JPS61194348A - Co gas defection element - Google Patents

Co gas defection element

Info

Publication number
JPS61194348A
JPS61194348A JP60035144A JP3514485A JPS61194348A JP S61194348 A JPS61194348 A JP S61194348A JP 60035144 A JP60035144 A JP 60035144A JP 3514485 A JP3514485 A JP 3514485A JP S61194348 A JPS61194348 A JP S61194348A
Authority
JP
Japan
Prior art keywords
gas
solid electrolyte
substrate
catalyst layer
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60035144A
Other languages
Japanese (ja)
Inventor
Hiroto Otsuki
裕人 大槻
Masaru Kobayashi
小林 眞佐留
Yoshihiro Usami
宇佐美 吉弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP60035144A priority Critical patent/JPS61194348A/en
Publication of JPS61194348A publication Critical patent/JPS61194348A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To reduce power consumption and to stabilize the temp. of an element by efficiently and uniformly heating the element, by connecting a substrate comprising an oxygen ion conductive solid electrolyte and an electric insulating substrate having a heater circuit printed thereon. CONSTITUTION:A Au-paste is applied to a solid electrolyte 1 formed by the press molding of a stabilized ZrO2 powder by a thick film printing and backed to form electric signal take-out parts 2, 2' and Pt-electrodes 3, 3' are subsequently formed by electron beam vapor deposition. A CO-containing combustible gas oxidizing catalyst layer is formed by thick film printing so as to perfectly cover one Pt-electrode 3 while a catalyst layer 5 oxidizing combustible gas other than CO-gas is formed by thick film printing so as to perfectly cover the other Pt-electrode 3'. Next, the surfaces, to which any printing is not applied, of the solid electrolyte substrate 1 and an electric insulating alumina substrate 6 having a heater circuit 8 formed thereto are mutually adhered by an inorg. adhesive to obtain a CO-gas detection element.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、COガス検知素子に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a CO gas sensing element.

(従来技術) COガスを含む可燃性ガスが大気中に存在すると生物に
対する毒性や爆発に対する危険性があるため、これらの
ガスを検知できるガス検知素子が種々提案されている。
(Prior Art) If flammable gases including CO gas exist in the atmosphere, there is a danger of toxicity to living things and explosion, and therefore various gas detection elements capable of detecting these gases have been proposed.

これらの中で電気化学反応を利用した酸素イオン導電性
固体電解質を用いたガス検知素子は、たとえば特開昭5
5−39005号公報に示されるように電極の一方を可
燃性ガス酸化触媒で覆ったものや、特にCOガスを選択
的に検知するために特開昭59−37456号公報に示
されるように各COガスを対する酸化能力の異なる2種
の触媒層をそれぞれの電極上に設けたもの等がある。こ
れらの素子を300°C〜400℃に保ち、可燃性ガス
やCOガスを含む空気中に置くと可燃性ガス、COガス
を濃度に応じた起電力を発生する。この起電力を検知し
てガスの存在を知ることができるが、被検雰囲気の温度
が室温の場合には外部から素子を加熱し、200℃〜4
00℃に保つ必要がある。この方法として特開昭59−
109857号公報に示されるように外部から巻線ヒー
ターで加熱する方法がある。
Among these, a gas detection element using an oxygen ion conductive solid electrolyte that utilizes an electrochemical reaction has been developed, for example, in Japanese Patent Application Laid-open No. 5
As shown in Japanese Patent No. 5-39005, one side of the electrode is covered with a combustible gas oxidation catalyst, and in particular, in order to selectively detect CO gas, as shown in Japanese Patent Application Laid-Open No. 59-37456, There is one in which two types of catalyst layers having different oxidizing abilities for CO gas are provided on each electrode. When these elements are maintained at 300° C. to 400° C. and placed in air containing flammable gas or CO gas, an electromotive force is generated depending on the concentration of the flammable gas or CO gas. The presence of gas can be detected by detecting this electromotive force, but if the temperature of the test atmosphere is room temperature, the element is heated externally to 200°C to 40°C.
It is necessary to maintain the temperature at 00°C. As this method, JP-A-59-
As shown in Japanese Patent No. 109857, there is a method of heating from the outside with a wire-wound heater.

