JPH0551143B2 - - Google Patents

Info

Publication number
JPH0551143B2
JPH0551143B2 JP62114220A JP11422087A JPH0551143B2 JP H0551143 B2 JPH0551143 B2 JP H0551143B2 JP 62114220 A JP62114220 A JP 62114220A JP 11422087 A JP11422087 A JP 11422087A JP H0551143 B2 JPH0551143 B2 JP H0551143B2
Authority
JP
Japan
Prior art keywords
battery
cmd
separator
elongation
breaking strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62114220A
Other languages
Japanese (ja)
Other versions
JPS63279562A (en
Inventor
Toyoji Machida
Satoshi Ubukawa
Minoru Fujimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62114220A priority Critical patent/JPS63279562A/en
Publication of JPS63279562A publication Critical patent/JPS63279562A/en
Publication of JPH0551143B2 publication Critical patent/JPH0551143B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 産業上の利用分野 本発明は例えば円筒型の非水電解液電池或いは
アルカリ蓄電池のように、正負極板をセパレータ
を介して巻回してなる渦巻電極体を備えた電池に
関するものである。 ロ 従来の技術 一般に電池の高率放電特性を向上させるために
は渦巻状の電極体構成とし正負極板の対向面積を
大としている。 このような渦巻状の電極体を備えた電池は大電
流を取出すには好都合であるが、反面外部短絡が
生じた場合には電流のジユール熱のために電池の
温度が上昇し、セパレータが溶融して内部短絡を
引起し、更に電池温度が上昇し電解液の蒸発や分
解によるガス化等によつて電池内圧が高まり電池
の破壊に至る恐れがある。 そこで外部短絡時の安全性を確保するために、
例えば特開昭60−23954号公報に開示されている
ようにセパレータとして微多孔膜を用い、外部短
絡時にセパレータが溶融して絶縁フイルム化する
ことにより内部短絡を防止したり、或いは組電池
においてはPTC素子を組込んで安全性を確保し
ている。 ところが電池を落下させた場合のように機械的
外力により電池が変形し、セパレータが破断して
正負極が接触することによる内部短絡は上記従来
構成では阻止することはできない。 ハ 発明が解決しようとする問題点 本発明では機械的外力による電池の変形によつ
てセパレータが破断して内部短絡が生じたとして
も、電池温度の急激な上昇を抑え電池の破壊にま
では至らないようにしようとするものである。 ニ 問題点を解決するための手段 セパレータとして巻回方向に対して垂直方向の
破断強度と破断伸びの積と、水平方向の破断強度
と破断伸びの積との比率が、0.67以上1.5以下で
ある絶縁性の微多孔膜を用いる。 ホ 作用 一般に渦巻電極体に用いられるセパレータは破
断強度及び破断伸びに方向性を持つている。即ち
巻回に対応するために巻回方向と水平の方向は垂
直の方向より破断強度及び破断伸びが大であるセ
パレータ部材を用いている。ここでこのセパレー
タに機械的外力が加わると、機械的強度が弱い部
分、即ち水平の方向に局部的に破断されることに
なる。この破断部分、云い換えれば正負極板が接
触する部分の面積は小であるため短絡電流が集中
して局部的に温度が異常上昇することになる。 これに対して本発明電池に用いたセパレータの
ように巻回方向に対して垂直方向の破断強度と破
断伸びの積と、水平方向の破断強度と破断伸びの
積との比率が、0.67以上1.5以下である絶縁性の
微多孔膜であれば、機械的外力が加わつた場合、
巻回方向と水平の方向或いは垂直の方向という特
定の方向に限定されずほぼ同時に破壊されるた
め、破断部分の面積は大となり短絡電流が局部に
集中することがないので温度の異常上昇は抑制さ
れる。 ヘ 実施例 以下本発明の実施例につき円筒型非水電解液電
池を例にとり詳述する。 実施例 1 セパレータとしてポリエチレンの含有量が99重
量%以上の微多孔膜を用い、破断強度及び破断伸
度を計測した。ここで、破断極度及び破断伸度の
計測方法は、JIS K−7113に準じ、幅10mm、長さ
100mmのサンプルを作製して、チヤツク部分の長
さを両側で各25mmとし、その両面にチヤツクによ
るノツチ破断防止のためのセロハンテープを貼
り、これを試験片とした。この試験片を温度23±
2℃、引張速度200mm/minの条件で、破断強度
及び破断伸度を測定した。以下の破断強度及び破
断伸度の計測は、上記と同様にして起つた。この
微多孔膜の破断強度は巻回方向と水平の方向(以
下MDと云う)が1100Kg/cm2、垂直の方向(以下
CMDと云う)が100Kg/cm2、又破断伸びはMDが
50%、CMDが500%である。そして、MD方向の
破断強度と破断伸びの積をPMD、CMD方向の破断
強度と破断伸びの積をPCMDと表わすと、実施例1
において、PMDは55000、PCMDは50000となる。さ
らに、PMDとPCMDの比率PCMD/PMDを計算すると、
0.91となる。尚、膜厚は20μである。 正極板は二酸化マンガン活物質と導電剤として
のアセチレンブラツク及び結着剤としてのフツ素
樹脂を85:10:5の重量比で混合したる活物質ペ
ーストをステンレス製のラス板よりなる集電板に
塗着、乾燥後、数回圧延処理して所定厚みに成形
後熱処理したものを用いた。 第1図は本発明電池の半断面図を示し、前記正
極板1と、前記セパレータ2で被覆したリチウム
負極板3とを重ねて巻取り渦巻電極体を構成し、
この渦巻電極体を正極端子兼用の外装缶4に挿入
後、プロピレンカーボネートと1,3ジオキソラ
ンとの混合溶媒に過塩素酸リチウムを溶解してな
る電解液を注液し、ついで負極端子兼用の封口蓋
6と可撓性薄板11とからなる安全弁装置を絶縁
パツキング5を介して外装缶の開口部に封口して
完成電池とする。この電池をA1とする。尚、
7,8は正負極リード片、9,10は絶縁ワツシ
ヤである。又、安全弁装置の弁作動を説明する
と、封口蓋6の中央には、切刃12が形設されて
おり、内部短絡等により電池内圧が異常に上昇し
た場合、可撓性薄板11が電池内部の圧力により
持ち上げられ、上方に撓み切刃12により可撓性
薄板11が破断されることになる。この弁作動に
より、電池内部のガスを外部に放出して電池の破
壊を未然に防止するものである。 実施例 2 セパレータとしてポリプロピレンの含有量が99
