JPS61195132A - Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer - Google Patents

Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer

Info

Publication number
JPS61195132A
JPS61195132A JP3457685A JP3457685A JPS61195132A JP S61195132 A JPS61195132 A JP S61195132A JP 3457685 A JP3457685 A JP 3457685A JP 3457685 A JP3457685 A JP 3457685A JP S61195132 A JPS61195132 A JP S61195132A
Authority
JP
Japan
Prior art keywords
olefin polymer
gel
weight
solvent
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3457685A
Other languages
Japanese (ja)
Other versions
JPH0441702B2 (en
Inventor
Koichi Kono
公一 河野
Shoichi Mori
森 省一
Kenji Miyasaka
宮坂 健司
Joichi Tabuchi
田渕 丈一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP3457685A priority Critical patent/JPS61195132A/en
Priority to EP86301047A priority patent/EP0193318B1/en
Priority to DE8686301047T priority patent/DE3676211D1/en
Priority to US06/832,916 priority patent/US4734196A/en
Publication of JPS61195132A publication Critical patent/JPS61195132A/en
Publication of JPH0441702B2 publication Critical patent/JPH0441702B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

PURPOSE:To obtain a thin and high-strength membrane having a great number of fine through holes with a distribution, by subjecting a gelatinous molded article of an alpha-olefin polymer to solvent removal treatment to adjust the polymer content and drawing it to remove the remaining solvent. CONSTITUTION:A gelatinous molded article is formed from a solution of an alpha-olefin polymer having >=5X10<6> weight-average molecular weight, preferably 1X10<6>-15X10<6> weight-average molecular weight, at least 10wt% solvent contained in the gelatinous molded article is removed from the molded article, so the gelatinous molded article has 10-90wt%, preferably 20-60wt% alpha-olefin polymer. The molded polymer +10 deg.C, preferably from a crystal dispersion temperature - the melting point, and the remaining solvent contained in the pre- pared drawn molded article is removed. Polypropylene is used as the alpha- olefin polymer. A finely porous membrane has 0.05-50mum thickness.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超高分子量α−オレフィン重合体微多孔膜の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a microporous ultra-high molecular weight α-olefin polymer membrane.

従来の技術 多孔質膜は、例えば電池用セパレーター、電解コンデン
サー用隔膜、各種フィルター、透湿性防水衣料など各種
の用途に用いられているが、最近、機器の小型軽量化お
よび性能向上をはかるために、より薄く強度の向上が要
求されている。
Conventional technologyPorous membranes are used in a variety of applications, such as battery separators, electrolytic capacitor diaphragms, various filters, and moisture-permeable waterproof clothing.Recently, porous membranes have been used to reduce the size and weight of equipment and improve performance. , thinner and stronger materials are required.

α−オレフィン重合体の代表例であるポリプロピレンの
多孔膜の製造方法としては、例えばポリプロピレンに無
機化合物を配合し、温度勾配のある領域で高剪断力をか
けてキャストし、とのキャストフィルムを延伸する方法
(特開昭58−74327号公報)がある。しかし、こ
の方法で得られる多孔膜は、分子量が50万未満のポリ
プロビレ/が用いられているため延伸による薄膜化およ
び高強度化には限界があった。
A method for producing a porous film of polypropylene, which is a typical example of an α-olefin polymer, is, for example, by blending polypropylene with an inorganic compound, casting it under high shear force in an area with a temperature gradient, and stretching the cast film. There is a method (Japanese Unexamined Patent Publication No. 74327/1983). However, since the porous membrane obtained by this method uses polypropylene having a molecular weight of less than 500,000, there is a limit to how thin the membrane can be made and how strong it can be increased by stretching.

また、膜の高強度および高弾性率が期待される超高分子
量ポリプロピレンは、通常の分子量を有するポリプロピ
レンに比べて分子鎖のからみが著しく、従来の押出成形
による延伸薄膜化は困難であった。
In addition, ultra-high molecular weight polypropylene, which is expected to have high strength and high elastic modulus, has significantly entangled molecular chains compared to polypropylene having a normal molecular weight, making it difficult to stretch into a thin film using conventional extrusion molding.

一方、超高分子量ポリプロピレンの成形物の製造方法と
しては、例えば実質的にポリエチレンまたはポリプロピ
レンである超高分子量熱可塑結晶性重合物を非揮発性溶
剤に溶解し、この溶液からゲルを成形し、この非揮発性
溶剤を含むゲルまたはゲル中に含まれる溶剤を揮発性溶
剤で抽出除去した乾燥ゲルを加熱延伸する実質的に繊維
である熱可塑性形状物品の製造方法(特開昭58−52
28号公報)が提案されている。しかし、この方法では
、超高分子量α−オレフィン重合体から微細で分布の狭
い多数の貫通孔を有し、均一で高倍率延伸の微多孔膜は
得られない。
On the other hand, a method for producing a molded article of ultra-high molecular weight polypropylene includes, for example, dissolving an ultra-high molecular weight thermoplastic crystalline polymer that is essentially polyethylene or polypropylene in a non-volatile solvent, and molding a gel from this solution. A method for producing a thermoplastic article that is substantially a fiber by heating and stretching a gel containing a non-volatile solvent or a dry gel obtained by extracting and removing the solvent contained in the gel with a volatile solvent (Japanese Patent Laid-Open No. 58-52
No. 28) has been proposed. However, with this method, it is not possible to obtain a microporous film made of an ultra-high molecular weight α-olefin polymer, which has a large number of fine and narrowly distributed through holes, and which is uniform and can be stretched at a high magnification.