(発明が解決しようとする問題点) しかし上記の方法では、酸素イオン導電性固体電解質及
び触媒層は、これらを保持する円筒状部材を介して加熱
されるため加熱効率が悪く、ヒーター電力を大きくしな
ければならないという欠点があった。
(Problems to be Solved by the Invention) However, in the above method, the oxygen ion conductive solid electrolyte and the catalyst layer are heated via the cylindrical member that holds them, so the heating efficiency is poor and the heater power is increased. The drawback was that it had to be done.

本発明はこのような欠点を解決し、温度が安定で、かつ
ヒーター電力の小さなCOガス検知素子を提供すること
を目的とするものである。
It is an object of the present invention to solve these drawbacks and provide a CO gas sensing element that is stable in temperature and requires low heater power.

(問題点を解決するための手段) 本発明は、一面にリード線の取付は可能な一対の電極を
形成し、該電極の一方をCOガスを含む可燃性ガスを酸
化する触媒の層及び他方の電極をCOガス以外の可燃性
ガスを酸化する触媒の層で被覆した酸素イオン導電性固
体電解質の基板の他面と、一面にリード線の取付は可能
なヒーター回路を印刷した電気絶縁性基板の他面とを接
合してなるCOガス検知素子に関する。
(Means for Solving the Problems) The present invention forms a pair of electrodes on one side of which a lead wire can be attached, and one of the electrodes is connected to a layer of a catalyst for oxidizing combustible gas including CO gas, and the other is The other side of the substrate is made of oxygen ion conductive solid electrolyte whose electrodes are covered with a layer of catalyst that oxidizes combustible gases other than CO gas, and the other side is an electrically insulating substrate with a heater circuit printed on which lead wires can be attached. The present invention relates to a CO gas detection element formed by bonding the other surface with the other surface.

本発明において酸素イオン導電性固体電解質の基板(以
下固体電解質基板と呼ぶ)はイツl−IJア(Yz O
s )等で安定化したジルコニア(安定化Zr0z)の
固体電解質基板が好ましい。電極の形成は白金(Pt 
)、金(Au)等を例えば電子線蒸着によシ固体電解質
基板の上にその一対を対向して被着するのが好ましい。
In the present invention, the oxygen ion conductive solid electrolyte substrate (hereinafter referred to as solid electrolyte substrate) is YzO
A solid electrolyte substrate of zirconia (stabilized Zr0z) stabilized with s) or the like is preferred. The electrodes are formed using platinum (Pt
), gold (Au), etc., are preferably deposited in pairs on the solid electrolyte substrate by, for example, electron beam evaporation so as to face each other.

COガスを含む可燃性ガスを酸化する触媒の層による電
極の被覆は、 Pt、パラジウム(Pd)等を担持した
アルミナの粉末をペースト状にして電極を被着した固体
電解質基板の上に印刷するのが好ましい。COガス以外
の可燃性ガスを酸化する触媒の層で電極を被覆するには
、酸化すず、酸化クロム、酸化チタン等の粉末をペース
ト状にして電極を被着した固体電解質基板の上に印刷す
るのが好ましい。電気絶縁性基板の材質は。
Electrodes are coated with a layer of catalyst that oxidizes combustible gases including CO gas by printing a paste of alumina powder supporting Pt, palladium (Pd), etc. on the solid electrolyte substrate on which the electrodes are attached. is preferable. To coat an electrode with a layer of a catalyst that oxidizes combustible gases other than CO gas, powders such as tin oxide, chromium oxide, titanium oxide, etc. are made into a paste and printed on the solid electrolyte substrate on which the electrode is attached. is preferable. What is the material of the electrically insulating board?