重量%以上で、破断強度はMDが730Kg/cm2
CMDが60Kg/cm2であり、破断伸びはMDが20%、
CMDが300%の膜厚35μの微多孔膜を用い、他は
実施例1と同様である。この電池をA2とする。
尚、電池A2のPMDは14600、PCMDは18000であり、
PCMD/PMDは1.23となる。 実施例 3 セパレータとしてポリエチレンの含有量が99重
量%以上で、破断強度はMDが400Kg/cm2、CMD
が300Kg/cm2であり、破断伸びはMDが200%、
CMDが300%の膜厚25μの微多孔膜を用い、他は
実施例1と同様である。この電池をA3とする。
尚、電池A3のPMDは80000、PCMDは90000であり、
PCMD/PMDは1.13となる。 比較例 セパレータとしてポリプロピレンの含有量が99
重量%以上で、破断強度はMDが1000Kg/cm2
CMDが120Kg/cm2であり、破断伸びはMDが80
%、CMDが20%の膜厚25μの微多孔膜を用い、他
は実施例1と同様である。この電池をBとする。
尚、電池BのPMDは80000、PCMDは2400であり、
PCMD/PMDは0.03となる。 これらの電池を第2図に示す如く治具Xを用い
て電池Yを電池径の1/2まで変化させた。下表は
その結果を示す。尚、弁作動の有無は、電池内圧
の上昇により、可撓性薄板11が切刃12によ
り、破断され電池内のガスを外部に放出したかど
うかを調べたものである。
B. Field of Industrial Application The present invention relates to a battery, such as a cylindrical non-aqueous electrolyte battery or an alkaline storage battery, which is equipped with a spiral electrode body formed by winding positive and negative electrode plates with a separator in between. B. Prior Art Generally, in order to improve the high rate discharge characteristics of a battery, a spiral electrode structure is used to increase the facing area of positive and negative electrode plates. A battery with such a spiral electrode body is convenient for extracting a large current, but on the other hand, if an external short circuit occurs, the temperature of the battery rises due to the heat generated by the current, causing the separator to melt. This may cause an internal short circuit, further increase the battery temperature, and cause the electrolyte to evaporate or decompose into gas, increasing the internal pressure of the battery and leading to battery destruction. Therefore, in order to ensure safety in the event of an external short circuit,
For example, as disclosed in JP-A No. 60-23954, a microporous membrane is used as a separator to prevent an internal short circuit by melting the separator and forming an insulating film when an external short circuit occurs, or in an assembled battery. Safety is ensured by incorporating a PTC element. However, the conventional structure described above cannot prevent internal short circuits caused by deformation of the battery due to mechanical external force such as when the battery is dropped, the separator ruptures, and the positive and negative electrodes come into contact with each other. C. Problems to be Solved by the Invention In the present invention, even if the separator breaks due to deformation of the battery due to external mechanical force and an internal short circuit occurs, the rapid rise in battery temperature is suppressed and the battery is not destroyed. This is what we try to avoid. D. Means for solving the problem The ratio of the product of breaking strength and breaking elongation in the direction perpendicular to the winding direction to the product of breaking strength and breaking elongation in the horizontal direction is 0.67 or more and 1.5 or less. An insulating microporous membrane is used. E. Effects Separators used in spiral electrode bodies generally have directionality in breaking strength and breaking elongation. That is, in order to accommodate the winding, a separator member is used which has higher