JPS61192398A - Treatment of waste water - Google Patents

Treatment of waste water

Info

Publication number
JPS61192398A
JPS61192398A JP3395685A JP3395685A JPS61192398A JP S61192398 A JPS61192398 A JP S61192398A JP 3395685 A JP3395685 A JP 3395685A JP 3395685 A JP3395685 A JP 3395685A JP S61192398 A JPS61192398 A JP S61192398A
Authority
JP
Japan
Prior art keywords
tank
treatment
treatment tank
fluidized bed
aerobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3395685A
Other languages
Japanese (ja)
Inventor
Takao Ikehata
池幡 隆夫
Tatsuo Takechi
武智 辰夫
Yoshinari Fujisawa
能成 藤沢
Masazumi Inoue
井上 正純
Toshiaki Tsubone
俊明 局
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP3395685A priority Critical patent/JPS61192398A/en
Publication of JPS61192398A publication Critical patent/JPS61192398A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance treatment efficiency by dividing a treatment tank into an anaerobic tank and an aerobic tank and changing treatment flow in the combination of the anaerobic tank and the aerobic tank at a definite time interval. CONSTITUTION:Raw water is introduced into a first fluidized bed type treatment tank 41 held to an anaerobic state to discharge phosphorus. This treated water is introduced into a second fluidized bed type treatment tank 42 always held to an anaerobic state to perform the denitrification of NO2 and NO3 recirculated and flowed in from a fourth fluidized bed type treatment tank 44. Subsequently, treated water in the second treatment tank 42 is introduced into a third fluidized bed type treatment tank 43 held to an aerobic state to perform the removal of BOD and the intake treatment of phosphorus. The treated water in the third treatment tank 43 is introduced into the fourth treatment tank 44 always held to an aerobic state to receive nitration treatment. As necessary, an alkali component is added to adjust the pH.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、廃水の処理方法に関し、特に廃水中のBOD
、窒素及びリンを除去する処理方法の改良に係わる。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for treating wastewater, and in particular to a method for treating BOD in wastewater.
, relating to improvements in treatment methods for removing nitrogen and phosphorus.

〔発明の技術的背景とその問題点) 従来より廃水中のBOD等を除去する方法として、種々
の技術が開発されている。これらを第2図乃至第7図を
参照して説明する。
[Technical background of the invention and its problems] Various techniques have been developed as methods for removing BOD and the like from wastewater. These will be explained with reference to FIGS. 2 to 7.

第2図は、活性汚泥法を3段直列に設置した廃水処理の
流れを示すもので、第1沈澱池1を有する第1処理槽2
に原水を導入し、ここでBODの除去を行ない、処理水
を前記沈澱池1に導入し、この処理水を第2沈澱池3を
有する第2処理槽4に導入し、ここで硝化を行ない、処
理水を第2沈澱池3に導入し、この処理水を第3沈澱池
5を有する第3処理槽6に導入し、ここで脱窒を行ない
、処理水を第3沈澱池5を通して排出する。なお、各沈
澱池1.3.5の汚泥の一部は夫々の処理槽2.4.6
に返送する。また、第2処理槽4には、pH調整のため
のアルカリ成分が供給され、第3処理槽6にはメタノー
ル等の炭素源が供給される。
Figure 2 shows the flow of wastewater treatment using the activated sludge method installed in three stages in series: a first treatment tank 2 with a first settling tank 1;
Raw water is introduced into the tank, where BOD is removed, treated water is introduced into the sedimentation tank 1, and this treated water is introduced into the second treatment tank 4 having the second sedimentation tank 3, where nitrification is performed. , the treated water is introduced into the second sedimentation tank 3, this treated water is introduced into the third treatment tank 6 having the third sedimentation tank 5, denitrification is performed here, and the treated water is discharged through the third sedimentation tank 5. do. In addition, a part of the sludge in each sedimentation tank 1.3.5 is transferred to each treatment tank 2.4.6.
send it back to Further, the second treatment tank 4 is supplied with an alkaline component for pH adjustment, and the third treatment tank 6 is supplied with a carbon source such as methanol.

こうした廃水の処理においては、第1処理槽2ではBO
D除去除去箱2処理槽4では硝化菌、第3処理槽6では
脱窒菌が優先種となるため、それぞれの単位汚泥量当り
の反応速度を大きくできること、第2処理槽4の流入水
は、既に好気処理を受けているため、第2処理槽4に流
入する硝化妨害物質が少なく、安定した硝化が可能とな
ること、という利点を有する。しかしながら、かかる方
法では各処理槽毎に沈澱池を必要とすること、脱リン効
果が殆んどないこと、原水中のBOD、脱窒反応で生じ
るアルカリ度を利用していないため、炭素源、アルカリ
成分の使用量が増大すること、汚泥のバルキングを起こ
さない条件で運転する必要があること、という問題があ
る。
In the treatment of such wastewater, in the first treatment tank 2, BO
Since nitrifying bacteria are the priority species in the D removal removal box 2 treatment tank 4 and denitrifying bacteria are the priority species in the third treatment tank 6, the reaction rate per unit sludge amount of each can be increased, and the inflow water of the second treatment tank 4 is Since it has already been subjected to aerobic treatment, it has the advantage that there are few substances that interfere with nitrification flowing into the second treatment tank 4, and stable nitrification is possible. However, this method requires a sedimentation tank for each treatment tank, has almost no dephosphorization effect, and does not utilize BOD in raw water or alkalinity generated by denitrification reactions, so it is difficult to use as a carbon source. There are problems in that the amount of alkaline components used increases and that it is necessary to operate under conditions that do not cause sludge bulking.