接合固定される固体電解質基板の温度を約400℃に保
持するために印刷されるヒーターの温度に耐えるもので
あればよく特に制限は々い。通常アルミナ、ステアタイ
ト、ムライト等を用いる。ヒーター回路はPtのペース
トで印刷するのが耐熱性の点で好ましい。固体電解質基
板と電気絶縁性基板の接合の方法については特に制限は
ないが、耐熱性のある無機質接着剤で接着するのが好ま
しい。
There are no particular limitations as long as it can withstand the temperature of the heater used for printing to maintain the temperature of the solid electrolyte substrate to be bonded and fixed at about 400°C. Usually alumina, steatite, mullite, etc. are used. It is preferable to print the heater circuit with Pt paste from the viewpoint of heat resistance. Although there are no particular restrictions on the method of bonding the solid electrolyte substrate and the electrically insulating substrate, it is preferable to bond them using a heat-resistant inorganic adhesive.

(作用) 上記のように構成したCOガス検知素子を固体電解質基
板の温度が例えば400℃になるようiヒーター回路に
通電して被検ガス雰囲気中におくと、可燃性ガスは選択
的に酸化されて両電極間KCOガス濃度に比例した起電
力を発生するから。
(Function) When the CO gas detection element configured as described above is placed in a test gas atmosphere by energizing the i-heater circuit so that the temperature of the solid electrolyte substrate becomes, for example, 400°C, the combustible gas is selectively oxidized. This is because an electromotive force proportional to the KCO gas concentration between both electrodes is generated.

この起電力を電極からリード線によ多接続した外部計器
によシ計測し、COガスを濃度を測定する。
This electromotive force is measured by an external instrument connected to lead wires from the electrodes, and the concentration of CO gas is measured.

(実施例) 次に実施例によシ本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail by way of examples.

実施例1 第1図fan、 lb、、 (C1は本発明の一実施例
になるCOガス検知素子の構成を示す断面図、上面図及
び下面図を示す。Y2O38モルチで安定化した安定化
ZrO2を固体電解質基板として用いる。安定化ZrO
2粉末をスプレードライヤで造粒し、これをプレス成形
し、1650℃で焼結して4×8×0、8 mmの固体
電解質基板1を得た。該基板1上に第1図(b)に示す
ようにAuペースト(デュポン社。
Example 1 FIG. is used as a solid electrolyte substrate.Stabilized ZrO
The two powders were granulated using a spray dryer, press-molded, and sintered at 1650°C to obtain a solid electrolyte substrate 1 of 4 x 8 x 0, 8 mm. As shown in FIG. 1(b), Au paste (Dupont Co., Ltd.) is placed on the substrate 1.

≠9791)を1対し字型に膜厚10μmになるよう厚
膜印刷後、900℃で10分熱処理して焼付け、電気信
号取出し部2,2′とした。それぞれの電気信号取出し
部2,2′の1部に重なシ、大部分は固体電解質基板1
上にあるように2 X 2 mm、膜厚0.1μmのP
t電極3.3′を電子線蒸着によ多形成した。該Pt電
極の一方3を完全に覆うように3部3M、膜厚20μm
のCOを含む可燃性ガス酸化触媒層4を厚膜印刷によ多
形成する。該可燃性ガス酸化触媒層4は比表面積340
m”/gのアルミナ粉末(住友アルミニウム製KHDア
ルミナを粉砕し、350メツシユ以下に調製したもの)
に。
≠9791) was printed in a double-sided pattern with a thickness of 10 μm, and then heat-treated and baked at 900° C. for 10 minutes to form the electrical signal extraction portions 2, 2'. Most of the solid electrolyte substrate 1 overlaps a part of each electric signal extraction section 2, 2'.
As shown above, P with a size of 2 x 2 mm and a film thickness of 0.1 μm
T-electrodes 3.3' were formed by electron beam evaporation. 3 parts 3M, film thickness 20 μm so as to completely cover one side 3 of the Pt electrode.
A combustible gas oxidation catalyst layer 4 containing CO is formed by thick film printing. The combustible gas oxidation catalyst layer 4 has a specific surface area of 340
m”/g alumina powder (KHD alumina manufactured by Sumitomo Aluminum is ground to a size of 350 mesh or less)
To.