breaking strength and elongation at break in a direction horizontal to the winding direction than in a direction perpendicular to the winding direction. If an external mechanical force is applied to this separator, it will break locally in areas with weak mechanical strength, that is, in the horizontal direction. Since the area of this broken part, in other words, the part where the positive and negative electrode plates come into contact, is small, the short circuit current will concentrate and the temperature will locally rise abnormally. On the other hand, in the separator used in the battery of the present invention, the ratio of the product of breaking strength and breaking elongation in the direction perpendicular to the winding direction to the product of breaking strength and breaking elongation in the horizontal direction is 0.67 or more and 1.5 If an insulating microporous membrane with the following conditions is applied, when an external mechanical force is applied,
Since it is not limited to a specific direction (horizontal or perpendicular to the winding direction) and is broken almost simultaneously, the area of the broken part is large and the short circuit current is not concentrated locally, suppressing abnormal temperature rises. be done. F. Examples Examples of the present invention will be described in detail below, taking a cylindrical non-aqueous electrolyte battery as an example. Example 1 A microporous membrane having a polyethylene content of 99% by weight or more was used as a separator, and its breaking strength and breaking elongation were measured. Here, the measurement method for the breaking degree and breaking elongation is based on JIS K-7113, with a width of 10 mm and a length of
A 100 mm sample was prepared, the length of the chuck portion was 25 mm on each side, cellophane tape was applied to both sides to prevent the notch from breaking due to the chuck, and this was used as a test piece. This test piece was heated to 23±
The breaking strength and breaking elongation were measured at 2° C. and a tensile speed of 200 mm/min. The following measurements of breaking strength and breaking elongation occurred in the same manner as above. The breaking strength of this microporous membrane is 1100 kg/cm 2 in the winding direction and the horizontal direction (hereinafter referred to as MD), and in the vertical direction (hereinafter referred to as MD).
CMD) is 100Kg/cm 2 , and MD is the elongation at break.
50%, CMD is 500%. Then, if the product of the breaking strength and breaking elongation in the MD direction is expressed as P MD and the product of the breaking strength and breaking elongation in the CMD direction is expressed as P CMD , Example 1
In this case, P MD is 55000 and P CMD is 50000. Furthermore, calculating the ratio P CMD /P MD of P MD and P CMD ,