発明が解決しようとする問題点 本発明は、超高分子量a−オレフィン重合体のゲルを高
倍率で延伸することによる、微細でかつ分布の狭い多数
の貫通孔を有する薄くて高強度の超高分子量α−オレフ
ィン重合体微多孔膜を得ることを目的とする。
Problems to be Solved by the Invention The present invention provides a thin, high-strength, ultra-high-strength material having a large number of fine through-holes with a narrow distribution by stretching a gel of an ultra-high molecular weight a-olefin polymer at a high magnification. The purpose is to obtain a microporous membrane of a molecular weight α-olefin polymer.

問題点を解決するための手段、 本発明者らは、超高分子量a−オレフィン重合体微多孔
膜を得る方法について種々検討を行った結果、超高分子
量a−オレフィン重合体の溶液から成形したゲル状物を
脱溶媒処理してゲル状成形物中に含まれるα−オレフィ
ン重合体量の特定範囲において延伸して残存溶媒を除去
することくよシ、本発明の目的を達成することを見出し
、本発明を完成した。
Means for Solving the Problems The present inventors have conducted various studies on methods for obtaining ultra-high molecular weight a-olefin polymer microporous membranes, and as a result, the present inventors have developed a method for obtaining ultra-high molecular weight a-olefin polymer microporous membranes. It has been found that the object of the present invention can be achieved by desolventizing a gel-like product and stretching it within a specific range of the amount of α-olefin polymer contained in the gel-like molded product to remove the residual solvent. , completed the invention.

すなわち、本発明は、重量平均分子量が5×10’以上
のα−オレフィン重合体の溶液からゲル状物を成形し、
該ゲル状成形物をそれに含まれる溶媒の少くとも10重
量係を除去して該ゲル状成形物に含まれる該α−オレフ
ィン重合体が10〜90重量係になるようにした後、該
α−オレフィン重合体の融点+10℃以下の温度で延伸
し、得られた延伸成形物中の残存溶媒を除去することを
特徴とする超高分子量a−オレフィン重合体微多孔膜の
製造方法である。
That is, the present invention involves forming a gel-like material from a solution of an α-olefin polymer having a weight average molecular weight of 5×10′ or more,
After removing at least 10 parts by weight of the solvent contained in the gel-like molded product so that the α-olefin polymer contained in the gel-like molded product becomes 10 to 90 parts by weight, the α- This is a method for producing a microporous membrane of an ultra-high molecular weight a-olefin polymer, which is characterized by stretching at a temperature of 10° C. or lower than the melting point of the olefin polymer and removing residual solvent in the stretched product.

本発明において用いる超高分子量α−オレフィン重合体
は、重量平均分子量が5X10’以上、好ましくは1×
106〜15X10・の範囲のものである。重量平均分
子量が5X101未満では、極薄で高強度の微多孔膜が
得られない。一方、上限は特に限定されないが、15X
106を越えるものは延伸加工による薄膜化が難かしい
。このような超高分子量a−オレフィン重合体としては
、プロピレン、1−ブテン、4−メチル−1−ペンテン
、1−ヘキセンなどを重合した結晶性の単独重合体また
はこれらα−オレフィンと10モル係以下のエチレンも
しくは他のa−オレフィンとの共重合体があげられる。
The ultra-high molecular weight α-olefin polymer used in the present invention has a weight average molecular weight of 5×10′ or more, preferably 1×
It is in the range of 106 to 15×10. If the weight average molecular weight is less than 5×101, an extremely thin and highly strong microporous membrane cannot be obtained. On the other hand, the upper limit is not particularly limited, but 15X
If the number exceeds 106, it is difficult to form a thin film by stretching. Such ultra-high molecular weight α-olefin polymers include crystalline homopolymers of propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, etc., or polymers with a 10 molar relationship with these α-olefins. The following copolymers with ethylene or other a-olefins may be mentioned.

これらのうちではプロピレンを主体とする超高分子量ポ
リプロピレンが好ましい。なお、上記の超高分子量a−
オレフィン重合体には必要に応じて酸化防止剤、紫外線
吸収剤、滑剤、アンチプロツキレグ剤、顔料、無機充填
剤などの各種添加剤を本発明の目的を損わない範囲で添
加することができる。
Among these, ultra-high molecular weight polypropylene mainly composed of propylene is preferred. In addition, the above-mentioned ultra-high molecular weight a-
Various additives such as antioxidants, ultraviolet absorbers, lubricants, anti-blocking agents, pigments, and inorganic fillers may be added to the olefin polymer as necessary to the extent that the purpose of the present invention is not impaired. can.

