回路(D/A変換器
)23で構成される。27は、制御量演算部25の走行
指令信号と走行速度を検知する走行速度検出器(ロータ
リエンコータ28aと、エンコーダのパルス信号ヲ走行
速度信号に変換する走行速度変換器28b)の信号を粗
分せて、画像処理部】9へ伝達する走行速度指令信号器
である。
Although not shown, the imaging device ii 6 a is composed of a solid-state imaging device, a load resistor, a preamplifier, and the like. 20 is
This is an automatic zoom mechanism that adjusts the focal length of the lens to reduce or enlarge the subject 5a. 24 is automatic zoom mechanism 2
This is a part of the zoom drive side that drives the servo motor 21.0. Amplifier 22. It is composed of a zoom signal generation circuit (D/A converter) 23. 27 roughly converts the signals of the traveling speed detector (rotary encoder 28a and traveling speed converter 28b that converts the pulse signal of the encoder into a traveling speed signal) that detects the traveling command signal of the control amount calculating section 25 and the traveling speed. In particular, it is a travel speed command signal device that transmits to the image processing section 9.

この実施例1こおける基太的な誘導動作は次のとおりで
ある。まず、外部からの走行指令が与えられると、制御
量演算部25は指令された位置に向って移動体を走行開
始させる。すなわち、制御量演算部25は速度指令を制
御部26に出力し、制御部26はこの速度指令に応じて
走行モータ8mを駆動する。走行モータ8aの1動によ
り、走行輪9aC回転駆動力が伝達され、これによって
無人搬送車】が走行し、停止位置決め信号の指令に基づ
ぎ走行モータ8aの駆動停止とブレーキ機構8bのブレ
ーキ動作を実施する。また、画像処理部19は、撮像装
WL6aから視野領域5aにおける走行路上の白線3と
マーク4aの画像信号な入力し、これをA/D変換器1
6でディジタル信号(2値化信号)に変換し、ノイズ除
去などの前処理を行なった後画像メモリ17−こ記憶さ
せる。画像プロセッサ18cはプログラムメモリ18b
tC記惜さnたプログラムの手順1こ従い、画像信号を
読出して無人搬送せ車1の走行状1a4Iliを演算し
、データメモJ]8aに一時記憶した後、制御it演算
部25に出力する。制御Ill演算部25は入力さr、
る走行状態11it?こ基づき操舵指令あるいは操装置
を演算し、制御部26に出力する。制御部26はこの信
号−こより操舵機構7aな駆動する。これらによって無
人搬送車1は予定走行路2tこ沿って目的地まで走行で
とる。
The basic guiding operation in this first embodiment is as follows. First, when a travel command is given from the outside, the control amount calculation unit 25 causes the moving body to start traveling toward the commanded position. That is, the control amount calculation section 25 outputs a speed command to the control section 26, and the control section 26 drives the traveling motor 8m according to this speed command. One movement of the traveling motor 8a transmits the rotational driving force of the traveling wheels 9aC, thereby causing the automatic guided vehicle to travel, and based on the command of the stop positioning signal, the driving of the traveling motor 8a is stopped and the brake mechanism 8b performs a braking operation. Implement. The image processing unit 19 also inputs an image signal of the white line 3 and the mark 4a on the road in the visual field 5a from the imaging device WL6a, and transmits the image signal to the A/D converter 1.
At step 6, the signal is converted into a digital signal (binarized signal), subjected to preprocessing such as noise removal, and then stored in an image memory 17. Image processor 18c is program memory 18b
tC Following step 1 of the program, the image signal is read out, the running state 1a4Ili of the automatic guided vehicle 1 is calculated, and after being temporarily stored in the data memo J8a, it is output to the control IT calculation unit 25. . The control Ill calculation unit 25 receives input r,
Running condition 11it? Based on this, a steering command or a steering device is calculated and outputted to the control section 26. The control section 26 uses this signal to drive the steering mechanism 7a. With these, the automatic guided vehicle 1 travels along the planned travel route 2t to the destination.