It becomes 0.91. Note that the film thickness is 20μ. The positive electrode plate is a current collector plate made of a stainless steel lath plate containing an active material paste made by mixing a manganese dioxide active material, acetylene black as a conductive agent, and fluororesin as a binder in a weight ratio of 85:10:5. After coating and drying, the material was rolled several times to form a predetermined thickness and then heat treated. FIG. 1 shows a half-sectional view of the battery of the present invention, in which the positive electrode plate 1 and the lithium negative electrode plate 3 covered with the separator 2 are stacked to form a wound spiral electrode body,
After inserting this spiral electrode body into the outer can 4 which also serves as a positive electrode terminal, an electrolytic solution made by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and 1,3 dioxolane is poured, and then the can 4 which also serves as a negative electrode terminal is sealed. A safety valve device consisting of a lid 6 and a flexible thin plate 11 is sealed in the opening of the outer can via an insulating packing 5 to form a completed battery. This battery is designated as A1. still,
7 and 8 are positive and negative electrode lead pieces, and 9 and 10 are insulating washers. Also, to explain the valve operation of the safety valve device, a cutting blade 12 is formed in the center of the sealing lid 6, and when the internal pressure of the battery rises abnormally due to an internal short circuit, the flexible thin plate 11 cuts inside the battery. The flexible thin plate 11 is lifted up by the pressure of , and the flexible thin plate 11 is ruptured by the cutting blade 12 which bends upward. This valve operation releases the gas inside the battery to the outside, thereby preventing the battery from being destroyed. Example 2 The content of polypropylene as a separator is 99
% by weight or more, the breaking strength is MD 730Kg/cm 2 ,
CMD is 60Kg/cm 2 , elongation at break is 20% MD,
A microporous membrane with a CMD of 300% and a thickness of 35 μm was used, and the rest was the same as in Example 1. Let's call this battery A2 .
In addition, P MD of battery A 2 is 14600, P CMD is 18000,
P CMD /P MD is 1.23. Example 3 The content of polyethylene as a separator is 99% by weight or more, the breaking strength is 400Kg/cm 2 in MD, and CMD
is 300Kg/ cm2 , elongation at break is 200% for MD,
A microporous membrane with a CMD of 300% and a thickness of 25 μm was used, and the rest was the same as in Example 1. Let's call this battery A3 .
In addition, P MD of battery A3 is 80000, P CMD is 90000,
P CMD /P MD is 1.13. Comparative example: The content of polypropylene as a separator is 99
% by weight or more, the breaking strength is MD 1000Kg/cm 2 ,
CMD is 120Kg/cm 2 and MD is 80 for elongation at break.
%, a microporous membrane with a CMD of 20% and a thickness of 25 μm was used, and the rest was the same as in Example 1. This battery is called B.
In addition, P MD of battery B is 80000, P CMD is 2400,
P CMD /P MD is 0.03. As shown in FIG. 2, the battery Y was changed to 1/2 of the battery diameter using a jig X as shown in FIG. The table below shows the results. The presence or absence of valve operation was determined by checking whether or not the flexible thin plate 11 was broken by the cutting blade 12 due to the increase in the internal pressure of the battery, and the gas inside the battery was released to the outside.

