JPS6119512A - Method of cutting reinforced concrete structure - Google Patents

Method of cutting reinforced concrete structure

Info

Publication number
JPS6119512A
JPS6119512A JP13893284A JP13893284A JPS6119512A JP S6119512 A JPS6119512 A JP S6119512A JP 13893284 A JP13893284 A JP 13893284A JP 13893284 A JP13893284 A JP 13893284A JP S6119512 A JPS6119512 A JP S6119512A
Authority
JP
Japan
Prior art keywords
grinding wheel
concrete structure
conductive
cutting
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13893284A
Other languages
Japanese (ja)
Inventor
Akio Kuromatsu
黒松 彰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO JIKI KENKYUSHO KK
Original Assignee
OYO JIKI KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO JIKI KENKYUSHO KK filed Critical OYO JIKI KENKYUSHO KK
Priority to JP13893284A priority Critical patent/JPS6119512A/en
Publication of JPS6119512A publication Critical patent/JPS6119512A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H5/00Combined machining
    • B23H5/06Electrochemical machining combined with mechanical working, e.g. grinding or honing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dovetailed Work, And Nailing Machines And Stapling Machines For Wood (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To enable reinforced concrete to be cut with high efficiency by supplying working liquid between a rotary grinding wheel to which working voltage is applied and a reinforced concrete structure and moving the grinding wheel into contact with the concrete for discharge and electrolysis. CONSTITUTION:An electrode of a power supply unit A is connected to a conductive ring 2 of a disk grinding wheel 1 and reinforcing steel C of a concrete structure M, and working liquid is supplied from an injection nozzle B while the grinding wheel 1 is rotated and moved into contact with the structure M to apply working voltage between the grinding wheel 1 and the structure M. Thus, intermittent discharge phenomenon, electrolysis through the working liquid and mechanical grinding between the grinding wheel 1 and the structure M simultaneously proceed to cut the structure M. Further, the grinding wheel 1 is formed on the circular end surface alternatively with non-conductive polishing strip 5 and conductive strips 4. Thus, the concrete structure in which reinforcing steel is embedded can be cut high efficiency.

Description

【発明の詳細な説明】 本発明は鉄筋コクリーI−製の舗装道路、橋脚あるいは
建築物等の鉄筋、鉄骨、コンクリート、°PCコンクリ
ート等の複合構造物(以下「コンクリート構造物」と言
う)の切断方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to composite structures (hereinafter referred to as "concrete structures") made of reinforced Cochley I- reinforced concrete such as reinforced concrete, concrete, and concrete for paved roads, bridge piers, and buildings. This relates to a cutting method.

コンクリート構造物を切断する代表的な切断方法の一つ
にダイヤモンドチップを焼結してなる円盤形ブレードを
使った方法等が存在する。
One of the typical cutting methods for cutting concrete structures is a method using a disc-shaped blade made of sintered diamond chips.

その切断原理は硬度の大きい粒子をコンクリート構造物
に繰り返し接触させてコンクリート構造物の表面を機械
的に研削して行うものである。
The cutting principle is to repeatedly bring hard particles into contact with the concrete structure and mechanically grind the surface of the concrete structure.

ところが、そのような切断方法には次のような問題が存
在する。
However, such a cutting method has the following problems.

〈イ〉現在、舗装道路に溝切りを行う場合の加工速度は
50〜100cm/分程度と低く、加工に要する時間が
長い。
<A> Currently, the processing speed when cutting grooves on paved roads is low at about 50 to 100 cm/min, and the time required for processing is long.

く口〉砥粒の繰り返しの接触による単一の機械的°  
な研削手段だけに頼っているので、加工能力に限界があ
る。
〉Single mechanical degree by repeated contact of abrasive grains
Since it relies only on standard grinding means, there is a limit to its processing capacity.

くハ〉コンクリートを切断するだけでも困難な作業であ
るが、コンクリート構造物の内部に埋設されている鉄筋
やPC鋼線等を同時に切断する場合には、著しく加工効
率が低下する。
(c) Cutting concrete alone is a difficult task, but when cutting reinforcing bars, PC steel wires, etc. buried inside a concrete structure at the same time, processing efficiency is significantly reduced.

その結果、高価なブレードの消耗が激しくなるので、単
位長さの切断費用が、高くなる。
As a result, the cost of cutting a unit length increases as the expensive blade wears out more.

また、鉄筋を切断する場合にはブレードをその都度交換
しなければならず手数を要する。
Furthermore, when cutting reinforcing bars, the blade must be replaced each time, which is time-consuming.