第3図は、硝化液循環法と呼ばれる活性汚泥法の流れを
示すもので、隔壁11で処理槽12を区画し、この前段
の嫌気状態とした第1処理室13aに原水を導入し、こ
こで脱窒を行ない、その処理水(汚泥混合液)を後段の
好気状態とした第2処理室13bに導入し、ここで硝化
及びBOD除去を行ない、処理水は沈澱池14を通して
排出する。この場合、第2処理室13bの汚泥混合液の
一部は第1処理室13aに循環され、沈澱池14の汚泥
の一部は第1処理室13aに返送される。こうした廃水
の処理においては、原水中のBOD成分を脱窒時の炭素
源として利用しているため、メタノール等の炭素源使用
量を削減でき、脱窒槽で生じるアルカリ度を硝化槽で利
用できるので、アルカリ使用量削減効果が得られ、しか
も説リン効果が得られる。しかしながら、かかる方法で
は単一の汚泥でBOD除去、硝化、脱窒を行うため、汚
泥中にBOD除去除去路化菌、脱窒菌が混在し、夫々の
単位汚泥当りの反応速度が小さいこと、単位汚泥当りの
反応速度が小さいため、装置が大型化すること、リンの
放出槽にNO2、NO3が流入するためリン放出が妨害
を受けること、汚泥のバッキングが起きない条件で運転
する必要があること、消化菌を系内に維持するためにS
RTの調整が必要であること、という問題がある。
FIG. 3 shows the flow of the activated sludge method called the nitrification liquid circulation method. A treatment tank 12 is divided by a partition wall 11, and raw water is introduced into the first treatment chamber 13a which is in an anaerobic state in the previous stage. The treated water (sludge mixture) is introduced into the aerobic second treatment chamber 13b in the latter stage, where nitrification and BOD removal are performed, and the treated water is discharged through the settling tank 14. In this case, a portion of the sludge mixture in the second treatment chamber 13b is circulated to the first treatment chamber 13a, and a portion of the sludge in the settling tank 14 is returned to the first treatment chamber 13a. In such wastewater treatment, the BOD components in the raw water are used as a carbon source during denitrification, so the amount of carbon sources such as methanol used can be reduced, and the alkalinity generated in the denitrification tank can be used in the nitrification tank. , it is possible to obtain the effect of reducing the amount of alkali used, and also to obtain the effect of reducing phosphorus. However, in this method, since BOD removal, nitrification, and denitrification are performed in a single sludge, BOD removal bacteria and denitrification bacteria coexist in the sludge, and the reaction rate per unit sludge of each is small. Because the reaction rate per sludge is low, the equipment becomes larger; NO2 and NO3 flow into the phosphorus release tank, which impedes phosphorus release; and it is necessary to operate under conditions where sludge backing does not occur. , S to maintain digestive bacteria in the system.
There is a problem in that RT adjustment is required.

第4図は、嫌気−嫌気−好気(A20)法と呼ばれる活
性汚泥法の流れを示すもので、隔壁111.112で処
理槽12を夫々区画し、この前段の嫌気状態とした第1
処理室131に原水を導入し、ここで汚泥にリン放出を
行なわせ、その処理水(汚泥混合液)を中段の嫌気状態
とした第2処理室132に導入し、ここで脱窒を行ない
、更にその処理水(汚泥混合液〉を後段の好気状態の第
3処理室139に導入し、ここで硝化、BOD除去、リ
ンの摂取を行なった後、処理水を沈澱池14を通して排
出する。こうした廃水の処理においては、原水中のBO
D成分を脱窒時の炭素源として利用しているため、メタ
ノール等の炭素源使用量を削減できること、脱リン効果
が得られること、循環中にNO2、NO3が含まれてい
ても、リン放出を行なう第1処理室131に流入しない
ため、リンの放出が妨害されないこと、という利点を有
する。しかしながら、かかる方法では単一の汚泥でBO
r)除去、硝化、脱窒を行うため、汚泥中にBOD除去
除去路化菌、脱窒菌が混在し、□夫々の単位汚泥当りの
反応速度が小さいこと、単位汚泥当りの反応速度が小さ
いため、装置が大型化すること、汚泥のバッキングが起
きない条件で運転する必要があること、消化菌を系内に
維持するためにSRTの調整が必要であること、という
問題がある。
Figure 4 shows the flow of the activated sludge method called the anaerobic-anaerobic-aerobic (A20) method, in which the treatment tanks 12 are divided by partition walls 111 and 112, and the first stage is placed in an anaerobic state.
Raw water is introduced into the treatment chamber 131, where phosphorus is released into the sludge, and the treated water (sludge mixture) is introduced into the second treatment chamber 132 in the middle stage, which is in an anaerobic state, where denitrification is performed. Furthermore, the treated water (sludge mixture) is introduced into the third treatment chamber 139 in an aerobic state at the latter stage, where it is nitrified, BOD removed, and phosphorous taken in, and then the treated water is discharged through the settling tank 14. In the treatment of such wastewater, BO in raw water is
Since component D is used as a carbon source during denitrification, the amount of carbon sources such as methanol used can be reduced, the dephosphorization effect can be obtained, and even if NO2 and NO3 are included in the circulation, phosphorus is not released. Since the phosphorus does not flow into the first processing chamber 131 where phosphorus is carried out, it has the advantage that the release of phosphorus is not hindered. However, in this method, a single sludge is used to
r) To perform removal, nitrification, and denitrification, BOD removal bacteria and denitrifying bacteria are mixed in the sludge, and the reaction rate per unit sludge of each is small; There are problems in that the equipment becomes larger, it needs to be operated under conditions where sludge backing does not occur, and SRT needs to be adjusted to maintain digestive bacteria in the system.

