KR100517204B1 - Manufacturing method of polyolefin microporous membrane - Google Patents

Manufacturing method of polyolefin microporous membrane Download PDF

Info

Publication number
KR100517204B1
KR100517204B1 KR1019980709473A KR19980709473A KR100517204B1 KR 100517204 B1 KR100517204 B1 KR 100517204B1 KR 1019980709473 A KR1019980709473 A KR 1019980709473A KR 19980709473 A KR19980709473 A KR 19980709473A KR 100517204 B1 KR100517204 B1 KR 100517204B1
Authority
KR
South Korea
Prior art keywords
polyolefin
microporous membrane
weight
molecular weight
solvent
Prior art date
Application number
KR1019980709473A
Other languages
Korean (ko)
Other versions
KR20000015920A (en
Inventor
노리미쓰 가이마이
고타로 다키타
고이치 고노
Original Assignee
도넨카가쿠가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도넨카가쿠가부시키가이샤 filed Critical 도넨카가쿠가부시키가이샤
Priority to KR1019980709473A priority Critical patent/KR100517204B1/en
Publication of KR20000015920A publication Critical patent/KR20000015920A/en
Application granted granted Critical
Publication of KR100517204B1 publication Critical patent/KR100517204B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D7/00Producing flat articles, e.g. films or sheets
    • B29D7/01Films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0658PE, i.e. polyethylene characterised by its molecular weight
    • B29K2023/0683UHMWPE, i.e. ultra high molecular weight polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0058Liquid or visquous
    • B29K2105/0073Solution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous

Abstract

본 발명은, 수처리, 정밀여과막 등의 용도로 이용되는 비교적 구멍지름이 크고, 또한 구멍지름 분포가 샤프한 투과성이 뛰어난 폴리올레핀미다공막의 제조방법으로, 중량평균분자량 5×105이상의 초고분자량 폴리올레핀을 함유하는 폴리올레핀조성물 5∼40중량%와, 용매 95∼60중량%로 이루어지는 용액을 조제하여, 상기 용액을 다이립에 의하여 압출하고, 급냉하여 얻은 시트를 면배율이 1.01∼1.4배로 연신하는 것을 특징으로 하는 폴리올레핀미다공막의 제조방법이다.The present invention is a method for producing a polyolefin microporous membrane having a relatively large pore diameter and excellent permeability with a sharp pore size distribution for use in water treatment, microfiltration membrane, and the like, and contains an ultrahigh molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more. A solution consisting of 5 to 40% by weight of a polyolefin composition and 95 to 60% by weight of a solvent is prepared, and the solution obtained is extruded by a die lip, and the sheet obtained by quenching is stretched to a surface magnification of 1.01 to 1.4 times. It is a manufacturing method of the polyolefin microporous membrane.

Description

폴리올레핀 미다공막(微多孔膜)의 제조방법Method for producing polyolefin microporous membrane

본 발명은, 초고분자량 폴리올레핀을 함유하는 폴리올레핀조성물로 이루어진 미다공막을 제조하는 방법에 관한 것이며, 특히 고투과성폴리올레핀 미다공막에 관한 것이다. The present invention relates to a method for producing a microporous membrane made of a polyolefin composition containing ultra high molecular weight polyolefin, and more particularly, to a highly permeable polyolefin microporous membrane.

미다공막은, 전지용 격리판, 전해콘덴서용 격막, 각종 필터, 투습방수의료, 역침투여과막, 한외여과막, 정밀여과막 등의 각종 용도로 이용되고 있다. Microporous membranes are used in various applications such as battery separators, electrolytic capacitor diaphragms, various filters, moisture permeable waterproof medical, reverse osmosis filtration membranes, ultrafiltration membranes, and fine filtration membranes.

종래로부터, 폴리올레핀에 유기매체 및 미분말 실리카 등의 무기분체를 혼합하여 용융성형후, 유기매체 및 무기분체를 압출하여 미다공막을 얻는 방법은 알려져 있으나, 무기물을 압출하는 공정이 필요하며, 얻어진 막의 투과성은 무기분체의 입자지름에 의존하는 점이 크며, 그 제어는 어려웠다.Conventionally, a method of obtaining a microporous membrane by mixing an organic medium and an inorganic powder such as silica with an organic medium and fine powder silica and then extruding the organic medium and an inorganic powder is known. Is largely dependent on the particle diameter of the inorganic powder, and its control was difficult.

또한 초고분자량 폴리올레핀을 이용한 고강도 미다공막의 제조법이 여러 가지 제안되어 있다. 예컨대 특개소 60-242035호 공보, 특개소 61-195132호 공보, 특개소 61-195133호 공보, 특개소 63-39602호 공보, 특개소 63-273651호 공보 등에는, 초고분자량 폴리올레핀을 포함하는 폴리올레핀 조성물을 용매에 가열용해한 용액으로부터 겔형상 시트를 형성하고, 상기 겔형상 시트를 가열연신, 용매의 압출제거에 의한 미다공막을 제조하는 방법이 기재되어 있으나, 이들 기술에 의한 폴리올레핀 미다공막은, 구멍지름 분포가 좁고 또한 구멍지름이 작은 점이 특징이며, 전지용 격리판 등에는 적합하였으나 큰 구멍 지름의 미다공막은 얻을 수 없었다.In addition, various methods for producing a high strength microporous membrane using ultra high molecular weight polyolefin have been proposed. For example, Japanese Patent Application Laid-Open Publication No. 60-242035, Japanese Patent Application Laid-Open No. 61-195132, Japanese Patent Application Laid-Open No. 61-195133, Japanese Patent Application Laid-Open No. 63-39602, Japanese Patent Application Laid-Open No. 63-273651, etc. A method of forming a microporous membrane by forming a gel sheet from a solution in which a composition is heated and dissolved in a solvent, heating the gel sheet and extruding the solvent, has been described. It is characterized by a narrow diameter distribution and a small hole diameter, which is suitable for battery separators and the like, but a microporous membrane having a large hole diameter could not be obtained.