【表】 * 電池の側面温度を測定
これらの電池を変形後分解したところ、電池
A1,A2,A3では変形部においてセパレータの破
断部は円状或いは楕円状を呈していたのに対し、
電池Bでは巻回方向と水平の方向に線状を呈して
いた。 この破断部の形状の相違は次の理由による。即
ち電池A1及びA2に用いたセパレータは、MD方
向には強度は大であるが伸びが小さく、一方
CMD方向には強度は小であるが伸びが大きいと
いう特性を有している。そのためセパレータに荷
重が加わる初期では先づ強度の小なるCMD方向
が伸び始める。しかし破断伸びが大きいのでこの
時点では破れない。そして荷重が大きくなつてく
るとMD方向も伸び始める。この時CMD方向も
伸び続け、やがて或る荷重を超えるとセパレータ
が破れるがMD方向及びCMD方向ともほぼ同時
に破れるために破断部はほぼ円状或いは楕円状と
なる。又、電池A3に用いたセパレータは破断強
度及び破断伸びがほぼ等方性を有しているのでこ
の場合も破断部はほぼ円状或いは楕円状となる。 これに対して、電池Bに用いたセパレータは
MD方向には強度が大で且伸びも大であるが、
CMD方向には強度が小で且伸びも小さい特性を
有している。そのためセパレータに荷重が加わる
とMD方向に線状に破断することになる。 そして電池Bでは内部短絡時の接触面積が小で
あるため、電流が集中して温度が異常上昇し、電
解液の蒸発や分解による発生ガスによつて電池内
圧が高まり弁作動に至るのに対し、電池A1,A2
A3では内部短絡時の接触面積が大きく、そのた
め電池Bの場合と同程度の電流が流れても電流密
度は小さくなるので温度上昇はあるものの異常現
象までは至らない。 尚、セパレータの材質としては温度上昇時に溶
融して絶縁化しリチウムイオンの拡散を阻止して
電流が流れないようにするものが良く、低融点の
ものが好ましい。一方融点が低すぎると電池の通
常使用時における電池特性に悪影響を与えること
になる。それ故、例えば実施例で示したポリエチ
レンやポリプロピレンなどのように融点が100〜
175℃の範囲のものが適しており、好ましくは融
点が120〜150℃の範囲のもの、例えばポリメチレ
ン、ポリブテン−1、ポリ−5−メチルヘキセン
−1や前記ポリエチレンなどが好適し、これらは
単独で用いても混合物或いは共重合体として用い
ても有効である。 又、セパレータの破断強度及び破断伸びに関し
て、破断強度は或る方向に対しこれと垂直の方向
が1〜30倍、破断伸びが0.05〜1倍の範囲が望ま
しく、これをPCMD/PMDで表わすと、MD方向の
破断強度及び破断伸びが、それぞれCMD方向の
30倍及び0.05倍であるとき、PCMDが1に対して
PMDは1.5となり、PCMD/PMDは0.67となる。又、
逆の場合、即わちCMD方向の破断強度及び破断
伸びが、それぞれMD方向の30倍及び0.05倍であ
るときは、PMDが1に対してPCMDが1.5となり、
PCMD/PMDは1.5となる。 以上のように、PCMDとPMDの比率が0.67以上1.5
以下が好ましいことが判る。 更に、又、セパレータとしての微多孔膜の膜厚
は余り厚すぎると電極間距離が大きくなつて電池
特性が劣化することになるので100μ以下、好ま
しくは50μ以下が望ましい。 尚、実施例で示した各種微多孔膜の破断強度及
び破断伸びの値は、引張り速度200mm/minの時
の値である。 ト 発明の効果 本発明電池によれば、機械的外力による電池の
変形によつてセパレータが破断して内部短絡が生
じたとしても電池温度の急激な上昇を抑えること
ができ安全性の向上が計れるものであり、その工
業的価値は極めて大である。
[Table] * Measuring the temperature on the side of the battery When these batteries were deformed and disassembled, the battery
In A 1 , A 2 , and A 3 , the broken part of the separator had a circular or elliptical shape at the deformed part, whereas
Battery B had a linear shape in the direction parallel to the winding direction. This difference in the shape of the fractured portion is due to the following reason. In other words, the separators used in batteries A 1 and A 2 have high strength but low elongation in the MD direction;
It has the characteristics of low strength but high elongation in the CMD direction. Therefore, at the initial stage when a load is applied to the separator, the CMD direction, which has the lowest strength, begins to expand first. However, since the elongation at break is large, it cannot be broken at this point. As the load increases, the MD direction also begins to expand. At this time, the CMD direction also continues to elongate, and eventually when a certain load is exceeded, the separator breaks, but since both the MD and CMD directions break almost simultaneously, the broken part becomes approximately circular or elliptical. Furthermore, since the separator used in Battery A 3 has approximately isotropy in breaking strength and breaking elongation, the broken portion is also approximately circular or elliptical in this case. On the other hand, the separator used in battery B
Although it has high strength and elongation in the MD direction,
It has the characteristics of low strength and low elongation in the CMD direction. Therefore, when a load is applied to the separator, it will break linearly in the MD direction. In battery B, the contact area in the event of an internal short circuit is small, so the current concentrates and the temperature rises abnormally, and the internal pressure of the battery increases due to gas generated by evaporation and decomposition of the electrolyte, leading to valve operation. , batteries A 1 , A 2 ,