本発明において原料となる超高分子量α−オレフィン重
合体の溶液は、上記の重量平均分子量5X106以上の
α−オレフィン重合体を溶媒中で加熱溶解して調製する
。との溶媒としては、該a−オレフィン重合体を十分に
溶解できるものであれば特に限定されない。例えば、ノ
ナン、デカン、ウンデカン、ドデカン、デカリン、パラ
フィン油などの脂肪族または環式の炭化水素あるいは沸
点がこれらに対応する鉱油留分などがあげられるが、溶
媒含有状態が安定なゲル状成形物を得るためにはパラフ
ィン油のよう−な不揮発性の溶媒が好ましい。加熱溶解
は、#aミーオレフィン合体が溶媒中で完全に溶解する
温度で攪拌しながら行う。その温度は使用される重合体
および溶媒によシ異なるが、例えばポリプロピレンの場
合には160〜250℃の範囲である。また、α−オレ
フィン重合体溶液の濃度は分子量によって異なるが1〜
10重量嘩が好ましい。あまシ濃度が高いと均一な溶液
の調製が難かしい。なお、加熱溶解にあたつてはα−オ
レフィン重合体の酸化劣化を防止するために酸化防止剤
を添加することが好ましい。
The solution of the ultra-high molecular weight α-olefin polymer which is a raw material in the present invention is prepared by heating and dissolving the above-mentioned α-olefin polymer having a weight average molecular weight of 5×10 6 or more in a solvent. The solvent for the a-olefin polymer is not particularly limited as long as it can sufficiently dissolve the a-olefin polymer. Examples include aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin, and paraffin oil, or mineral oil fractions with boiling points corresponding to these, and gel-like molded products that are stable in a solvent-containing state. A non-volatile solvent such as paraffin oil is preferred. The heat dissolution is carried out with stirring at a temperature at which the #a olefin combination is completely dissolved in the solvent. The temperature varies depending on the polymer and solvent used, but for example in the case of polypropylene it ranges from 160 to 250°C. In addition, the concentration of the α-olefin polymer solution varies depending on the molecular weight, but
10 weight is preferred. It is difficult to prepare a homogeneous solution when the concentration is high. In addition, during heating and dissolution, it is preferable to add an antioxidant in order to prevent oxidative deterioration of the α-olefin polymer.

次に、とのa−オレフィン重合体加熱溶液を適宜選択さ
れたダイスからシート状またはチューブ状に押出し、あ
るいは支持体上に流延し、水浴、空気浴、溶剤などでゲ
ル化温度以下、好ましくは15〜25℃の温度に少くと
も50℃/分の速度で冷却してゲル状化する。ゲル状成
形物の厚さは通常11〜5■程度に成形される。
Next, the heated solution of the a-olefin polymer is extruded from an appropriately selected die into a sheet or tube shape, or cast onto a support, and is heated preferably below the gelling temperature in a water bath, air bath, solvent, etc. is gelled by cooling to a temperature of 15-25°C at a rate of at least 50°C/min. The thickness of the gel-like molded product is usually about 11 to 5 cm.

このゲル状成形物は、a−オレフィン重合体溶解時の溶
媒で膨潤されたもので脱溶媒処理が必要である。
This gel-like molded product is swollen with the solvent used to dissolve the a-olefin polymer, and requires removal of the solvent.

脱溶媒処理は、ゲル状成形物を易揮発性溶剤に浸漬し抽
出して乾燥する方法、圧縮する方法、加熱する方法また
はこれらの組合せによる方法などがあげられるが、ゲル
状成形物の構造を著しく変化させることなく溶媒を除去
できる易揮発性溶剤による抽出除去が好ましい。この易
揮発性溶剤として杜、ペンタン、ヘキサン、ヘプタン、
などの炭化水素、塩化メチレン、四塩化炭素などの塩素
化炭化水素、三フッ化エタンなどのフッ化炭化水素、ジ
エチルエーテル、ジオキサンなどのエーテル類、その他
メタノール、エタノール、プロパツールなどのアルコー
ル類などがあげられる。これらの溶剤はa−オレフィン
重合体の溶解に用いた溶媒によシ適宜選択し、単独もし
くは混合して用いられる。
Solvent removal treatment includes methods such as immersing the gel-like molded product in an easily volatile solvent, extracting it, and drying it, compressing it, heating it, or a combination of these methods. Extractive removal using a readily volatile solvent is preferred since the solvent can be removed without significant changes. These easily volatile solvents include Du, pentane, hexane, heptane,
Hydrocarbons such as methylene chloride, chlorinated hydrocarbons such as carbon tetrachloride, fluorinated hydrocarbons such as trifluoroethane, ethers such as diethyl ether and dioxane, and alcohols such as methanol, ethanol, propatool, etc. can be given. These solvents are appropriately selected depending on the solvent used to dissolve the a-olefin polymer, and are used alone or in combination.