최근에는, 각 용도마다 여러 가지 투과성의 미다공막이 요구되고 있으며, 같은 용도라도, 어떤 특성을 향상시키기 위하여 막의 투과성의 제어가 요망되고 있었다. 그러나, 선행발명에 있어서는, 연신법에 의하여 미세한 구멍을 다수 형성시키고 있으며, 구멍지름이 작고, 수처리, 정밀여과막 등의 용도에 이용되는 큰 구멍지름인 미다공막은 얻을 수 없었으며, 그 개발이 요망되고 있었다. In recent years, various permeable microporous membranes are required for each use, and even for the same use, control of the permeability of the membrane is desired in order to improve certain characteristics. However, in the prior invention, a large number of fine holes are formed by the stretching method, and the hole diameter is small, and the microporous membrane, which is a large hole diameter used for water treatment, microfiltration membrane and the like, cannot be obtained, and the development thereof is desired. It was.

본 발명자들은, 초고분자량 폴리올레핀을 함유하는 조성물을 이용하여, 그 용매와의 용액을 압출하고, 급냉후에 특정범위의 저배율연신을 행함으로써, 열수축율이 작고, 큰 구멍지름이며, 또한 샤프(sharp)한 구멍지름 분포인 미다공막을 얻을 수 있는 것을 발견하고, 본 발명에 이르렀다. MEANS TO SOLVE THE PROBLEM The present inventors extrude the solution with the solvent using the composition containing an ultra high molecular weight polyolefin, and perform a low magnification of a specific range after quenching, and it has a small thermal contraction rate, a large hole diameter, and is sharp. It was found that a microporous membrane having a pore size distribution was obtained, and the present invention was reached.

즉, 본 발명은, 중량평균분자량 5×105이상의 초고분자량 폴리올레핀을 함유하는 폴리올레핀조성물 5∼40중량%와, 용매 95∼60중량%로 이루어지는 용액을 조제하여, 상기 용액을 다이립에 의하여 압출하고, 급냉하여 얻은 시트를 면배율이 1.01∼1.4배로 연신하는 것을 특징으로 하는 폴리올레핀 미다공막의 제조방법이다.That is, the present invention is to prepare a solution consisting of 5 to 40% by weight of a polyolefin composition containing an ultra-high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more and 95 to 60% by weight of a solvent, and extruding the solution by a die lip And a sheet obtained by quenching is stretched at a plane magnification of 1.01 to 1.4 times, which is a method for producing a polyolefin microporous membrane.

(발명을 실시하기 위한 최량의 형태)(The best form to carry out invention)

본 발명을 이하에 상세하게 설명한다. This invention is demonstrated in detail below.

본 발명의 폴리올레핀 미다공막의 제조에 있어서 이용되는 폴리올레핀 조성물은, 중량평균분자량이 5×105이상인 초고분자량 폴리올레핀, 바람직하게는 중량평균분자량 1×106 ∼ 15×106인 초고분자량 폴리올레핀을 1중량%이상 함유하고, 중량평균분자량/수평균분자량이 10∼300의 폴리올레핀 조성물이며, 보다 바람직하게는 중량평균분자량이 5×105이상인 초고분자량 폴리올레핀(A)과 중량평균분자량 5×105미만인 폴리올레핀(B)의 혼합물이고, (B)/(A)의 중량비가 0.2∼20, 바람직하게는 0.5∼10인 폴리올레핀조성물로 이루어진다. 폴리올레핀조성물중의 (B)/(A)의 중량비가 0.2미만에서는, 얻어지는 겔형상시트의 두께 방향의 수축이 일어나기 쉽고 투과성이 저하하고, 또한 용액점도가 높아지며 성형가공성이 저하한다. 또한 (B)/(A)의 중량비가 20을 넘으면 저분자량성분이 많아지고, 겔구조가 치밀화하고, 얻어지는 미다공막의 투과성이 저하한다.The polyolefin composition used in the production of the polyolefin microporous membrane of the present invention comprises an ultrahigh molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more, preferably an ultrahigh molecular weight polyolefin having a weight average molecular weight of 1 × 10 6 to 15 × 10 6 . It is a polyolefin composition containing 10% by weight or more and having a weight average molecular weight / number average molecular weight, more preferably an ultrahigh molecular weight polyolefin (A) having a weight average molecular weight of 5 × 10 5 or more and a weight average molecular weight of less than 5 × 10 5. It is a mixture of polyolefin (B) and consists of a polyolefin composition whose weight ratio of (B) / (A) is 0.2-20, Preferably it is 0.5-10. When the weight ratio of (B) / (A) in the polyolefin composition is less than 0.2, shrinkage in the thickness direction of the obtained gel-like sheet easily occurs, permeability decreases, solution viscosity increases, and moldability decreases. Moreover, when the weight ratio of (B) / (A) exceeds 20, a low molecular weight component will increase, a gel structure will become compact, and the permeability of the obtained microporous membrane will fall.