走行速度検出器の検出信号は、走行速度指令信号器27
を介して、画像処理部】9に伝達され、後述する撮像装
gL6 aの画像信号を縮小又は拡大させ為自動ズーム
機構2oの調整のためtこ利用される。
The detection signal of the traveling speed detector is transmitted to the traveling speed command signal device 27.
The signal is transmitted to the image processing unit 9 through the image processing unit 9, and is used for adjusting the automatic zoom mechanism 2o to reduce or enlarge the image signal of the imaging device gL6a, which will be described later.

さて、第3図における上述した軌道ずれや停旧位置の走
行状@置を正611に精度良く検知するtこは無人搬送
車1の走行速度−こ基づぎ撮像装置の最適な被写体領域
を設定することが要求さrる。
Now, in order to accurately detect the above-mentioned track deviation and the running condition of the stopped position in FIG. Requires setting.

そこで、自動ズーム機構の焦点距離を走行速度に応じて
変化させる。つまり低速になるほど拡大した画像が自動
ズーム機構20を介して撮像装置6aに入力さrるよう
に調節する。第2図は、このような場合の画像入力状部
を示す、29は撮像装置f6aが撮像した1フレ一ム分
の2値化画像である。斜線した30a〜30cは各々高
速、中速反び低速時tこおける反射光の大なる領域(2
値画像で 1 となる領域)であり、その他は反射光の
小なる領域(2値画像で 0 となる領域)である。3
】は中方の画像部分−こおける2値化画像信号の中心ア
ドレスで、32a〜32cは各々高速、中速及び低速時
におけるマーク画像30a〜30cの中心位置アドレス
である。各々の軌道ずれ緻に対する画素)’I −y−
は各々の位置アドレスから中心アドレスを成算した値で
あり、その各々の軌道ずれ量1yI=−1yaは次式で
求められる。
Therefore, the focal length of the automatic zoom mechanism is changed depending on the traveling speed. In other words, the adjustment is made such that the slower the speed, the more enlarged the image is input to the imaging device 6a via the automatic zoom mechanism 20. FIG. 2 shows an image input portion in such a case. Reference numeral 29 is a binarized image for one frame captured by the imaging device f6a. The diagonally shaded areas 30a to 30c are large areas (2
The other areas are areas where the reflected light is small (areas where the value is 0 in the binary image). 3
] is the center address of the binarized image signal in the middle image portion, and 32a to 32c are the center position addresses of the mark images 30a to 30c at high speed, medium speed, and low speed, respectively. pixel for each trajectory deviation)'I −y−
is the value obtained by adding the center address from each position address, and each of the orbital deviation amounts 1yI=-1ya is obtained by the following equation.

l ylga 1lXyr = ”  Xyt    
  (])!7.=δis X)II = ’・ Xy
−(2)但し、δl l 、δ4.δl$は高速、中速
、低速時の画素単位寸法(m/b i t )、1..
1..1.は高速。
l ylga 1lXyr = ”Xyt
(])! 7. = δis X) II = '・Xy
-(2) However, δl l, δ4. δl$ is the pixel unit size (m/bit) at high speed, medium speed, and low speed; 1. ..
1. .. 1. is fast.

中速、低速時の最大被写体寸法(龍)、人は最大画素数
、y・+Y”+Y−は高速、中速、低速時の軌道ずれ画
素(bit)である。
The maximum object size (dragon) at medium speed and low speed, the maximum number of pixels for a person, and y·+Y''+Y- are the trajectory deviation pixels (bit) at high speed, medium speed, and low speed.

そj、故、走行速度CV、 <V、 (vt )に応じ
て、最大被写体寸法C1,<1. <1. )が設定さ
r、撮像装置6aa画像信号の分解能(画素単位寸法)
はall<δ1.<δ1.となり、低速時の走行状態黴
の検出精度が良くなる。
Therefore, depending on the traveling speed CV, <V, (vt), the maximum object dimension C1, <1. <1. ) is set r, the resolution of the image signal of the imaging device 6aa (pixel unit dimension)
is all<δ1. <δ1. As a result, the accuracy of detecting mold during running at low speeds is improved.