また、ゲル状成形物中の溶媒の除去量は、含まれる溶媒
に対して少くとも10重量係で、該ゲル状成形物中に含
まれる超高分子量α−オレフィン重合体が10〜90重
量俤、好ましくは20〜60重量憾になるように脱溶媒
処理することが必要である。ゲル状成形物からの溶媒の
除去量が含まれる溶媒に対して10重量慢未満で、ゲル
状成形物中に含まれる該a−オレフィン重合体が10重
量嘔未満では、ゲル状成形物の網状組織が溶媒で高度に
膨潤しているために加熱延伸においてゲルの溶解を起し
易い。また、部分的に不均一延伸を起し易く厚さの均一
な延伸成形物が得難く、延伸成形物中に形成される細孔
の孔径分布が大きくなシ好ましくない。さらに、延伸に
ともなう溶媒の滲み出しなど取扱いの上からも好ましく
ない。一方、ゲル成形物中に含まれる該a−オレフィン
重合体が90重量−を越える過度の脱溶媒処理は、ゲル
状成形物の網状組織の緻密化が進み過ぎて、高倍率の延
伸が困難となシ薄くて高強度の延伸成形物が得難く、延
伸成形物中に形成される微細孔の孔径および空孔率がと
もに低下して好ましくない。
In addition, the amount of solvent removed from the gel-like molded product is at least 10% by weight relative to the solvent contained, and the amount of the ultra-high molecular weight α-olefin polymer contained in the gel-like molded product is 10 to 90% by weight. It is necessary to perform a solvent removal treatment to reduce the weight of the product, preferably 20 to 60%. If the amount of solvent removed from the gel-like molded product is less than 10% by weight relative to the solvent contained, and the amount of the a-olefin polymer contained in the gel-like molded product is less than 10% by weight, the net shape of the gel-like molded product is Since the structure is highly swollen with solvent, the gel tends to dissolve during heating and stretching. In addition, uneven stretching tends to occur locally, making it difficult to obtain a stretched product with a uniform thickness, and the pore size distribution of the pores formed in the stretched product is undesirable. Furthermore, it is also unfavorable from the viewpoint of handling, such as oozing of the solvent during stretching. On the other hand, if the a-olefin polymer contained in the gel molded product exceeds 90% by weight, excessive desolvation treatment may cause the network structure of the gel molded product to become too dense, making it difficult to stretch at a high magnification. Moreover, it is difficult to obtain a thin and high-strength stretched product, and both the pore diameter and porosity of micropores formed in the stretched product are undesirably reduced.

なお、ゲル状成形物中に含む溶媒の除去量は、ゲル状成
形物に対する易揮発性溶剤の接触量、時間あるいはゲル
状成形物の圧縮圧力などによって調節することができる
The removal amount of the solvent contained in the gel-like molded product can be adjusted by the amount of contact of the easily volatile solvent with the gel-like molded product, the time, the compression pressure of the gel-like molded product, etc.

また、ゲル状成形物の易揮発性溶剤による脱溶媒処理で
は、ゲル状成形物中に置換された易揮発性溶剤の蒸発に
伴ないゲル状成形物が3軸方向への収縮やたわみを生ず
るために、これを防止し、均一で高倍率の延伸を可能と
する平滑で二軸(縦、横)方向に収縮の小さい原反を得
るため、ゲル状成形物を厚さ方向に選択的に収縮するこ
とが好ましい。その収縮率は、厚さ方向に5O1s以上
、好ましくは70チ以上で、また2軸方向には2(11
以下であることが好ましい。ゲル状成形物の厚さ方向へ
の選択的な収縮は、例えばゲル化成形物を平滑な支持体
へ密着、2軸方向からの把持あるいは多孔質板で挟むな
どの状態で易揮発性溶剤を蒸発させる方法があげられる
In addition, when desolventizing a gel-like molded product using a readily volatile solvent, the gel-like molded product shrinks or bends in three axes as the easily volatile solvent substituted in the gel-like molded product evaporates. In order to prevent this and obtain a smooth original fabric with little shrinkage in the biaxial (longitudinal and transverse) directions, which enables uniform and high stretching, the gel-like molded material is selectively stretched in the thickness direction. Preferably, it shrinks. Its shrinkage rate is 5O1s or more in the thickness direction, preferably 70 inches or more, and 2 (11cm or more) in the biaxial direction.
It is preferable that it is below. Selective shrinkage of the gel-like molded product in the thickness direction can be achieved by, for example, applying an easily volatile solvent to the gel-formed product while it is tightly attached to a smooth support, gripped from two axes, or sandwiched between porous plates. One method is to evaporate it.

延伸は、脱溶媒処理されたゲル状成形物の原反を加熱し
、通常のテンター法、ロール法、インフレーション法、
圧延法もしくはこれらの方法の組合せによって°所定の
倍率で2軸延伸する。
Stretching is performed by heating the original fabric of the gel-like molded product that has been subjected to solvent removal treatment, and using the usual tenter method, roll method, inflation method,
Biaxial stretching is performed at a predetermined magnification by a rolling method or a combination of these methods.

2軸延伸は、同時ま九は逐次のどちらであってもよい。Biaxial stretching may be done simultaneously or sequentially.

延伸温度は、超高分子量α−オレフィン重合体の融点+
10℃以下、好ましくは結晶分散温度から融点未満の範
囲である。例えば、ポリプロピレンの場合は90〜18
0℃で、よシ好ましくは130〜170℃の範囲である
。延伸温度が融点+10℃を越える場合は、樹脂の過度
の溶融により延伸による配向ができない。また、延伸温
度が結晶分散温度未満では、樹脂の軟化が不十分で延伸
において破膜し易く高倍率の延伸ができない。
The stretching temperature is the melting point of the ultra-high molecular weight α-olefin polymer +
The temperature is 10°C or less, preferably in the range from the crystal dispersion temperature to less than the melting point. For example, in the case of polypropylene, 90 to 18
0°C, preferably in the range of 130 to 170°C. If the stretching temperature exceeds the melting point +10° C., the resin will melt excessively and orientation by stretching will not be possible. Furthermore, if the stretching temperature is lower than the crystal dispersion temperature, the resin will not be sufficiently softened and the membrane will easily break during stretching, making it impossible to stretch at a high magnification.