상기 폴리올레핀으로서는, 에틸렌, 프로필렌, 1-부텐, 4-메틸-펜텐-1, 1-헥센 등을 중합한 결정성의 단독중합체, 2단중합체, 또는 공중합체 및 이들의 혼합물 등을 들 수 있다. 이들 중에서는 폴리올레핀, 폴리에틸렌(특히 고밀도 폴리에틸렌) 및 이들 조성물 등이 바람직하다. Examples of the polyolefins include crystalline homopolymers, dimers, or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-pentene-1, 1-hexene, and the like, and mixtures thereof. Among these, polyolefins, polyethylenes (particularly high density polyethylenes), and compositions thereof are preferable.

그리고, 상기 폴리올레핀 조성물의 분자량분포(중량평균분자량/수평균분자량)는 300이하, 특히 5∼50인 것이 바람직하다. 분자량분포가 300을 넘으면, 저분자량성분에 의한 파단이 발생하여 막전체의 강도가 저하하기 때문에 바람직하지 않다. 중량평균분자량이 5×105 이상의 초고분자량 폴리올레핀과, 중량평균분자량이 5×105 미만의 폴리올레핀을 분자량분포가 상기 범위가 되도록, 적량혼합함으로써 얻어질 수 있다.The molecular weight distribution (weight average molecular weight / number average molecular weight) of the polyolefin composition is 300 or less, particularly preferably 5 to 50. When the molecular weight distribution exceeds 300, breakage due to low molecular weight components occurs and the strength of the whole film is lowered, which is not preferable. Ultra-high molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more and polyolefin having a weight average molecular weight of less than 5 × 10 5 can be obtained by appropriately mixing the molecular weight distribution so as to fall within the above range.

또한 폴리올레핀 조성물중 초고분자량 폴리올레핀 이외의 폴리올레핀(중량평균분자량이 5×105 미만의 폴리올레핀)의 분자량 하한으로서는, 1×104 이상인 것이 바람직하다. 중량평균분자량이 1×104 미만인 폴리올레핀을 이용하면, 파단이 일어나기 쉬우며, 목적하는 미다공막을 얻을 수 없으므로 바람직하지 않다. 따라서 중량평균분자량이 1×104 이상 5×105 미만인 폴리올레핀을 초고분자량 폴리올레핀에 배합하는 것이 바람직하다.Moreover, it is preferable that it is 1 * 10 <4> or more as a minimum of molecular weight of polyolefin (weight average molecular weight less than 5 * 10 <5> ) other than ultra high molecular weight polyolefin in a polyolefin composition. When the polyolefin having a weight average molecular weight of less than 1 × 10 4 is used, breakage is likely to occur and the desired microporous membrane cannot be obtained, which is not preferable. Therefore, it is preferable to mix | blend the polyolefin whose weight average molecular weight is 1 * 10 <4> or less than 5 * 10 <5> in an ultrahigh molecular weight polyolefin.

그리고, 상술한 바와 같은 초고분자량 성분을 함유하는 폴리올레핀에는 필요에 따라서 산화방지제, 자외선흡수제, 블로킹차단제, 안료, 염료, 무기충전재 등의 각종 첨가제를 본 발명의 목적을 손상하지 않는 범위에서 첨가할 수 있다. In addition, various additives such as antioxidants, ultraviolet absorbers, blocking blockers, pigments, dyes, inorganic fillers, and the like may be added to the polyolefin containing the ultrahigh molecular weight components as described above in a range that does not impair the object of the present invention. have.

본 발명의 미다공막의 제조방법은, 상술하는 폴리올레핀 조성물을 용매에 가열용해함으로써, 용액을 조제한다. 이 용매로서는, 노난, 데칸, 데칼린, p-크실렌, 운데칸, 도데칸, 유동파라핀 등의 지방족 또는 고리식의 탄화수소, 혹은 비점이 이들에 대응하는 광유유분 등을 이용할 수 있다. 또한 이 용매의 점도로서는 25℃에 있어서의 점도가 30∼500cSt, 특히 50∼200cSt인 것이 바람직하다. 25℃에 있어서의 점도가 30cSt미만에서는, 불균일 토출을 발생하고, 혼련이 곤란하며, 한편 500cSt를 넘으면, 후공정에서의 탈용매가 용이하지 않게 된다. In the method for producing a microporous membrane of the present invention, a solution is prepared by dissolving the polyolefin composition described above in a solvent. As this solvent, aliphatic or cyclic hydrocarbons such as nonane, decane, decalin, p-xylene, undecane, dodecane, liquid paraffin, or mineral oil having a boiling point corresponding thereto can be used. Moreover, as viscosity of this solvent, it is preferable that the viscosity in 25 degreeC is 30-500 cSt, especially 50-200 cSt. If the viscosity at 25 ° C. is less than 30 cSt, non-uniform discharge occurs and kneading is difficult. On the other hand, if the viscosity is higher than 500 cSt, the desolvent in the subsequent step is not easy.