次に、第1図の実施例1こおける速度に応じた自動ズー
ム動作を第6図を用いて説明する。オペレータ等により
起動が指示されると、画像処理部並びに制御量演算部の
回路上の初期設定がなさnる(ステップF10)。次に
、画像処理部により自動ズームレンズ機構を作動させる
ため、高速時のズーム信号f、  を設定する(ステッ
プF20)。
Next, the automatic zoom operation according to the speed in the first embodiment of FIG. 1 will be explained using FIG. 6. When activation is instructed by an operator or the like, initial settings are made on the circuits of the image processing section and the control amount calculation section (step F10). Next, in order to operate the automatic zoom lens mechanism by the image processing section, a zoom signal f at high speed is set (step F20).

その信号f、をズーム信号発生回路でアナログ信号に変
換し、その操装置に基づ羨、サーボモータを作動させ、
自動ズーム作用を実施する(ステップF30)。そnと
共に、画像処理部のプログラム内の高速ズーム定数(画
素単位寸法δ1. )のテーブル設定を行なう。(ステ
ップF40)。
The signal f is converted into an analog signal by a zoom signal generation circuit, and the servo motor is operated based on the operating device.
Perform automatic zooming (step F30). At the same time, a table of high-speed zoom constants (pixel unit size δ1.) is set in the program of the image processing section. (Step F40).

そして、ステップF50で走行速度が高速指令でかつ走
行速度検出器からの信号が高速信号であnばF130の
ステップ1こ進み、そうでなけnば。
Then, in step F50, if the traveling speed is a high speed command and the signal from the traveling speed detector is a high speed signal, the process proceeds by one step in F130, otherwise, it is n.

次のステップへ進む。ステップF60では中速走行か否
かの判別を実施しており、そうであ几ばステップF70
へ進む。ステップF70では中速ズーム信号f、の設定
を行ない、続いてステップF80にてサーボモータの作
動に基づく自動ズーム機構の動作を行ない、さらに中速
ズーム定数(画素単位寸法δ!自)を設定する(ステッ
プF90)。
Proceed to the next step. In step F60, it is determined whether or not the vehicle is running at a medium speed, and if so, step F70 is executed.
Proceed to. In step F70, the medium-speed zoom signal f is set, and then in step F80, the automatic zoom mechanism is operated based on the operation of the servo motor, and the medium-speed zoom constant (pixel unit size δ!self) is set. (Step F90).

そうでなければ、低速ズーム信号f・の設定(ステップ
F100)、サーボモータの作動1こ基づく自動ズーム
レンズ機構の伸縮動作(ステップFIIO)及び低速ズ
ーム定数(画素単位寸法δl・)の設定(ステップF]
20)を行う。ステップFt 30では撮像装置からの
画像信号の入力を開始する。
Otherwise, the setting of the low-speed zoom signal f (step F100), the expansion and contraction operation of the automatic zoom lens mechanism based on the operation of the servo motor (step FIIO), and the setting of the low-speed zoom constant (pixel unit dimension δl) (step F]
20). In step Ft30, input of image signals from the imaging device is started.

入力される画像信号はアナログ信号であるので、こわを
ディジタル信号1こ変換する(ステップF]40)。こ
の時、ノイズ除去、2値化処理などのlσ処理を行ない
、前処理後の画像信号を画像メモリに順次記憶する(ス
テップF150)。この記憶後、入力される画像信号が
ライン画像かマーク画像かの判断を行う(ステップF]
70)。
Since the input image signal is an analog signal, the stiffness is converted into a digital signal (step F] 40). At this time, lσ processing such as noise removal and binarization processing is performed, and the preprocessed image signals are sequentially stored in the image memory (step F150). After this storage, it is determined whether the input image signal is a line image or a mark image (Step F)
70).