また、延伸倍率は、原反の厚さによって異なるが、1軸
方向で少くとも2倍以上、好ましくは5〜20倍、面倍
率で10倍以上、好ましくは25〜400倍である。面
倍率が10倍未満では延伸が不十分で空孔率の大きい薄
膜が得られないために好ましくない。一方、面倍率が4
00倍を越えると延伸装置、延伸操作などの点で制約が
生じるために好ましくない。
Further, the stretching ratio varies depending on the thickness of the original fabric, but is at least 2 times or more in the uniaxial direction, preferably 5 to 20 times, and 10 times or more in area magnification, preferably 25 to 400 times. If the areal magnification is less than 10 times, it is not preferable because the stretching is insufficient and a thin film with high porosity cannot be obtained. On the other hand, the area magnification is 4
If it exceeds 00 times, it is not preferable because restrictions will arise in terms of stretching equipment, stretching operations, etc.

延伸後の微多孔膜は、前記の易揮発性溶剤に浸漬して残
留する溶媒を抽出除去した後溶剤を蒸発して乾燥する。
The microporous membrane after stretching is immersed in the above-mentioned easily volatile solvent to extract and remove the remaining solvent, and then the solvent is evaporated and dried.

溶媒の抽出は、微多孔膜中の溶媒を1重量係未満に迄除
去することが必要である。
In the extraction of the solvent, it is necessary to remove the solvent in the microporous membrane to less than 1 part by weight.

本発明の超高分子量α−オレフィン重合体微多孔膜の厚
さは、用途に応じて適宜選択され得るが、通常はIIL
05ないし50μm1好ましくは11〜10μmの範囲
である。
The thickness of the ultra-high molecular weight α-olefin polymer microporous membrane of the present invention can be appropriately selected depending on the application, but usually IIL
It ranges from 0.05 to 50 μm, preferably from 11 to 10 μm.

また、本発明の方法によれば、微細貫通孔の平均孔径が
(101〜12m1空孔率が30〜90チでかつ破断強
度が100 kg/car”以上である超高分子量α−
オレフィン重合体微多孔膜を得ることができる。
Further, according to the method of the present invention, ultra-high molecular weight α-
A microporous olefin polymer membrane can be obtained.

発明の効果 本発明の方法によれば超高分子量α−オレフィン重合体
から高倍率延伸により多孔性の超薄膜化が可能である。
Effects of the Invention According to the method of the present invention, it is possible to form a porous, ultra-thin film from an ultra-high molecular weight α-olefin polymer by stretching at a high magnification.

また、得られる超高分子量α−オレフィン重合体微多孔
膜は、従来の通常分子量のα−オレフィン重合体微多孔
膜では得られない極薄で高強度を有し、さらく微細な平
均孔径をもち、かつ狭い孔径分布をもつものである。
In addition, the ultra-high molecular weight α-olefin polymer microporous membrane obtained is extremely thin and has high strength, which cannot be obtained with conventional normal molecular weight α-olefin polymer microporous membranes, and has a finer average pore diameter. It is sticky and has a narrow pore size distribution.

本発明の方法による超高分子量α−オレフィン重合体微
多孔膜は、上記のような優れた特性によシミ池セパレー
ター、電解コンデンサー用隔膜、各種フィルター、透湿
防水衣料用多孔多膜などに好適で、その小型軽量化や性
能向上をは。かることができる。
The ultra-high molecular weight α-olefin polymer microporous membrane produced by the method of the present invention has the above-mentioned excellent properties and is suitable for stain pond separators, diaphragms for electrolytic capacitors, various filters, porous membranes for moisture-permeable and waterproof clothing, etc. So, how about making it smaller and lighter and improving its performance? You can find out.

実施例 以下圧、本発明の実施例を示す。なお、実施例における
試験方法は次の通シである。
EXAMPLES Below, examples of the present invention are shown. In addition, the test method in the examples is as follows.

(1)  フィルムの厚さ:膜断面を走査型電子顕微鏡
によシ測定。
(1) Film thickness: Measure the cross section of the film using a scanning electron microscope.

(2J  破断強度: A8’rM D882準拠。(2J Breaking strength: A8'rM D882 compliant.

(3)  破断伸度:ム8TM D882準拠。(3) Breaking elongation: Mu8TM D882 compliant.

(4)平均孔径、孔径分布: 微多孔膜表面に金を真空蒸着して走査型電子顕微鏡によ
り観測される視野について、イメージアナライザーで統
計処理し、面積平均孔径φ6、数平均孔径φN1孔径分
布(φ8/φN)を求めた。数平均孔径の値を平均孔径
とする。
(4) Average pore size, pore size distribution: The field of view observed with a scanning electron microscope after vacuum-depositing gold on the surface of a microporous membrane was statistically processed using an image analyzer, and the area average pore diameter φ6, number average pore diameter φN1 pore size distribution ( φ8/φN) was determined. Let the value of the number average pore diameter be the average pore diameter.

(5)空孔率:水銀ポロシメーターによシ測定。(5) Porosity: Measured using a mercury porosimeter.