Piとして2wt%を含むように塩化白金酸の水溶液を
含浸したのち800℃で10時間熱処理した粉末を原料
とし、該原料粉100重量部に対し。
The raw material was a powder impregnated with an aqueous solution of chloroplatinic acid to contain 2 wt% of Pi and then heat-treated at 800°C for 10 hours, based on 100 parts by weight of the raw material powder.

結合剤としてエチルセルロースを10重量部、溶剤とし
てカルピトールアセテートを60〜70重量部加え混練
したベーストを3部30m+、膜厚30μmに印刷する
ことによシアルミナ担持Pt触媒層として形成した。
A sialumina-supported Pt catalyst layer was formed by printing 3 parts of baset, which was kneaded with 10 parts by weight of ethyl cellulose as a binder and 60 to 70 parts by weight of carpitol acetate as a solvent, to a thickness of 30 μm.

また、もう一方のPt電極3′ を完全に覆うように3
部3mm、膜厚20μmのCOガス以外の可燃性ガスを
酸化する触媒層5を厚膜印刷によ多形成する。該COガ
ス以外の可燃性ガスを酸化する触媒層は、塩化第1すず
水溶液を炭酸カリウム水溶液で中和し、沈殿物を600
℃で10時間熱処理して得られる酸化すず粉lOO重量
部に対し、結合剤としてエチルセルロースを5重量部、
カルピト−ルアセテートを35〜40重量部加えて混練
したペーストを3X31mn、膜厚30 ttmに印刷
する 。
Also, add 3 layers to completely cover the other Pt electrode 3'.
A catalyst layer 5 that oxidizes combustible gas other than CO gas is formed by thick film printing to have a thickness of 3 mm and a film thickness of 20 μm. The catalyst layer for oxidizing combustible gases other than CO gas is prepared by neutralizing an aqueous solution of stannous chloride with an aqueous potassium carbonate solution and removing the precipitate by 600%
5 parts by weight of ethyl cellulose as a binder per 10 parts by weight of tin oxide powder obtained by heat treatment at ℃ for 10 hours,
A paste prepared by adding 35 to 40 parts by weight of carpitol acetate and kneading is printed to a size of 3×31 mm and a film thickness of 30 ttm.

ことにより酸化すず触媒層として形成した。これら2種
の触媒層を固形化するため、500℃で1時間熱処理を
行なった。電気信号取出し部2.2′には、 Au線(
+11径0.2 mm )を第2図に示すようにリード
線9,9′として熱圧着し接続した。一方。
As a result, a tin oxide catalyst layer was formed. In order to solidify these two types of catalyst layers, heat treatment was performed at 500° C. for 1 hour. The electrical signal extraction part 2.2' has an Au wire (
+11 diameter 0.2 mm) were connected by thermocompression bonding as lead wires 9 and 9' as shown in FIG. on the other hand.

アルミナの電気絶縁性基板6(4X8X0.8■)の表
面に第1図(C)に示すようにヒーター回路8をptペ
ースト(昭栄化学Pt−4005)にて印刷し、120
0℃で60分焼きつけることによシ形成した。尚ヒータ
ーの抵抗は12Ωとした。このヒーター回路の両端には
ヒーター電圧印加部(1x1mm)7をAuペースト(
デュポンナ9791)にて印刷し900℃で20分焼き
つけた。ヒーター電圧印加部7には、 Au線(線径0
.2 wn )を熱圧着によシ接続し、第2図に示すよ
うにヒーター電源用リード10.10’とした。次に安
定化ZrO2の固体電解質基板l及び電気絶縁性基板6
の何も印刷していない面どうしを無機接着剤(住友電工
スミセラムS−18C)で接着して第1図(alに示す
COガス検知素子とした。第2図に示すリード線9,9
′をマウント13の電気信号取出しビン11.11’に
スポット溶接し、ヒーター電源用リード10.10’を
ビン12.12’にスポット溶接し、マウントに二重構
造の金網(ステンレス!R)をかぶせ、COガス検知セ
ンサとした。
A heater circuit 8 is printed on the surface of an alumina electrically insulating substrate 6 (4 x 8 x 0.8 cm) using PT paste (Shoei Chemical Pt-4005) as shown in Figure 1 (C).
It was formed by baking at 0°C for 60 minutes. The resistance of the heater was 12Ω. A heater voltage applying section (1x1mm) 7 is connected to both ends of this heater circuit using Au paste (
DuPontna 9791) and baked at 900°C for 20 minutes. The heater voltage application section 7 includes an Au wire (wire diameter 0).
.. 2 wn ) were connected by thermocompression bonding to form heater power supply leads 10 and 10' as shown in FIG. Next, a stabilized ZrO2 solid electrolyte substrate 1 and an electrically insulating substrate 6
The non-printed surfaces of the were bonded together with an inorganic adhesive (Sumitomo Electric Sumiceram S-18C) to form the CO gas detection element shown in Figure 1 (al).Lead wires 9, 9 shown in Figure 2
' to the electric signal take-out bottle 11.11' of the mount 13, spot weld the heater power supply lead 10.10' to the bottle 12.12', and attach a double-walled wire mesh (stainless steel! R) to the mount. It was covered with a CO gas detection sensor.