その画像判断に基づき、ステップF180ではライン画
像の場合、軌道ずれy、姿勢角ψを算出する。マーク画
像の場合、そt′1#こ加えて移動alxを算出する。
Based on the image judgment, in step F180, in the case of a line image, the trajectory deviation y and the attitude angle ψ are calculated. In the case of a mark image, the movement alx is calculated in addition to t'1#.

そして、それらの走行状部量を画像処理部から制御歇演
算部へ転送する。ステップF200、F210で転送が
完了し、かつ走行中であれば、再度ステップF50に戻
る。このようをこ速度に応じて映像の拡大(または縮小
)を行なう。
Then, the amounts of running portions are transferred from the image processing section to the control intermittent calculation section. If the transfer is completed in steps F200 and F210 and the vehicle is running, the process returns to step F50 again. In this way, the image is enlarged (or reduced) according to the scrolling speed.

第4図は、走行速度とズーム焦点距離の関係を示してい
る。つまり、走行速度が小さくなるtこ従いステップ的
tこ映像を拡大するよう自動ズーム機構を調節する。上
述の例では、走行速度が小さくなるとステップ的1こ映
像を拡大したが、これは第5図に示すように連続的Vこ
調節するものであっても良い。
FIG. 4 shows the relationship between travel speed and zoom focal length. That is, as the traveling speed decreases, the automatic zoom mechanism is adjusted to enlarge the image in steps. In the above example, the image is enlarged stepwise as the traveling speed decreases, but this may be done by continuously adjusting the angle as shown in FIG. 5.

〔発明の効果〕〔Effect of the invention〕

本発明によrば、移動体の停止位置決め精度を向上させ
ることができる。
According to the present invention, it is possible to improve the accuracy of stop positioning of a moving body.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す図、第2図は画像上の
軌道ずr、信号を説明するための図、第3図は無人搬送
車の構成を示す図、第4図と第5図は走行速度と焦点距
離との関係を示す図、第6図は第1図の実施例における
動作を説明するための図である。 】・・・・・・無人搬送車、4a、4b・・・・・・マ
ーク、6a、6b・・・・・・撮像装置、8・・・・・
・走行装置、9a。 9b・・・・・・走行輪、】】・・・・・・制御部、】
2・・・・・・データ処理部、19・・・・・・画像処
理部、20・・・・・・自動ズーム機構、21・・・・
・・サーボモータ、22・・・・・・増幅器、23・・
・・・・ズーム信号発生回路、24・・川・ズーム制御
部、25・・・・・・制御歇演算部、26・・・・・・
制御部、27・−・・・・走行速度指令信号器、28b
・・・・・・走行速度変換器。 牙1図 矛4図 λn遠戻 走行連座 オ6図
FIG. 1 is a diagram showing an embodiment of the present invention, FIG. 2 is a diagram for explaining the trajectory deviation r on the image and signals, FIG. 3 is a diagram showing the configuration of an automatic guided vehicle, and FIG. FIG. 5 is a diagram showing the relationship between traveling speed and focal length, and FIG. 6 is a diagram for explaining the operation in the embodiment of FIG. 1. ]...Automated guided vehicle, 4a, 4b...Mark, 6a, 6b...Imaging device, 8...
- Traveling device, 9a. 9b... Running wheel, ]]... Control unit, ]
2...Data processing unit, 19...Image processing unit, 20...Automatic zoom mechanism, 21...
...Servo motor, 22...Amplifier, 23...
...Zoom signal generation circuit, 24.Zoom control section, 25..Control interval calculation section, 26..
Control unit, 27... Traveling speed command signal device, 28b
・・・・・・Traveling speed converter. Fang 1 figure Spear 4 figure λn Long return running combination O 6 figure

Claims (1)