가열용해는, 폴리올레핀조성물을 용매중에서 완전하게 용해하는 온도로 교반하면서 행하거나 또는 압출기중에서 균일 혼합하여 용해하는 방법으로 행한다. 용매중에서 교반하면서 용해하는 경우는, 온도는 사용하는 중합체 및 용매에 의하여 달라지지만, 예컨대 폴리에틸렌조성물의 경우에는 140∼250℃인 범위이다. 폴리올레핀조성물의 고농도용액에서 미다공막을 제조하는 경우는, 압출기중에서 용해하는 것이 바람직하다. The heat dissolution is performed by stirring the polyolefin composition at a temperature at which the polyolefin composition is completely dissolved in a solvent, or by homogeneously mixing and dissolving the polyolefin composition in an extruder. In the case of dissolving while stirring in a solvent, the temperature varies depending on the polymer and the solvent to be used. When preparing a microporous membrane in the high concentration solution of a polyolefin composition, it is preferable to melt | dissolve in an extruder.

압출기중에서 용해하는 경우는, 우선 압출기에 상술한 폴리올레핀 조성물을 공급하고, 용융한다. 용융온도는, 사용하는 폴리올레핀의 종류에 의하여 달라지지만, 폴리올레핀의 융점 +30∼100℃가 바람직하다. 예컨대 폴리에틸렌의 경우는 160∼230℃, 특히 170∼200℃인 것이 바람직하며, 폴리프로필렌인 경우는 190∼270℃, 특히 190∼250℃인 것이 바람직하다. 다음으로 이 용융상태인 폴리올레핀조성물에 대하여 액상의 용매를 압출기의 도중에서 공급한다. When dissolving in an extruder, the above-mentioned polyolefin composition is first supplied to an extruder, and it melt | dissolves. Although melting temperature changes with kinds of polyolefin to be used, melting | fusing point + 30-100 degreeC of a polyolefin is preferable. For example, in the case of polyethylene, it is preferable that it is 160-230 degreeC, especially 170-200 degreeC, and in the case of polypropylene, it is preferable that it is 190-270 degreeC, especially 190-250 degreeC. Next, the liquid solvent is supplied to the molten polyolefin composition in the middle of the extruder.

폴리올레핀조성물과 용매와의 배합비율은, 폴리올레핀조성물과 용매의 합계를 100중량%로 하여, 폴리올레핀조성물이 5∼40중량%, 바람직하게는 10∼30중량%이며, 용매가 95∼60중량%, 바람직하게는 90∼70중량%이다. 폴리올레핀조성물이 5중량%미만에서는 (용매가 95중량%를 넘으면), 시트형상으로 성형할 때에 다이스출구에서 팽윤이나 네크인이 커서 시트의 성형성, 자기지지성이 곤란하게 된다. 한편, 폴리올레핀조성물이 40중량%를 넘으면(용매가 60중량%미만에서는), 두께방향의 수축이 크게 되며, 공공율(空孔率)이 저하하고, 큰 구멍지름을 가지는 미다공막을 얻을 수 없고, 또한 성형가공성도 저하한다. 이 범위에 있어서 농도를 바꿈으로써, 막의 투과성을 조절할 수 있다. The blending ratio of the polyolefin composition and the solvent is 100% by weight of the total polyolefin composition and the solvent, 5 to 40% by weight of the polyolefin composition, preferably 10 to 30% by weight, 95 to 60% by weight of the solvent, Preferably it is 90-70 weight%. If the polyolefin composition is less than 5% by weight (when the solvent exceeds 95% by weight), when forming into a sheet shape, swelling and neck in at the die exit are large, and thus the moldability and self-supportability of the sheet become difficult. On the other hand, when the polyolefin composition exceeds 40% by weight (when the solvent is less than 60% by weight), the shrinkage in the thickness direction becomes large, the porosity decreases, and a microporous membrane having a large pore diameter cannot be obtained. In addition, molding processability is also lowered. By changing the concentration in this range, the permeability of the membrane can be adjusted.

다음에, 이와 같이 하여 용융혼련한 폴리올레핀조성물의 가열용액을 압출기를 통하여 다이 등에서 최종제품의 막두께가 5∼250μm 이 되도록 압출하여 성형한다. Next, the heating solution of the polyolefin composition melt-kneaded in this way is extruded through an extruder so as to be extruded and molded into a film thickness of 5 to 250 µm in a final product.

다이는, 통상 장방형인 구금형상을 한 시트다이가 이용되는데, 2중원통형상의 중공계 다이, 인플레이션다이 등도 이용할 수 있다. 시트다이를 이용한 경우의 다이갭은 통상 0.1∼5㎜이며, 압출성형시에는 140∼250℃로 가열한다. 이 때, 압출속도는 통상 20∼30cm/분 내지 15m/분이다. As the die, a rectangular die having a sheet die is usually used, but a hollow cylindrical die, an inflation die, or the like can also be used. The die gap in the case of using a sheet die is usually 0.1 to 5 mm, and is heated to 140 to 250 ° C at the time of extrusion molding. At this time, the extrusion speed is usually 20 to 30 cm / min to 15 m / min.