In A3 , the contact area during an internal short circuit is large, so even if the same current flows as in the case of battery B, the current density is lower, so although there is a temperature rise, it does not lead to an abnormal phenomenon. The separator is preferably made of a material that melts and insulates when the temperature rises to prevent the diffusion of lithium ions and prevent current from flowing, and preferably has a low melting point. On the other hand, if the melting point is too low, it will adversely affect the battery characteristics during normal use of the battery. Therefore, for example, polyethylene and polypropylene shown in the examples have a melting point of 100~
Those with a melting point in the range of 175°C are suitable, and preferably those with a melting point in the range of 120 to 150°C, such as polymethylene, polybutene-1, poly-5-methylhexene-1, and the above-mentioned polyethylene, are suitable, and these may be used alone. It is effective whether used as a mixture or a copolymer. Regarding the breaking strength and breaking elongation of the separator, it is desirable that the breaking strength is 1 to 30 times in a direction perpendicular to a certain direction, and the breaking elongation is 0.05 to 1 times, and this is determined by P CMD /P MD . Expressed, the breaking strength and elongation in the MD direction are respectively
When P CMD is 30 times and 0.05 times,
P MD becomes 1.5, and P CMD /P MD becomes 0.67. or,
In the opposite case, that is, when the breaking strength and breaking elongation in the CMD direction are 30 times and 0.05 times the MD direction, respectively, P MD is 1 and P CMD is 1.5,
P CMD /P MD is 1.5. As shown above, the ratio of P CMD and P MD is 0.67 or more and 1.5
It turns out that the following is preferable. Furthermore, the thickness of the microporous membrane used as a separator is desirably 100μ or less, preferably 50μ or less, because if it is too thick, the distance between the electrodes will increase and the battery characteristics will deteriorate. The breaking strength and breaking elongation values of the various microporous membranes shown in Examples are the values at a tensile speed of 200 mm/min. G. Effects of the Invention According to the battery of the present invention, even if the separator breaks due to deformation of the battery due to external mechanical force and an internal short circuit occurs, a sudden rise in battery temperature can be suppressed and safety can be improved. and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の半断面図、第2図は電池
変形試験の概略図を夫々示す。 1……正極板、2……セパレータ、3……負極
板、4……外装缶、5……絶縁パツキング、6…
…封口蓋、7,8……正負極リード片、9,10
……絶縁ワツシヤ、11……可撓性薄板、12…
…切刃。
FIG. 1 is a half-sectional view of the battery of the present invention, and FIG. 2 is a schematic diagram of a battery deformation test. 1...Positive electrode plate, 2...Separator, 3...Negative electrode plate, 4...Exterior can, 5...Insulating packing, 6...
... Sealing lid, 7, 8 ... Positive and negative electrode lead pieces, 9, 10
...Insulating washer, 11...Flexible thin plate, 12...
...cutting blade.