本実施例になるCOガス検知素子(以下素子と呼ぶ)の
ヒーター電圧と温度特性との関係を第3図に示した。ま
た、第4図にはCOガス200ppm。
FIG. 3 shows the relationship between the heater voltage and temperature characteristics of the CO gas detection element (hereinafter referred to as element) according to this example. Moreover, in FIG. 4, CO gas is 200 ppm.

ごH+ H2ガス1.0001)pm、  fiガス1,000
pI)mに対する素子起電力とヒーター電圧の関係を示
した。
H+ H2 gas 1.0001) pm, fi gas 1,000
The relationship between element electromotive force and heater voltage with respect to pI)m is shown.

第3図及び第4図からヒーター電圧が小さく、素子温度
(固体電解質基板の温度)が低いと、COガス以外の可
燃性ガスを酸化する触媒5の活性が小さいため+ H2
ガスに対する素子起電力は大きい。
From Figures 3 and 4, when the heater voltage is low and the element temperature (solid electrolyte substrate temperature) is low, the activity of the catalyst 5 that oxidizes combustible gases other than CO gas is low, so +H2
The element electromotive force for gas is large.

しかし、ヒーター電圧を大きくシ、素子温度を高くする
と触媒の活性が大きくなシ、素子温度を350℃〜45
0℃とすることによ、b、coガスとH2ガスとの弁別
が可能となる。素子温度を350℃〜450℃にするた
めに必要なヒーター印加電圧は4〜5■で、このときの
消費電力は約1.3〜2、OWである。従来の巻線ヒー
ターによる加熱(特開昭59−109859号公報)で
は、素子温度を350℃〜450℃とするのに約2.5
〜3.5W要しているので本実施例により消費電力の低
減がなされた。
However, if the heater voltage is increased and the element temperature is increased, the activity of the catalyst increases.
By setting the temperature to 0°C, discrimination between b, co gas and H2 gas becomes possible. The voltage applied to the heater required to bring the element temperature to 350° C. to 450° C. is 4 to 5 μm, and the power consumption at this time is about 1.3 to 2 OW. With conventional heating using a wire-wound heater (Japanese Patent Application Laid-Open No. 109859/1985), it takes about 2.5 to raise the element temperature to 350°C to 450°C.
~3.5W is required, so the power consumption is reduced by this embodiment.

第5図には2本実施例になるCOガス検知素子のヒータ
ー電圧を4. OVとし、5t!のテストボックス内に
おいて、Co、H2及びCH4のガスに対する応答性を
調べた結果を示した。第5図ではCOガス200 pp
nlに対し、1分以内に飽和起電力に到達しておシ、ま
た。ガスパージ後の回復も1分以内であυ、良好な応答
特性を示している。
FIG. 5 shows the heater voltages of the CO gas detection elements of the two embodiments: 4. OV and 5t! The results of examining the responsiveness to Co, H2, and CH4 gases in the test box are shown below. In Figure 5, CO gas 200 pp
For nl, saturation electromotive force is reached within 1 minute. Recovery after gas purge was also within 1 minute, indicating good response characteristics.