이와 같이 하여 다이에서 압출된 용액은, 급냉함으로써 겔형상성형물로 형성된다. 냉각은 적어도 50℃/분의 속도로 90℃이하까지 바람직하게는 80∼30℃까지 행한다. 겔형상 시트의 냉각방법으로서는, 냉풍, 냉각수, 그 외 냉각매체에 직접 접촉시키는 방법, 냉매로 냉각한 롤에 접촉시키는 방법 등을 이용할 수 있으나, 냉각롤을 이용하는 방법이 바람직하다. In this way, the solution extruded from the die is formed into a gel-like molded product by quenching. Cooling is carried out at a rate of at least 50 ° C / min up to 90 ° C or less, preferably up to 80-30 ° C. As a cooling method of a gel-like sheet | seat, the method of making direct contact with cold air, cooling water, another cooling medium, the method of contacting the roll cooled with a refrigerant | coolant, etc. can be used, but the method of using a cooling roll is preferable.

냉각속도가 늦으면, 얻어지는 겔형상성형물의 고차구조가 조밀하게 되며, 그것을 형성하는 모조세포단위도 큰 것으로 되지만, 냉각 속도가 빠르면, 밀도 높은 세포단위로 된다. 냉각속도가 50℃/분 미만에서는, 겔구조가 독립포에 가까워지고, 또한 결정화도도 상승하기 때문에 용매가 제거되기 어렵게 된다. If the cooling rate is slow, the higher-order structure of the gel-formed product is denser, and the dummy cell units forming it are also larger, but if the cooling rate is faster, the cell units are denser. If the cooling rate is less than 50 ° C./min, the gel structure becomes closer to the independent cloth, and the degree of crystallinity also increases, making it difficult to remove the solvent.

다음에 이 겔형상성형물을 연신한다. 연신은 겔형상성형물을 가열하여, 통상의 텐터법, 롤법, 압연 혹은 이들 방법을 조합함으로써, 소정의 배율로 행한다. 연신은 일축연신이라도 이축연신이라도 좋다. 또한 이축연신인 경우, 종횡동시연신 또는 축차연신 어느 것이나 좋지만, 특히 동시이축연신이 바람직하다. Next, this gel-shaped molded product is stretched. Stretching is performed at a predetermined magnification by heating the gel-shaped molded article and combining a usual tenter method, a roll method, rolling, or these methods. The stretching may be uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either longitudinal stretching or sequential stretching may be used, but simultaneous biaxial stretching is particularly preferable.

연신온도는, 폴리올레핀의 결정분산온도에서 결정융점 +10℃이하, 바람직하게는 결정분산온도에서 결정융점미만이다. 예컨대 폴리에틸렌조성물의 경우는 90∼130℃이고, 보다 바람직하게는 90∼120℃의 범위이다. 연신온도가 융점 +10℃를 넘는 경우는, 수지의 용융에 의하여 연신에 의한 분자쇄의 배향이 불가능하다. 또한 연신온도가 결정분산온도미만에서는, 수지의 연화가 불충분하며, 연신에 있어서 막이 파열되기 쉽고, 연신배율의 제어가 불가능하다. The stretching temperature is below the crystal melting point of + 10 ° C at the crystal dispersion temperature of the polyolefin, preferably below the crystal melting point at the crystal dispersion temperature. For example, polyethylene composition is 90-130 degreeC, More preferably, it is the range of 90-120 degreeC. When extending | stretching temperature exceeds melting | fusing point +10 degreeC, the orientation of the molecular chain by extending | stretching is impossible by melting of resin. In addition, when the stretching temperature is less than the crystal dispersion temperature, the softening of the resin is insufficient, the film tends to rupture during stretching, and the stretching magnification cannot be controlled.

연신배율은, 면배율로 1.01∼1.4배, 바람직하게는 1.05∼1.25배로 할 필요가 있다. 면배율을 제어함으로써, 얻어진 막의 구멍지름은 0.05∼0.5μm이며, 또한 구멍지름분포가 샤프한 미다공막을 얻을 수 있다. 연신을 행하지 않으며, 구멍지름은 크지만, 구멍지름분포가 넓어져서 바람직하지 않다. 연신배율이 1.4배를 넘으면, 겔구조를 형성하는 폴리올레핀의 라멜라가 개열하여 피브릴(fibrils)화하기 때문에 구멍지름이 작아지고, 큰 구멍지름의 미다공막을 얻을 수 없다. The draw ratio needs to be 1.01 to 1.4 times, preferably 1.05 to 1.25 times, in terms of face magnification. By controlling the surface magnification, it is possible to obtain a microporous membrane having a pore diameter of 0.05 to 0.5 m and a sharp pore size distribution. Stretching is not performed, and the hole diameter is large, but the hole diameter distribution is widened, which is not preferable. When the draw ratio is more than 1.4 times, the lamellar of the polyolefin forming the gel structure is cleaved and fibrilsed so that the pore diameter becomes small, and a large pore diameter microporous membrane cannot be obtained.

또한 얻어진 성형물은, 용제로 세정하여 잔류하는 용매를 제거한다. 세정용제로서는, 펜탄, 헥산, 헵탄 등의 탄화수소, 염화메틸렌, 사염탄소 등의 염소화탄화수소, 삼불화에탄 등의 불화탄화수소, 디에틸에테르, 디옥산 등의 에테르류 등의 이휘발성(易揮發性)의 것을 이용할 수 있다. 이들 용제는 폴리올레핀 조성물의 용해에 이용된 용매에 따라 적절하게 선택하고, 단독 혹은 혼합하여 이용한다. 세정방법은, 용제에 침지하여 추출하는 방법, 용제를 샤워하는 방법, 또는 이들 조합에 의한 방법 등에 의하여 행할 수 있다. Moreover, the obtained molded object is wash | cleaned with a solvent and the residual solvent is removed. Examples of the cleaning solvent include volatile hydrocarbons such as hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride and fluorocarbons such as ethane trifluoride, ethers such as diethyl ether and dioxane, and the like. Can be used. These solvents are appropriately selected depending on the solvent used for dissolving the polyolefin composition, and used alone or in combination. The washing method can be performed by a method of immersing and extracting a solvent, a method of showering a solvent, a method by a combination thereof, or the like.