本発明は以上のような点に鑑み成されたもので鉄筋、鉄
骨、PC鋼線等(以下「鉄筋」と言う)が埋設されてい
るコンクリート構造物でも高能率で、かつ経済的に切断
することができる、鉄筋コンクリート構造物の切断方法
を提供する事を目的とする。
The present invention has been developed in view of the above points, and is capable of cutting efficiently and economically even concrete structures in which reinforcing bars, steel frames, PC steel wires, etc. (hereinafter referred to as "reinforcing bars") are buried. The purpose of this invention is to provide a method for cutting reinforced concrete structures.

次に本発明の一実施例について説明するが、まず本発明
の切断に使用する円盤について説明する。
Next, an embodiment of the present invention will be described. First, a disk used for cutting according to the present invention will be described.

[イコ円盤本体 第1図に示すような円盤砥石を使用する場合について説
明する。
[Ico disk main body The case where a disk grindstone as shown in FIG. 1 is used will be explained.

この円盤砥石1は公知の非導電性の砥粒を適当なバイン
ダーを用いて焼き固めた円盤である。
This disc grindstone 1 is a disc made by baking and hardening known non-conductive abrasive grains using a suitable binder.

砥粒の一例として、グリーンカーボランダム、ホワイト
アランダム、ピンクアランダム、シリカ、ダイヤモンド
、CBN等を使用することができる。
Examples of abrasive grains that can be used include green carborundum, white alundum, pink alundum, silica, diamond, and CBN.

上記材料は非導電性であるため円盤は導電性を有しない
Since the above materials are non-conductive, the disc has no electrical conductivity.

[口1敢電帯および研摩帯 円盤砥石1の中心には通電環2を設け、この通電環2か
ら放射線状に導電路3を埋設する。
[Opening 1] An energizing ring 2 is provided at the center of the energizing band and abrasive band disc grindstone 1, and a energizing ring 2 is embedded with a radial conductive path 3 from the energizing ring 2.

導電路3としては導電性を有する物質例えば銀、ニッケ
ルを棒状、線状、または帯状に固めたもの、またはカー
ボン繊維、導電性プラスチック、導電    (性イン
クあるいはペーストを固めたもの、もしくは金属その他
の公知の素材を使用し、すべての導電路3を通電環2と
電気的に接続させる。
The conductive path 3 may be a conductive material such as silver or nickel hardened into a rod, wire, or band shape, carbon fiber, conductive plastic, hardened conductive ink or paste, or metal or other material. All conductive paths 3 are electrically connected to the current-carrying ring 2 using a known material.

さらに、各導電路3の終端には円盤の円周面(以下「周
端面」と言う)を横断する方向に、導電性の素材を埋設
して導電帯4を形成する。
Further, at the end of each conductive path 3, a conductive band 4 is formed by embedding a conductive material in a direction that crosses the circumferential surface of the disk (hereinafter referred to as "peripheral end surface").

なお、導電帯4は円盤の周端面を横断しても、またしな
くてもよい。
Note that the conductive band 4 may or may not cross the circumferential end surface of the disk.

その結果、円盤砥石1の周面に形成された導電帯4以外
の部分は非導電性の砥粒がそのまま露出して研摩帯5が
形成される。
As a result, non-conductive abrasive grains are exposed as they are on the peripheral surface of the disc grindstone 1 other than the conductive band 4, forming a polishing band 5.

すなわち円盤砥石1の周端面には導電性の導電帯4が、
非導電性の研摩帯5によって隔てられながら飛び飛び、
あるいは交互に形成される。
That is, on the peripheral end surface of the disc grinding wheel 1, there is a conductive band 4,
They fly apart while being separated by a non-conductive abrasive band 5,
Or they are formed alternately.

[ハ]印加電源 円盤砥石1と被加工物であるコンクリート構造物との間
に印加する電源は砥石1とコンクリート構造物Mの間に
放電現象の発生が可能なように、その出力波形が例えば
第2〜5図に示すように交流または平滑または矩形また
はパルス状、または歪波(高周波を含む交流)またはこ
れらを2つ以上合成した形状のものを使用できる。
[C] Applied power source The power source applied between the disc grinding wheel 1 and the concrete structure as the workpiece is such that the output waveform is such that, for example, a discharge phenomenon can occur between the grinding wheel 1 and the concrete structure M. As shown in FIGS. 2 to 5, an alternating current, smooth, rectangular or pulsed wave, a distorted wave (alternating current including high frequency), or a combination of two or more of these can be used.