実施例2〜4 実施例1におけるアルミナ担持Pt触媒の代わりに、ア
ルミナ担持Pd触媒を用いて素子を製作した。
Examples 2 to 4 Elements were manufactured using an alumina-supported Pd catalyst instead of the alumina-supported Pt catalyst in Example 1.

また、酸化すず触媒の代わシに、酢酸クロムを500℃
で10時間熱分解して得た酸化クロム。
In addition, in place of the tin oxide catalyst, chromium acetate was heated to 500°C.
Chromium oxide obtained by thermal decomposition for 10 hours.

酸化チタンを500℃で10時間熱分解して得た酸化チ
タンを用いて素子を製作した。これらの素子のCOガス
200ppm、H2ガス1,000 ppm及びCH4
ガス2.oooppmに対する素子起電力を第1表に示
す。
An element was manufactured using titanium oxide obtained by thermally decomposing titanium oxide at 500° C. for 10 hours. 200 ppm of CO gas, 1,000 ppm of H2 gas and CH4 of these elements
Gas 2. Table 1 shows the element electromotive force versus oooppm.

以下余白 第1表からCOガスは、 H2ガス及びCH4ガスと明
瞭に弁別できることがわかる。
From Table 1 in the margin below, it can be seen that CO gas can be clearly distinguished from H2 gas and CH4 gas.

実施例5 第6図に示すように実施例1のCOガス以外の可燃性ガ
スを酸化する触媒層5を広げ、  Pt電極3及び可燃
性ガス酸化触媒層4を覆うように形成した。COガスと
H2ガス及びCH4ガスとの弁別は。
Example 5 As shown in FIG. 6, the catalyst layer 5 for oxidizing combustible gases other than CO gas in Example 1 was spread out to cover the Pt electrode 3 and the combustible gas oxidation catalyst layer 4. Discrimination between CO gas, H2 gas and CH4 gas.

実施例1と同様であった。It was the same as Example 1.

(発明の効果) 本発明によれば素子が効率よく均一に力a熱され。(Effect of the invention) According to the present invention, the element can be efficiently and uniformly heated.

消費電力が小さく素子温度も安定となるため、省エネル
ギー、高信頼性のCOガス検知素子が得られる。
Since the power consumption is small and the element temperature is stable, an energy-saving and highly reliable CO gas detection element can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例になるCOガス検知素子の構造
を示す図で(a)は断面図、(b)は上面図、(C)は
下面図、第2図はCOガス検知センサの構造を示す斜視
図、第3図はヒーター印加電圧と素子温度との関係を示
すグラフ、第4図はヒーター印加電圧と素子起電力との
関係を示すグラフ、第5図は各種ガスに対するCOガス
検知素子の応答特性を示すグラフ、第6図は本発明の他
の実施例になるCO検知素子の構造を示す断面図である
。 符号の説明 l・・・固体電解質基板2・−・電気信号取出し部3・
・・Ptt極    4・・・可燃性ガス酸化触媒層5
・・・COガス以外の可燃性ガスを酸化する触媒層6・
・・電気絶縁性基板 7・・・ヒーター電圧印加部8・
・・ヒーター回路  9・・、リード線10・・・ヒー
ター電源用リード 11・・・電気信号取出しビン 12・・・ヒーター電源用ピン 13・・・マウント ;:目体電P4Y蟇抜 第 2 回 ヒーター 師加を反 χ 3 図 ヒータ−(p加電万 (7〕 茅 ≠ 図 時閉(#) 第 5 口 1 ロ
Figure 1 is a diagram showing the structure of a CO gas detection element according to an embodiment of the present invention, in which (a) is a cross-sectional view, (b) is a top view, (C) is a bottom view, and Figure 2 is a CO gas detection sensor. Fig. 3 is a graph showing the relationship between heater applied voltage and element temperature, Fig. 4 is a graph showing the relationship between heater applied voltage and element electromotive force, and Fig. 5 shows CO for various gases. A graph showing the response characteristics of the gas sensing element, and FIG. 6 is a sectional view showing the structure of a CO sensing element according to another embodiment of the present invention. Explanation of symbols l...Solid electrolyte substrate 2--Electrical signal extraction section 3-
... Ptt electrode 4 ... Combustible gas oxidation catalyst layer 5
... Catalyst layer 6 that oxidizes combustible gas other than CO gas.
...Electrical insulating substrate 7...Heater voltage application section 8.
...Heater circuit 9..., lead wire 10...lead for heater power supply 11...electrical signal extraction bin 12...pin for heater power supply 13...mount;:Eye body electric P4Y 2nd round Heater 3 Heater (p energized (7) ≠ Figure closed (#) 5th port 1 Ro