상술한 바와 같은 세정은, 성형물 중의 잔류용매가 1중량% 미만이 될 때까지 행한다. 그 후 세정용제를 건조하지만, 세정용제의 건조방법은, 가열건조, 풍건(風乾) 등의 방법으로 행할 수 있다. 건조한 연신성형물은, 결정분산온도∼융점의 온도범위에서 열고정하는 것이 바람직하다. The cleaning as described above is performed until the residual solvent in the molded product is less than 1% by weight. Thereafter, the cleaning solvent is dried, but the drying method of the cleaning solvent can be performed by a method such as heat drying or air drying. The dry stretched molded product is preferably heat-set in the temperature range of crystal dispersion temperature to melting point.

이상과 같이 제조한 폴리올레핀 미다공막은, 투기도가 5∼250초/100cc, 공공율이 35∼95%, 평균관통구멍지름이 0.05∼0.5μm인 고투과성막이다. The polyolefin microporous membrane produced as mentioned above is a highly permeable membrane whose air permeability is 5-250 sec / 100 cc, porosity 35-95%, and average through-hole diameter are 0.05-0.5 micrometer.

그리고, 얻어진 폴리에틸렌 미다공막은 필요에 따라 더욱, 플라즈마 조사, 계면활성제 함침, 표면그라프트 등의 친수화처리 등의 표면수식을 실시할 수 있다. And the obtained polyethylene microporous membrane can further perform surface modification, such as hydrophilization treatment, such as plasma irradiation, surfactant impregnation, and surface graft, as needed.

이하에 본 발명에 대하여 실시예를 들어 더욱 상세히 설명하지만, 본 발명은 실시예에 특별히 한정되는 것은 아니다. 그리고 실시예에 있어서의 시험방법은 다음과 같다. Although an Example is given and this invention is demonstrated to it in more detail below, this invention is not specifically limited to an Example. And the test method in an Example is as follows.

(1) 막두께 : 단면을 주사형전자현미경에 의하여 측정.(1) Film thickness: The cross section is measured by a scanning electron microscope.

(2) 투기도 : JIS P8117에 준거하여 측정하였다. (2) Air permeability: It measured based on JISP8117.

(3) 평균구멍지름 : 콜터프로미터(콜터사 제품)에 의하여 측정.(3) Average pore size: measured by Coulter Prometer (manufactured by Coulter).

(4) 구멍지름 분포 : 구멍지름, 구멍수에서의 구멍지름분포의 표준편차에 의하여 구하였다. (4) Hole diameter distribution: It was calculated from the standard deviation of the hole diameter distribution in the hole diameter and the number of holes.

(5) 열수축율 : 105℃분위기에서 8시간 폭노(暴露)하여 측정하였다. (5) Thermal contraction rate: It was measured by blast furnace for 8 hours in 105 degreeC atmosphere.

(실시예1)Example 1

중량평균분자량이 3.0×105 인 고밀도 폴리에틸렌(HDPE) 80중량%와 중량평균분자량이 2.5×106 인 초고분자량 폴리에틸렌(UHMWPE) 20중량%로 이루어지는 폴리에틸렌조성물에, 산화방지제를 폴리에틸렌조성물 100중량부당 0.375중량부를 가한 폴리에틸렌 조성물을 얻었다. 이 폴리에틸렌조성물 30중량부를 이축압출기(58mmø, L/D=42, 강혼련타입)에 투입하였다. 또한 이 이축압출기의 사이드피더에서 유동파라핀 70중량부를 공급하고, 200℃. 200rpm으로 용융혼련하고, 압출기중에서 폴리에틸렌용액을 조제하고, 압출기의 선단에 설치된 T다이에서 최종제품이 50∼60μm가 되도록 압출하고, 50℃로 온도조정된 냉각롤로 뽑아내면서, 겔형상시트를 성형하였다. 이어서 이 겔형상시트를 115℃에서 면배율이 1.2배가 되도록 일축연신을 행하여 저배율연신막을 얻었다. 얻어진 막을 염화메틸렌으로 세정하여 잔류하는 유동파라핀을 추출제거한 후, 건조 및 열처리를 행하여 두께 62μm의 폴리에틸렌 미다공막을 얻었다. 이 폴리에틸렌 미다공막의 물성평가의 결과를 표 1에 나타낸다.In a polyethylene composition consisting of 80% by weight of high density polyethylene (HDPE) having a weight average molecular weight of 3.0 × 10 5 and 20% by weight of ultra high molecular weight polyethylene (UHMWPE) having a weight average molecular weight of 2.5 × 10 6 , an antioxidant is added per 100 parts by weight of the polyethylene composition. The polyethylene composition which added 0.375 weight part was obtained. 30 parts by weight of this polyethylene composition was introduced into a twin screw extruder (58 mm, L / D = 42, strong kneading type). Further, 70 parts by weight of the liquid paraffin was supplied from the side feeder of the twin screw extruder, and 200 ° C. Melt kneading was carried out at 200 rpm, the polyethylene solution was prepared in an extruder, extruded so that the final product might be 50-60 micrometers from the T-die installed in the tip of an extruder, and it pulled out with the cooling roll temperature-controlled at 50 degreeC, and formed the gel sheet. . Subsequently, this gel-like sheet was uniaxially stretched at 115 ° C. so that the surface magnification was 1.2 times to obtain a low magnification stretched film. The obtained membrane was washed with methylene chloride, followed by extraction and removal of the remaining liquid paraffin, followed by drying and heat treatment to obtain a polyethylene microporous membrane having a thickness of 62 µm. Table 1 shows the results of the physical property evaluation of this polyethylene microporous membrane.