実施例1 重量平均分子量(MY) 4.7 X 10’のポリプ
ロピレン4.0重量%を含む流動パラフィン(64ca
t / 40℃)混合液100重量部に2゜6−ジーt
−ブチル−p−クレゾール1125重量部とテトラキス
しメチレン−5−(S、5−ジ−t−ブチル−4−ヒド
ロキシフェニル)−プロピオネートコメタン(125重
量部との酸化防止剤を加えて混合した。この混合液を攪
拌機付のオートクレーブに充填し、2oo℃迄加熱して
90分間攪拌して均一な溶液を得た。
Example 1 Liquid paraffin (64 ca.
t / 40℃) 2゜6-T to 100 parts by weight of the mixed solution
-Butyl-p-cresol 1125 parts by weight and tetrakised methylene-5-(S,5-di-t-butyl-4-hydroxyphenyl)-propionate comethane (125 parts by weight) are mixed with an antioxidant. This mixed solution was filled into an autoclave equipped with a stirrer, heated to 20° C., and stirred for 90 minutes to obtain a homogeneous solution.

この溶液を加熱した金型に充填し、15℃迄急冷して厚
さ2日のゲル状シートを成形した。
This solution was filled into a heated mold and rapidly cooled to 15° C. to form a gel-like sheet with a thickness of 2 days.

このゲル状7−トを塩化メチレン中に60分間浸漬した
後、平滑板にはり付けた状態で塩化メチレンを蒸発乾燥
し、ポリプロピレン童が19.4重量%、厚さ方向への
収縮率が79.4チの原反シートを得た。
After immersing this gel-like 7-t in methylene chloride for 60 minutes, the methylene chloride was evaporated and dried while it was attached to a smooth plate, and the polypropylene material was 19.4% by weight and the shrinkage rate in the thickness direction was 79. .4 original fabric sheets were obtained.

得られた原反シートを、2軸延伸機にセットし、温度1
50℃、速度30 ct11/分、倍率8×8の条件で
同時2軸延伸を行った。得られた延伸膜を塩化メチレン
で洗浄して残留する流動パラフィンを抽出除去した後、
乾燥してポリプロピレン微多孔膜を得た。その特性を表
−1に示した。
The obtained raw sheet was set in a biaxial stretching machine, and the temperature was 1.
Simultaneous biaxial stretching was performed at 50° C., at a speed of 30 ct11/min, and at a magnification of 8×8. After washing the obtained stretched membrane with methylene chloride to extract and remove the remaining liquid paraffin,
After drying, a microporous polypropylene membrane was obtained. Its characteristics are shown in Table-1.

実施例2〜6 実施例1において成形したゲル状シートを表−1に示す
各条件で製膜した以外は実施例1と同様にしてポリプロ
ピレン微多孔膜を得た。この特性を表−1に併記した。
Examples 2 to 6 Microporous polypropylene membranes were obtained in the same manner as in Example 1, except that the gel-like sheet molded in Example 1 was formed under the conditions shown in Table 1. These characteristics are also listed in Table-1.

実施例7 実施例1において成形したゲル状シートを表−1に示す
条件で逐時延伸した以外は実施例1と同様にしてポリプ
ロピレン微多孔膜を得た。
Example 7 A microporous polypropylene membrane was obtained in the same manner as in Example 1, except that the gel-like sheet molded in Example 1 was stretched one after another under the conditions shown in Table 1.

この特性を表−1に併記した。These characteristics are also listed in Table-1.

比較例1 実施例1において成形したゲル状シート中の溶媒を除去
しないままで2軸延伸機にセットし、表−1に示す条件
で製膜した以外は実施例1と同様にしてポリプロピレン
微多孔膜を得た。その特性を表−1に併記した。得られ
た微多孔膜は、表−1にその特性を示すように平均孔径
分布が広く延伸が不均一であった。また、延伸直後の膜
は、滲み出した過剰の溶媒で表面が覆われ所々溜りや垂
れを生じ、その洗浄に多量の溶剤を喪した。
Comparative Example 1 Microporous polypropylene was produced in the same manner as in Example 1, except that the gel sheet formed in Example 1 was set in a biaxial stretching machine without removing the solvent, and the film was formed under the conditions shown in Table 1. A membrane was obtained. Its characteristics are also listed in Table-1. The resulting microporous membrane had a wide average pore size distribution and was non-uniformly stretched, as shown in Table 1. In addition, the surface of the film immediately after stretching was covered with excess solvent that oozed out, causing pooling and dripping in some places, and a large amount of solvent was wasted in cleaning the film.

実施例8 実施例1において、ポリプロピレン2−0重量係を含む
流動パラフィン溶液を調製したことおよび表−1に示す
各条件で製膜した以外は実施例1と同様にしてポリプロ
ピレン微多孔膜を得た。この特性を表−1に併記した。
Example 8 A microporous polypropylene membrane was obtained in the same manner as in Example 1, except that a liquid paraffin solution containing 2-0 weight percent of polypropylene was prepared and the membrane was formed under the conditions shown in Table 1. Ta. These characteristics are also listed in Table-1.

実施例9 実施例1において用いたMw=4.7X10’のポリプ
ロピレンに代り、Mw=2.5X10・のポリプロピレ
ンを用いて&0重量係の流動パラフィン溶液を調製した
ことおよび表−1に示す各条件で製膜した以外は実施例
1と同様にしてポリプロピレン微多孔膜を得た。この特
性を表−1に併記した。
Example 9 A liquid paraffin solution of &0 weight ratio was prepared using polypropylene of Mw = 2.5 x 10' instead of the polypropylene of Mw = 4.7 x 10' used in Example 1, and each condition shown in Table 1. A microporous polypropylene membrane was obtained in the same manner as in Example 1, except that the membrane was formed in the following manner. These characteristics are also listed in Table-1.