これらは、円盤砥石1の導電帯4の露出間隔、・コンク
リート構造物Mの種類および仕上げ精度などに応じて適
切に選択して使用する。
These are appropriately selected and used depending on the exposed interval of the conductive band 4 of the disc grindstone 1, the type of concrete structure M, finishing accuracy, etc.

次に切断方法について説明する。Next, the cutting method will be explained.

[イ1電極の接続 印加電源装HAから引き出した電極の一つを円盤砥石1
の導電環2に接続し、残りの電極はコンクリート!造物
M内に埋設された鉄筋Cに接続する。
[Connection of the 1 electrode] Connect one of the electrodes pulled out from the power supply unit HA to the disc grindstone 1.
Connect to conductive ring 2, and the remaining electrodes are concrete! Connect to reinforcing bar C buried inside structure M.

[口]放電加工 次に円盤砥石1に回転を与え、加工液噴射ノズルBから
所定の加工液を供給しつつ円盤砥石1を7コンクリー1
・構造物Mに接近させる。
[Opening] Electrical discharge machining Next, rotate the disc grinding wheel 1, and while supplying a predetermined machining fluid from the machining fluid injection nozzle B, turn the disc grinding wheel 1 into 7 concrete 1.
・Move closer to structure M.

円盤砥石1の周端面上の導電帯4がコンクリート構造物
Mと接触と離脱を繰り返えす。
The conductive band 4 on the peripheral end surface of the disc grindstone 1 repeatedly contacts and separates from the concrete structure M.

コンクリート構造物Mは非導電性であるから、一般に通
電状態を発生させる事は考えられないが、本発明はこの
様な従来の加工常識を破って非導電性のコンクリート構
造物Mに対して通電状態の発生を可能にした。
Since the concrete structure M is non-conductive, it is generally unthinkable to cause it to be energized, but the present invention breaks the conventional processing common sense and allows the non-conductive concrete structure M to be energized. allowed the condition to occur.

すなわち、円盤砥石1の周面の各導電帯4とコンクリー
ト構造物Mとの間で高速で断続的な接触が繰り返される
結果、両者1、Mの間に誘電作用によって通電状態が発
生すると考えられる。
In other words, as a result of repeated intermittent contact at high speed between each conductive band 4 on the circumferential surface of the disc grinding wheel 1 and the concrete structure M, it is thought that an energized state occurs between the two 1 and M due to dielectric action. .

従って、円盤砥石1とコンクリート構造物Mとの間に瞬
間的に放電現象が発生し、火花が飛ぶ。
Therefore, an electric discharge phenomenon occurs instantaneously between the disc grindstone 1 and the concrete structure M, and sparks fly.

この火花は直ぐに細いスパークの柱すなわち非常に電流
密度の高い電子の流れとなってコンクリート構造物Mの
表面の一点を溶解する。
This spark immediately becomes a thin column of sparks, that is, a flow of electrons with a very high current density, and melts a point on the surface of the concrete structure M.

[ハ]電解加工 また円盤砥石1とコンクリート構造物Mの間に電解液と
しての性格も有する加工液を介して通電がなされると、
電気分解が進行し、コンクリート構造物Mの表面を溶解
する。
[C] Electrolytic processing Also, when electricity is applied between the disc grinding wheel 1 and the concrete structure M via a working fluid that also has the characteristics of an electrolytic solution,
Electrolysis progresses and the surface of the concrete structure M is dissolved.

[ニコ機械研削加工 前記放電や電解の発生直後、円盤砥石1の研摩帯5の通
過によって溶融部分や酸化膜を除去して研削が進行する
[Nico Machine Grinding Process Immediately after the occurrence of the electric discharge or electrolysis, the grinding progresses by removing the melted portion and oxide film by passing the grinding zone 5 of the disc grindstone 1.

[ホ]鉄筋の切断 以上はコンクリート構造物Mの切断について述べたが、
導電性の鉄筋Cについても既述の放電、電解、および機
械的な研削の三作用が交互に繰り返されるので”、容易
に切断することができる。
[E] Cutting of reinforcing bars Above, we have discussed cutting of concrete structure M.
The conductive reinforcing bars C can also be easily cut because the three actions of electric discharge, electrolysis, and mechanical grinding described above are repeated alternately.

[へ]その他の実施例 以上の実施例は周面に導電帯4と研摩帯5を交互に形成
した円盤砥石1を使用して非導電性のコンクリート構造
物Mを切断する場合について説明したが、そのほかに、
公知の全面通電の円盤砥石1−を使用して切断する事も
可能である。
[F] Other Embodiments In the above embodiments, a case was explained in which a non-conductive concrete structure M was cut using a disc grindstone 1 having alternating conductive bands 4 and abrasive bands 5 on its circumferential surface. ,Besides that,
It is also possible to cut using a known fully energized disc grindstone 1-.