(실시예2)Example 2

실시예1에 있어서, 연신배율을 면배율이 1.1배로 하는 이외에는, 실시예1과 동일하게 하여 미다공막을 얻었다. 얻어진 미다공막의 물성을 표 1에 나타낸다. In Example 1, a microporous membrane was obtained in the same manner as in Example 1 except that the draw magnification was 1.1 times. Table 1 shows the physical properties of the obtained microporous membrane.

(실시예3)Example 3

실시예1에 있어서, 연신배율을 면배율이 1.4배로 하는 이외는, 실시예1과 동일하게 하여 미다공막을 얻었다. 얻어진 미다공막의 물성을 표 1에 나타낸다. In Example 1, a microporous membrane was obtained in the same manner as in Example 1 except that the draw ratio was 1.4 times the surface magnification. Table 1 shows the physical properties of the obtained microporous membrane.

(실시예4)Example 4

실시예1에 있어서, 연신배율을 면배율이 1.4배가 되도록 동시이축연신하는 것 이외는, 실시예1과 동일하게 하여 미다공막을 얻었다. 얻어진 미다공막의 물성을 표 1에 나타낸다. In Example 1, a microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio was coaxially stretched so that the surface magnification was 1.4 times. Table 1 shows the physical properties of the obtained microporous membrane.

(비교예1)(Comparative Example 1)

실시예1에 있어서 연신배율을 면배율이 25배가 되도록 이축연신하는 이외는, 실시예1과 동일하게 하여 미다공막을 얻었다. 얻어진 미다공막의 물성을 표 1에 나타낸다. A microporous membrane was obtained in the same manner as in Example 1 except that the stretching magnification was biaxially stretched so that the surface magnification was 25 times. Table 1 shows the physical properties of the obtained microporous membrane.

(비교예2)(Comparative Example 2)

실시예1에 있어서, 연신배율을 면배율이 4배가 되도록 이축연신하는 이외는, 실시예1과 동일하게 하여 미다공막을 얻었다. 얻어진 미다공막의 물성을 표 1에 나타낸다. In Example 1, a microporous membrane was obtained in the same manner as in Example 1 except that the stretching ratio was biaxially stretched so that the surface magnification was four times. Table 1 shows the physical properties of the obtained microporous membrane.

(비교예3)(Comparative Example 3)

실시예1에 있어서, 연신배율을 면배율이 4배가 되도록 일축연신하는 이외는 실시예1과 동일하게 하여 미다공막을 얻었다. 얻어진 미다공막의 물성을 표 1에 나타낸다. In Example 1, the microporous membrane was obtained like Example 1 except having uniaxially stretched the draw ratio so that surface magnification might be 4 times. Table 1 shows the physical properties of the obtained microporous membrane.

(비교예4)(Comparative Example 4)

실시예1에 있어서, 연신을 행하지 않는 이외는, 실시예1과 동일하게 하여 미다공막을 얻었다. 얻어진 미다공막의 물성을 표 1에 나타낸다. In Example 1, the microporous membrane was obtained like Example 1 except not extending | stretching. Table 1 shows the physical properties of the obtained microporous membrane.

표 1의 실시예 및 비교예에서 명백하듯이, 본 발명의 범위의 저배율연신을 행함으로서, 열수축율이 적고, 구멍지름이 크고, 또한 구멍지름 분포가 샤프한 미다공막을 얻을 수 있다는 것을 알 수 있다. As is apparent from the Examples and Comparative Examples of Table 1, it can be seen that by performing low magnification stretching within the scope of the present invention, a microporous membrane having a low thermal contraction rate, a large hole diameter, and a sharp hole diameter distribution can be obtained. .

[표 1]TABLE 1

이상 상술한 바와 같이 본 발명의 방법인, 초고분자량 폴리올레핀을 함유하는 폴리올레핀조성물용액으로부터 얻어지는 겔형상시트를, 특정한 범위에서 저배율 연신함으로써 투과성이 뛰어나며, 또한 구멍지름 분포가 샤프한 수처리막 등의 액체필터용으로 유효한 폴리올레핀 미다공막을 얻을 수 있다. As described above, the gel sheet obtained from the polyolefin composition solution containing the ultra high molecular weight polyolefin, which is the method of the present invention, is stretched in a specific range at a low magnification, so that it is excellent in permeability and has a sharp pore size distribution. Effective polyolefin microporous membrane can be obtained.