比較例2 実施例9において調製したポリプロピレン溶液から成形
したゲル状シート中の流動パラフィンの9.0重量嘩を
除去したことおよび表−1に示す各条件で製膜した以外
は実施例1と同様セしてポリプロピレン微多孔膜を得た
。この特性を表−1に併記した。得られた微多孔膜は、
平均孔径分布が広く、また延伸が不均一であった。
Comparative Example 2 Same as Example 1 except that 9.0% by weight of liquid paraffin in the gel sheet formed from the polypropylene solution prepared in Example 9 was removed and the film was formed under the conditions shown in Table 1. A microporous polypropylene membrane was obtained. These characteristics are also listed in Table-1. The obtained microporous membrane is
The average pore size distribution was wide and the stretching was non-uniform.

また、延伸直後の膜は、滲み出した過剰の溶媒で表面が
覆われ所々で溜シや垂れを生じた。
In addition, the surface of the film immediately after stretching was covered with excess solvent that oozed out, causing puddles and sag in some places.

比較例3 実施例8において調製したポリプロピレン溶液から成形
したゲル状シート中の流動パラフィンの50重量係を除
去したことおよび表−1に示す条件で製膜した以外は実
施例1と同様にしてポリプロピレン微多孔膜を得た。得
られた微多孔膜は、平均孔径分布が広く、また延伸が不
均一であった。また、延伸直後の膜は、滲み出した過剰
の溶媒で表面が覆われ所々で溜シや垂れを生じた。
Comparative Example 3 Polypropylene was produced in the same manner as in Example 1, except that 50% by weight of liquid paraffin in the gel-like sheet formed from the polypropylene solution prepared in Example 8 was removed and the film was formed under the conditions shown in Table 1. A microporous membrane was obtained. The obtained microporous membrane had a wide average pore size distribution and was non-uniformly stretched. In addition, the surface of the film immediately after stretching was covered with excess solvent that oozed out, causing puddles and sag in some places.

比較例4 実施例1において成形したゲル状シートを多量の塩化メ
チレン中に60分間浸漬した後、平滑板にはシ付けた状
態で塩化メチレンを蒸発乾燥して得られた実質的に流動
パラフィンを含まないゲル状シートを2軸延伸機にセッ
トし、延伸温度を110〜170℃の範囲、速度30c
In/分でそれぞれ延伸を試みたが、延伸ムラと破断に
より倍率3X3倍以上の延伸はできなかった。
Comparative Example 4 After immersing the gel-like sheet formed in Example 1 in a large amount of methylene chloride for 60 minutes, the methylene chloride was evaporated and dried while the smooth plate was still attached to the liquid paraffin. Set the gel-like sheet containing no gel in a biaxial stretching machine, stretch at a temperature of 110 to 170°C, and at a speed of 30c.
Attempts were made to stretch each film at a rate of In/min, but due to uneven stretching and breakage, it was not possible to stretch at a magnification of 3x3 or more.

Claims (2)

【特許請求の範囲】[Claims] (1)重量平均分子量が5×10^5以上のα−オレフ
ィン重合体の溶液からゲル状物を成形し、該ゲル状成形
物をそれに含まれる溶媒の少くとも10重量%を除去し
て該ゲル状成形物に含まれる該α−オレフィン重合体が
10〜 90重量%になるようにした後、該α−オレフィン重合
体の融点+10℃以下の温度で延伸し、得られた延伸成
形物に含まれる残存溶媒を除去することを特徴とする超
高分子量α−オレフィン重合体微多孔膜の製造方法。
(1) Form a gel from a solution of an α-olefin polymer having a weight average molecular weight of 5 x 10^5 or more, remove at least 10% by weight of the solvent contained in the formed gel, and After the α-olefin polymer contained in the gel-like molded product is adjusted to 10 to 90% by weight, it is stretched at a temperature below the melting point of the α-olefin polymer +10°C, and the resulting stretched molded product is 1. A method for producing a microporous ultra-high molecular weight α-olefin polymer membrane, which comprises removing residual solvent contained therein.
(2)α−オレフィン重合体がポリプロピレンである特
許請求の範囲第1項記載の方法。
(2) The method according to claim 1, wherein the α-olefin polymer is polypropylene.
JP3457685A 1985-02-25 1985-02-25 Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer Granted JPS61195132A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP3457685A JPS61195132A (en) 1985-02-25 1985-02-25 Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
EP86301047A EP0193318B1 (en) 1985-02-25 1986-02-14 Microporous membrane of ultra-high molecular weight alpha-olefin polymer
DE8686301047T DE3676211D1 (en) 1985-02-25 1986-02-14 MICROPOROUS MEMBRANE MADE OF AN ALPHA OLEFIN POLYMER WITH ULTRA-HIGH-MOLECULAR WEIGHT.
US06/832,916 US4734196A (en) 1985-02-25 1986-02-24 Process for producing micro-porous membrane of ultra-high-molecular-weight alpha-olefin polymer, micro-porous membranes and process for producing film of ultra-high-molecular-weight alpha-olefin polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3457685A JPS61195132A (en) 1985-02-25 1985-02-25 Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer

Publications (2)