本実施例の場合、コンクリート構造物Mとの間に通電状
態を発生させる為に、電源には交流やパルス波、あるい
は両者の合成波、あるいは直流と前記王者の一つ以上と
の合成波等の間欠的な出力波形が得られるものを使用す
る。
In the case of this embodiment, in order to generate an energized state between the concrete structure M, the power source includes an alternating current, a pulse wave, a composite wave of both, or a composite wave of a direct current and one or more of the above-mentioned champions. Use one that provides an intermittent output waveform.

その結果、電圧、電流方向が交互に変化することにより
、円盤砥石1−とコンクリート構造物Mとの間に間欠的
に通電状態と非通電状態が発生し、放電、電解の発生が
可能となる。
As a result, as the voltage and current direction change alternately, energized and non-energized states occur intermittently between the disc grinding wheel 1- and the concrete structure M, allowing discharge and electrolysis to occur. .

さらにこれらの二つの加工に加えて円盤砥石1を構成す
る砥粒の接触によって機械的な研削が行われ、極めて高
能率に切断が進行する。
Furthermore, in addition to these two processes, mechanical grinding is performed by the contact of the abrasive grains constituting the disc grindstone 1, and the cutting progresses with extremely high efficiency.

本発明は以上説明したようになるから次のような効果を
期待することができる。
Since the present invention is as explained above, the following effects can be expected.

くイ〉誘電作用による通電状態の発生と考えられるが、
非導電性のコンクリート構造物であっても通電による加
工を可能にした。
Kui〉It is thought that the current-carrying state occurs due to the dielectric effect, but
This makes it possible to process even non-conductive concrete structures by energizing them.

すなわち、放電と電解による溶解および機械研削の三作
用が高速で繰り返されるので、これらの三作用が相乗的
に作用し、従来の研削技術では期待できない程高能率に
加工することができる。
That is, since the three actions of dissolution by electric discharge and electrolysis and mechanical grinding are repeated at high speed, these three actions act synergistically, allowing processing to be performed with a higher efficiency than could be expected with conventional grinding techniques.

〈口〉従来方法では異種材料を一体とした複合材料の切
断は極めて困難であり、切断材料に応じてブレードを交
換する必要があった。
<Exposure> With conventional methods, it is extremely difficult to cut composite materials made of different materials, and it is necessary to change the blade depending on the material to be cut.

しかし、本発明は前記のような複合月利であっても砥石
を交換せずに高能率に切断することができる。
However, according to the present invention, even with the above-mentioned compound monthly rate, cutting can be performed with high efficiency without replacing the grindstone.

〈ハ〉従来は単に機械的な研削に頼っていたが、本発明
では前記したように放電、電解による加工も併せて行な
われ、これらが相乗的に被加工物に作用するので機械的
研削作用は弱くて済み、そのため砥石原料に、市販の安
価な砥粒を使用することができる。
<C> Conventionally, mechanical grinding was simply relied upon, but in the present invention, as mentioned above, electric discharge and electrolytic machining are also performed, and these act synergistically on the workpiece, resulting in a mechanical grinding effect. The abrasive grains are weak, so commercially available and inexpensive abrasive grains can be used as the raw material for the whetstone.

・ぐ二〉また、機械的な接触による研削であれば砥石は
被加工物の硬度に応じて摩耗するが、本発明の場合には
、円盤砥石が主に溶融状態の素材と接触する程度である
から、機械的な研削によって砥粒の剥前する程度は極僅
かである。
・G2>Also, in the case of grinding by mechanical contact, the grinding wheel wears out depending on the hardness of the workpiece, but in the case of the present invention, the disc grinding wheel mainly contacts the material in a molten state. Therefore, the extent to which the abrasive grains are peeled off by mechanical grinding is extremely small.