Claims (3)

중량평균분자량이 1×106∼15×106인 초고분자량 폴리올레핀(A)와 중량평균분자량이 1×104 이상 5×105 미만인 폴리올레핀(B)의 혼합물이고, (B)/(A)의 중량비가 0.2∼20인 폴리올레핀조성물 5∼40중량%와, 용매 95∼60중량%로 이루어지는 용액을 조제하여, 상기 용액을 다이립에 의하여 압출하고, 급냉하여 얻은 시트를 면배율이 1.01∼1.4배로 연신하고, 연신후 잔류용매를 제거하고, 건조, 열고정하는 것을 특징으로 하는 폴리올레핀 미다공막의 제조방법.It is a mixture of the ultrahigh molecular weight polyolefin (A) whose weight average molecular weight is 1 * 10 <6> -15 * 10 <6> , and the polyolefin (B) whose weight average molecular weight is 1 * 10 <4> or more and less than 5 * 10 <5> , (B) / (A) Was prepared by preparing a solution composed of 5 to 40% by weight of a polyolefin composition having a weight ratio of 0.2 to 20 and 95 to 60% by weight of a solvent, extruding the solution by a die lip, and quenching the sheet obtained by quenching. A method for producing a polyolefin microporous membrane, which is stretched by pear, and after removal, residual solvent is removed, dried and heat-set. 제 1 항에 있어서, 연신배율이 1.05∼1.25배인 폴리올레핀 미다공막의 제조방법.The method for producing a polyolefin microporous membrane according to claim 1, wherein the draw ratio is 1.05 to 1.25 times. 제 1 항에 있어서, 연신배율이 1.05∼1.25배이고, 연신후, 잔류용매를 제거하고, 건조, 열고정하는 것을 특징으로 하는 폴리올레핀 미다공막의 제조방법. The method for producing a polyolefin microporous membrane according to claim 1, wherein the stretching ratio is 1.05 to 1.25 times, and after stretching, the residual solvent is removed, dried, and heat set.
KR1019980709473A 1997-04-04 1998-04-03 Manufacturing method of polyolefin microporous membrane KR100517204B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019980709473A KR100517204B1 (en) 1997-04-04 1998-04-03 Manufacturing method of polyolefin microporous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP102550 1997-04-04
KR1019980709473A KR100517204B1 (en) 1997-04-04 1998-04-03 Manufacturing method of polyolefin microporous membrane

Publications (2)

Publication Number Publication Date
KR20000015920A KR20000015920A (en) 2000-03-15
KR100517204B1 true KR100517204B1 (en) 2006-01-12

Family

ID=41739698

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019980709473A KR100517204B1 (en) 1997-04-04 1998-04-03 Manufacturing method of polyolefin microporous membrane

Country Status (1)

Country Link
KR (1) KR100517204B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601563B1 (en) * 2004-05-19 2006-07-19 삼성에스디아이 주식회사 Cylindrical lithium ion secondary battery
KR20150055216A (en) 2013-11-12 2015-05-21 삼성에스디아이 주식회사 Rechargeable battery and case manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930004613A (en) * 1991-08-14 1993-03-22 원본미기재 Boring methods and boring devices for ground or rock to create permanent ground anchors
EP0765900A1 (en) * 1995-09-26 1997-04-02 Tonen Chemical Corporation Method of producing a microporous polyolefin membrane

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930004613A (en) * 1991-08-14 1993-03-22 원본미기재 Boring methods and boring devices for ground or rock to create permanent ground anchors
EP0765900A1 (en) * 1995-09-26 1997-04-02 Tonen Chemical Corporation Method of producing a microporous polyolefin membrane

Also Published As

Publication number Publication date
KR20000015920A (en) 2000-03-15

Similar Documents

Publication Publication Date Title
JP4997278B2 (en) Polyethylene microporous membrane and method for producing the same
KR100591061B1 (en) Microporous Polyolefin Membrane, and Method of Producing the same
CA2275891C (en) Method of producing highly permeable microporous polyolefin membrane
KR100667052B1 (en) Microporous Polyolefin Membrane And Method For Producing The Same
KR101354542B1 (en) Method for producing polyolefin microporous membrane
CA2213473C (en) Method of producing microporous polyolefin membrane
EP0476198B1 (en) Microporous polyolefin membrane and method of production thereof
JP3347835B2 (en) Method for producing microporous polyolefin membrane
JPH0575011B2 (en)
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JP2001200081A (en) Polyethylene microporous membrane and its manufacturing method
JP3638401B2 (en) Method for producing polyolefin microporous membrane
JP2001200082A (en) Polyethylene microporous membrane and its manufacturing method
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JP3967421B2 (en) Method for producing polyolefin microporous membrane
KR100517204B1 (en) Manufacturing method of polyolefin microporous membrane
JP3641321B2 (en) Method for producing polyolefin microporous membrane
JP2000248088A (en) Polyolefin microporous membrane and its production
JP3673623B2 (en) Method for producing polyolefin microporous membrane
JPH11106533A (en) Polyolefin porous membrane
JP2657441B2 (en) Method for producing microporous polyolefin membrane
JPH10298340A (en) Production of microporous polyolefin membrane
JPH11106535A (en) Polyolefin porous membrane and its manufacture and battery separator therefrom
KR19990084426A (en) Manufacturing method of polyolefin microporous membrane
KR20000002325A (en) Process for preparing fine porous film of polyolefine

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120907

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20130903

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20140901

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20150819

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20160818

Year of fee payment: 12

LAPS Lapse due to unpaid annual fee