Publication Number Publication Date
JPS61195132A true JPS61195132A (en) 1986-08-29
JPH0441702B2 JPH0441702B2 (en) 1992-07-09

Family

ID=12418147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3457685A Granted JPS61195132A (en) 1985-02-25 1985-02-25 Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer

Country Status (1)

Country Link
JP (1) JPS61195132A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63273651A (en) * 1987-04-30 1988-11-10 Toa Nenryo Kogyo Kk Production of fine porous membrane of polyolefin having ultra-high molecular weight
JPS63279562A (en) * 1987-05-11 1988-11-16 Sanyo Electric Co Ltd Battery
JPH01101340A (en) * 1987-09-14 1989-04-19 Minnesota Mining & Mfg Co <3M> Oriented microporous article
US5051183A (en) * 1989-08-03 1991-09-24 Tonen Corporation Microporous polyolefin membrane and method of producing same
JPH05506875A (en) * 1990-03-14 1993-10-07 ザ・ジエイムズ・リバー・コーポレイシヨン polypropylene foam sheet
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
US6153133A (en) * 1997-10-23 2000-11-28 Tonen Chemical Corporation Method of producing highly permeable microporous polyolefin membrane
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
US6824865B1 (en) 1998-10-01 2004-11-30 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
CN111081948A (en) * 2019-12-26 2020-04-28 江苏厚生新能源科技有限公司 Preparation method of high linear velocity-large width polyethylene diaphragm

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575011B2 (en) * 1987-04-30 1993-10-19 Tonen Corp
JPS63273651A (en) * 1987-04-30 1988-11-10 Toa Nenryo Kogyo Kk Production of fine porous membrane of polyolefin having ultra-high molecular weight
JPS63279562A (en) * 1987-05-11 1988-11-16 Sanyo Electric Co Ltd Battery
JPH0551143B2 (en) * 1987-05-11 1993-07-30 Sanyo Electric Co
JPH01101340A (en) * 1987-09-14 1989-04-19 Minnesota Mining & Mfg Co <3M> Oriented microporous article
US5051183A (en) * 1989-08-03 1991-09-24 Tonen Corporation Microporous polyolefin membrane and method of producing same
JPH05506875A (en) * 1990-03-14 1993-10-07 ザ・ジエイムズ・リバー・コーポレイシヨン polypropylene foam sheet
US5922492A (en) * 1996-06-04 1999-07-13 Tonen Chemical Corporation Microporous polyolefin battery separator
JP2002502446A (en) * 1996-10-18 2002-01-22 ピーピージー・インダストリーズ・オハイオ・インコーポレイテッド Ultra-thin microporous material
JPH10296839A (en) * 1997-04-23 1998-11-10 Tonen Chem Corp Manufacture of polyolefin porous film
US6153133A (en) * 1997-10-23 2000-11-28 Tonen Chemical Corporation Method of producing highly permeable microporous polyolefin membrane
US6824865B1 (en) 1998-10-01 2004-11-30 Tonen Chemical Corporation Microporous polyolefin film and process for producing the same
US8075818B2 (en) 1998-10-01 2011-12-13 Toray Tonen Specialty Separator Godo Kaisha Method of producing a microporous polyolefin membrane
US8349236B2 (en) 2004-12-23 2013-01-08 Toray Advanced Materials Korea Inc. Method of preparing a polyethylene microporous film for a rechargeable battery separator
CN111081948A (en) * 2019-12-26 2020-04-28 江苏厚生新能源科技有限公司 Preparation method of high linear velocity-large width polyethylene diaphragm

Also Published As

Publication number Publication date
JPH0441702B2 (en) 1992-07-09

Similar Documents

Publication Publication Date Title
US4734196A (en) Process for producing micro-porous membrane of ultra-high-molecular-weight alpha-olefin polymer, micro-porous membranes and process for producing film of ultra-high-molecular-weight alpha-olefin polymer
EP0355214B1 (en) Process for producing microporous ultra-high molecular weight polyolefin membrane
US4620955A (en) Polyethylene microporous membrane and a process for the production of the same
US4600633A (en) Polyethylene superthin film and a process for the production of the same
TWI393735B (en) Microporous polyolefin membrane and the method for preparing the same
JP3347835B2 (en) Method for producing microporous polyolefin membrane
JPH06104736B2 (en) Polyolefin microporous membrane
JPS61195132A (en) Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JPH0471416B2 (en)
JP3638401B2 (en) Method for producing polyolefin microporous membrane
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JPH0616862A (en) Microporous polyethylene film
JPS61193836A (en) Preparation of ultra-high molecular weight alpha-olefin polymer film
JP3967421B2 (en) Method for producing polyolefin microporous membrane
JP3641321B2 (en) Method for producing polyolefin microporous membrane
JPS6339602A (en) Fine porous polyethylene membrane and its production
JP3250894B2 (en) Method for producing microporous polyolefin membrane
JPH093228A (en) Production of polyolefin finely porous membrane
JPH09104775A (en) Production of microporous polyolefin film
JP4017307B2 (en) Method for producing porous film
JP2657441B2 (en) Method for producing microporous polyolefin membrane
KR100517204B1 (en) Manufacturing method of polyolefin microporous membrane
JP2005162773A (en) Manufacturing method for polyolefin microporous film
JP3549311B2 (en) Method for producing microporous polyolefin membrane