従って、従来タイプのものと比較して砥石の摩耗率が小
さい。
Therefore, the wear rate of the grindstone is lower than that of the conventional type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図:コンクリート構造物の切断状態の説明図第2〜
5図:印加電源の説明図 第6図:その他の実施例の説明図 1:円盤砥石  2:通電環  3:導電路4:導電帯
   5:研摩帯  C:鉄筋M:コンクリート構造物
Figure 1: Explanatory diagram of the cutting state of concrete structures Part 2~
Figure 5: Illustration of applied power source Figure 6: Illustration of other examples

Claims (3)

【特許請求の範囲】[Claims] (1)電極の一方を鉄筋コンクリート構造物内に埋設さ
れた導電性の鉄筋に接続し、 他方の電極は導電性の砥石側に接続し、 前記砥石を回転させてコンクリート構造物へ接触させ、 砥石とコンクリート構造物との間には加工液を供給し、 同時に砥石とコンクリート構造物の間に放電および電解
を発生する加工電圧を印加して行うことを特徴とする、 鉄筋コンクリート構造物の切断方法。
(1) One of the electrodes is connected to a conductive reinforcing bar buried in a reinforced concrete structure, the other electrode is connected to a conductive grinding wheel, and the grinding wheel is rotated so as to come into contact with the concrete structure, and the grinding wheel is A method for cutting a reinforced concrete structure, characterized in that a machining fluid is supplied between the grinding wheel and the concrete structure, and at the same time a machining voltage that generates electrical discharge and electrolysis is applied between the grindstone and the concrete structure.
(2)非導電性の円盤形砥石の周端面に導電性の部分を
点在して形成した砥石を使用して行う事を特徴とする、
特許請求の範囲(1)記載の鉄筋コンクリート構造物の
切断方法。
(2) It is characterized by using a non-conductive disc-shaped grindstone with conductive parts scattered on the peripheral end surface thereof.
A method for cutting a reinforced concrete structure according to claim (1).
(3)全面通電性の砥石を使用し、かつ、交流の加工電
圧を印加させて行うことを特徴とする、特許請求の範囲
(1)記載の鉄筋コンクリート構造物の切断方法。
(3) A method for cutting a reinforced concrete structure according to claim (1), characterized in that the cutting process is carried out using a grindstone that conducts electricity throughout the entire surface and applying an alternating current machining voltage.
JP13893284A 1984-07-06 1984-07-06 Method of cutting reinforced concrete structure Pending JPS6119512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13893284A JPS6119512A (en) 1984-07-06 1984-07-06 Method of cutting reinforced concrete structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13893284A JPS6119512A (en) 1984-07-06 1984-07-06 Method of cutting reinforced concrete structure

Publications (1)

Publication Number Publication Date
JPS6119512A true JPS6119512A (en) 1986-01-28

Family

ID=15233511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13893284A Pending JPS6119512A (en) 1984-07-06 1984-07-06 Method of cutting reinforced concrete structure

Country Status (1)

Country Link
JP (1) JPS6119512A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926425A (en) * 1982-07-21 1984-02-10 三共株式会社 Method of detecting omission of insertion of appended document

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5926425A (en) * 1982-07-21 1984-02-10 三共株式会社 Method of detecting omission of insertion of appended document

Similar Documents

Publication Publication Date Title
US4849599A (en) Machining method employing cutting or grinding by conductive grindstone
KR930007110B1 (en) Blade cutting apparatus for hard brittle material
JPH05131365A (en) Method and device for seting grinding wheel
JP3214694B2 (en) Dynamic pressure generating electrode
JPS6119512A (en) Method of cutting reinforced concrete structure
JP3530562B2 (en) Lens grinding method
JPH04115867A (en) Electrolytic interval dressing grinding method
JPH11262860A (en) Extremely precise grinding method and device
JP3250931B2 (en) Grinding method and apparatus using magnetic field
JPS61146467A (en) Cutting-off grinding method by conductive grindstone and cutting-off grinding device
JP3294347B2 (en) Electrolytic in-process dressing grinding method and apparatus
JP2580806B2 (en) Electrolytic dressing method and apparatus
JPS6228121A (en) Method and device for electrolytic discharge grinding
JPH06114733A (en) Grinding wheel shaping method by on-machine discharge truing method
JPH0985622A (en) Electrolytic in-process dressing grinding method and device
JPS5926425B2 (en) Electrolytic grinding method for non-conductive materials
JPS59156619A (en) Method of electric discharge/electrolytic grinding and cutting
JPH075978Y2 (en) Electric discharge dressing device for rotary whetstone
JPS614665A (en) Cutting-off grinding method using current-carriable grinding wheel
JPH0970756A (en) Electrolytic dressing grinding method and device thereof
JPS61197124A (en) Electro-chemical discharge machine and electro-chemical discharge machining method
SU1087293A1 (en) Method of grinding ferromagnetic materials while keeping the cutting ability of the wheel
JPH0635109B2 (en) Electrolytic dressing device
JPS5919636A (en) Surface grinder
JPS6150717A (en) Electrolytic discharging grindstone and electrolytic discharge machining method