Claims (1)

【特許請求の範囲】[Claims] 1 正負極板をセパレータを介して巻回してなる
渦巻電極体を備えた電池において、セパレータと
して巻回方向に対して垂直方向の破断強度と破断
伸びの積と、水平方向の破断強度と破断伸びの積
との比率が、0.67以上1.5以下である絶縁性の微
多孔膜を用いることを特徴とする電池。
1 In a battery equipped with a spiral electrode body formed by winding positive and negative electrode plates through a separator, the product of the breaking strength and elongation at break in the direction perpendicular to the winding direction as a separator, and the product of the breaking strength and elongation at break in the horizontal direction A battery characterized by using an insulating microporous membrane having a ratio of 0.67 to 1.5.
JP62114220A 1987-05-11 1987-05-11 Battery Granted JPS63279562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62114220A JPS63279562A (en) 1987-05-11 1987-05-11 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62114220A JPS63279562A (en) 1987-05-11 1987-05-11 Battery

Publications (2)

Publication Number Publication Date
JPS63279562A JPS63279562A (en) 1988-11-16
JPH0551143B2 true JPH0551143B2 (en) 1993-07-30

Family

ID=14632234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62114220A Granted JPS63279562A (en) 1987-05-11 1987-05-11 Battery

Country Status (1)

Country Link
JP (1) JPS63279562A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722853Y2 (en) * 1988-12-23 1995-05-24 株式会社ユアサコーポレーション Alkaline storage battery
US4973532A (en) * 1989-04-05 1990-11-27 Hoechst Celanese Corporation Battery separator with integral thermal fuse
CN106688131A (en) * 2014-09-30 2017-05-17 三洋电机株式会社 Nonaqueous electrolyte secondary battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859072A (en) * 1981-10-05 1983-04-07 Asahi Chem Ind Co Ltd Porous film of thermoplastic resin and production thereof
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof
JPS61193836A (en) * 1985-02-25 1986-08-28 Toa Nenryo Kogyo Kk Preparation of ultra-high molecular weight alpha-olefin polymer film
JPS61195132A (en) * 1985-02-25 1986-08-29 Toa Nenryo Kogyo Kk Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
JPS61195133A (en) * 1985-02-25 1986-08-29 Toa Nenryo Kogyo Kk Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
JPS6290863A (en) * 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd Secondary cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5859072A (en) * 1981-10-05 1983-04-07 Asahi Chem Ind Co Ltd Porous film of thermoplastic resin and production thereof
JPS60242035A (en) * 1984-04-27 1985-12-02 Toa Nenryo Kogyo Kk Microporous polyethylene film and production thereof
JPS61193836A (en) * 1985-02-25 1986-08-28 Toa Nenryo Kogyo Kk Preparation of ultra-high molecular weight alpha-olefin polymer film
JPS61195132A (en) * 1985-02-25 1986-08-29 Toa Nenryo Kogyo Kk Production of finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
JPS61195133A (en) * 1985-02-25 1986-08-29 Toa Nenryo Kogyo Kk Finely porous membrane of ultra-high-molecular-weight alpha-olefin polymer
JPS6290863A (en) * 1985-05-10 1987-04-25 Asahi Chem Ind Co Ltd Secondary cell

Also Published As

Publication number Publication date
JPS63279562A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
TW400661B (en) Non-aqueous liquid electrolyte battery
CA1315843C (en) Separator for electrochemical cells
JP2000512062A (en) Battery cap assembly with fragile tab breaking mechanism
US5912090A (en) Nickel-hydrogen stacked battery pack
JP2000021386A (en) Battery
JPH07254402A (en) Sealed battery
JPH07254401A (en) Sealed battery
JP3419272B2 (en) Battery
JPH0551143B2 (en)
JPS63308866A (en) Nonaqueous electrolytic solution battery
JPH0562662A (en) Nonaqueous electrolyte secondary battery
JPH09270272A (en) Nonaqueous electrolyte secondary battery
JPH0541206A (en) Cylindrical nonaqueous electrolyte secondary battery
JPH07272762A (en) Nonaqueous electrolytic secondary battery
JPH03219552A (en) Lithium battery
JP3371713B2 (en) Organic electrolyte secondary battery
JP3431641B2 (en) Organic electrolyte and organic electrolyte battery using the same
JPH06203827A (en) Nonaqueous electrolyte battery
JPH05266877A (en) Cylindrical nonaqueous electrolyte secondary battery
JP3573825B2 (en) Battery with current interruption function
JPH11297298A (en) Battery separator and battery using it
JPH0887995A (en) Organic electrolyte battery
JPH06196138A (en) Nonaqueous electrolyte battery
JPH02304863A (en) Nonaqueous electrolyte battery
JP3307231B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070730

Year of fee payment: 14