【特許請求の範囲】[Claims] 1、走行路上のマークを撮像する撮像装置と、該撮像さ
れた画像信号に基づいて移動体の走行状態量を演算する
画像処理部と、該走行状態量を入力して制御量を演算す
る制御量演算部とを備え、該制御量を用いて移動体の誘
導制御を行なうものにおいて、該撮像装置の前面に映像
を縮小または拡大する自動ズーム機構を取付け、移動体
の走行速度を検出する速度検出器と、該速度検出器の出
力が小さくなるに従い該映像を拡大するように該自動ズ
ーム機構を制御するズーム制御部とを備えたことを特徴
とする移動体の誘導制御装置。
1. An imaging device that captures an image of a mark on a running road, an image processing unit that calculates a running state quantity of a moving object based on the captured image signal, and a control that inputs the running state quantity and calculates a control amount. and a quantity calculation unit, and performs guidance control of a moving object using the control amount, in which an automatic zoom mechanism for reducing or enlarging an image is attached to the front of the imaging device, and a speed for detecting the traveling speed of the moving object. A guidance control device for a moving body, comprising: a detector; and a zoom control unit that controls the automatic zoom mechanism to enlarge the image as the output of the speed detector becomes smaller.
JP60036316A 1985-02-27 1985-02-27 Guide controller for traveling object Pending JPS61196306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60036316A JPS61196306A (en) 1985-02-27 1985-02-27 Guide controller for traveling object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60036316A JPS61196306A (en) 1985-02-27 1985-02-27 Guide controller for traveling object

Publications (1)

Publication Number Publication Date
JPS61196306A true JPS61196306A (en) 1986-08-30

Family

ID=12466429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60036316A Pending JPS61196306A (en) 1985-02-27 1985-02-27 Guide controller for traveling object

Country Status (1)

Country Link
JP (1) JPS61196306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340764A (en) * 2002-05-27 2003-12-02 Matsushita Electric Works Ltd Guide robot
JP2010204922A (en) * 2009-03-03 2010-09-16 Yaskawa Electric Corp Moving body
JP2017211315A (en) * 2016-05-26 2017-11-30 株式会社リコー Device for detecting object to be conveyed, device that discharges liquid, method for detecting object to be conveyed, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003340764A (en) * 2002-05-27 2003-12-02 Matsushita Electric Works Ltd Guide robot
JP2010204922A (en) * 2009-03-03 2010-09-16 Yaskawa Electric Corp Moving body
JP2017211315A (en) * 2016-05-26 2017-11-30 株式会社リコー Device for detecting object to be conveyed, device that discharges liquid, method for detecting object to be conveyed, and program

Similar Documents

Publication Publication Date Title
JP2844242B2 (en) Automatic traveling device
JP2835764B2 (en) Automatic traveling device
CN104954668A (en) Image-capturing device for moving body
JP3266747B2 (en) Vehicle guidance and travel control device
CN112125226B (en) Visual detection system and method for laser navigation forklift
JPS61196306A (en) Guide controller for traveling object
JP2707546B2 (en) Vehicle steering control device
CN105785992A (en) Use method of multifunctional unmanned electric vehicle
JPH031683B2 (en)
JPS60160413A (en) Guiding device of mobile body
JPH01300311A (en) Unmanned vehicle guiding device
KR20000056734A (en) Position inspecting apparatus for agv(automated guided vehicle) and method thereof
JPH0370804B2 (en)
JPS6158011A (en) Movement controller of mobile body
KR0160302B1 (en) Control system for unmanned carrier vehicle
JPH1020934A (en) Guide steering device for unmanned driving vehicle
JPS6065307A (en) Drive detector of travelling object
JPS638807A (en) Guide device for optical guide type moving vehicle
JP3054952B2 (en) Automatic traveling device
JPH0334087B2 (en)
JPS6278613A (en) Drive control method for unmanned carrier
JPH03129409A (en) Optically guiding type mobile vehicle control facility
JPH03113515A (en) Steering controller for switchback of vehicle
JPS59169793A (en) Industrial robot
JPS60256812A (en) Drive control equipment for traveling truck