Claims (1)

【特許請求の範囲】[Claims] 1、一面にリード線の取付け可能な一対の電極を形成し
、該電極の一方をCOガスを含む可燃性ガスを酸化する
触媒の層及び電極の他方をCOガス以外の可燃性ガスを
酸化する触媒の層で被覆した酸素イオン導電性固体電解
質の基板の他面と、一面にリード線の取付け可能なヒー
ター回路を印刷した電気絶縁性基板の他面とを接合して
なるCOガス検知素子。
1. A pair of electrodes to which lead wires can be attached are formed on one surface, one of the electrodes is a catalyst layer for oxidizing combustible gas including CO gas, and the other electrode is for oxidizing combustible gases other than CO gas. A CO gas detection element formed by bonding the other side of a substrate made of an oxygen ion conductive solid electrolyte coated with a catalyst layer and the other side of an electrically insulating substrate on which a heater circuit to which lead wires can be attached is printed on one side.
JP60035144A 1985-02-22 1985-02-22 Co gas defection element Pending JPS61194348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60035144A JPS61194348A (en) 1985-02-22 1985-02-22 Co gas defection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60035144A JPS61194348A (en) 1985-02-22 1985-02-22 Co gas defection element

Publications (1)

Publication Number Publication Date
JPS61194348A true JPS61194348A (en) 1986-08-28

Family

ID=12433707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60035144A Pending JPS61194348A (en) 1985-02-22 1985-02-22 Co gas defection element

Country Status (1)

Country Link
JP (1) JPS61194348A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872730A1 (en) * 1997-04-16 1998-10-21 Tokyo Gas Co., Ltd. Solid-electrolyte thick-film laminated type CO sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0872730A1 (en) * 1997-04-16 1998-10-21 Tokyo Gas Co., Ltd. Solid-electrolyte thick-film laminated type CO sensor

Similar Documents

Publication Publication Date Title
JP3871497B2 (en) Gas sensor
US20060065526A1 (en) Gas sensor
JPS59197851A (en) Electrochemical element and apparatus
JPH0617891B2 (en) Oxygen concentration detector
JP3122413B2 (en) Gas sensor
JPS5965758A (en) Electrochemical device and cell
JP2791473B2 (en) Gas detection method and device
JPS61194348A (en) Co gas defection element
JPH10123093A (en) Solid electrolytic hydrogen sensor
JP2598771B2 (en) Composite gas sensor
JP3589384B2 (en) Carbon monoxide sensor and its aging method
JP4465677B2 (en) Hydrogen gas detector
JP4532923B2 (en) Reducing gas detection element and reducing gas detection device
JPS60243558A (en) Analyzing device of oxygen gas concentration
JP3696494B2 (en) Nitrogen oxide sensor
JP4213939B2 (en) Gas detector
JP3268039B2 (en) Solid electrolyte type carbon dioxide sensor element
JPH0627719B2 (en) Odor detector
JPS6367556A (en) Gas detector
JPH0814552B2 (en) Sensor for detecting the functional state of catalytic devices
JP4904238B2 (en) Gas sensor and gas detection device
JPS63279150A (en) Semiconductor type gas sensor
JPH037265B2 (en)
JPH10239272A (en) Gas detection element
JPH0248058B2 (en)