第5図は、前述した第2図の活性汚泥の処理槽及び沈澱
池の代わりに流動床式処理1121〜23を用いた流れ
を示すもので、第1流動床式処理槽21に原水を導入し
、ここでBODの除去を行ない、処理水を第2流動床式
処理槽22に導入し、ここで硝化を行ない、処理水を第
3流動床式処理槽23に導入し、ここで脱窒を行なった
後、排出する。なお、第2流動床式処理槽22にはpH
1!整のためのアルカリ成分が供給され、第3流動床式
処理槽23にはメタノール等の炭素源が供給される。こ
うした廃水の処理においては、第1流動床式処理槽21
ではBOD除去除去路2流動床式処理槽22では硝化菌
、第3流動床式処理槽23では脱窒菌が優先種となるた
め、夫々の単位汚泥量当りの反応速度を大きくできるこ
と、単位体積当りの反応速度が大であるため、装置の小
型化が可能であること、汚泥の返送、沈澱池が不要とな
6一 ること、硝化菌のような増殖速度の小さな菌も担体表面
に付着し、流出し難くその利用度を向上できること、汚
泥のバッキングの心配がないこと、第2流動床式処理槽
22の流入水は、既に好気処理を受けているため、第2
流動床式処理槽22に流入する硝化妨害物質が少なく、
安定した硝化が可能となること、という利点を有する。
Figure 5 shows the flow when fluidized bed treatment 1121 to 23 is used instead of the activated sludge treatment tank and sedimentation tank shown in Figure 2, and raw water is introduced into the first fluidized bed treatment tank 21. Here, BOD is removed, the treated water is introduced into the second fluidized bed treatment tank 22, where nitrification is performed, and the treated water is introduced into the third fluidized bed treatment tank 23, where it is denitrified. After doing this, discharge it. Note that the second fluidized bed treatment tank 22 has a pH
1! An alkaline component for cleaning is supplied, and a carbon source such as methanol is supplied to the third fluidized bed treatment tank 23. In the treatment of such wastewater, the first fluidized bed treatment tank 21
Since nitrifying bacteria are the priority species in the BOD removal channel 2 fluidized bed treatment tank 22 and denitrification bacteria are the priority species in the third fluidized bed treatment tank 23, the reaction rate per unit sludge amount can be increased, and the reaction rate per unit volume can be increased. Because the reaction rate is high, it is possible to downsize the equipment, there is no need for sludge return or settling tanks61, and bacteria with low growth rates such as nitrifying bacteria can also adhere to the surface of the carrier. , it is difficult to flow out and its utilization can be improved, there is no need to worry about sludge backing, and the inflow water of the second fluidized bed treatment tank 22 has already undergone aerobic treatment, so the second fluidized bed treatment tank 22
Fewer substances that interfere with nitrification flow into the fluidized bed treatment tank 22,
This has the advantage that stable nitrification is possible.

しかしながら、かかる方法では鋭リン効果が殆んどない
こと、原水中のBOD、1112窒反応で生じるアルカ
リ度を利用していないため、炭素源、アルカリ成分の使
用量が増大すること、という問題がある。
However, this method has the following problems: there is almost no sharp phosphorus effect, and because it does not utilize the alkalinity generated by the BOD and 1112 nitrogen reactions in raw water, the amount of carbon sources and alkaline components used increases. be.

第6図は、前述した第3図の活性汚泥の処理槽の代わり
に流動床式処理槽31.32を用いた流れを示すもので
ある。こうし廃水の処理方法においては、原水中のBO
D成分を脱窒炭素源に利用しているため、メタノール等
の炭素源使用量の削減効果を得られること、脱窒槽で生
じるアルカリ度を硝化槽で利用できるので、アルカリ使
用量削減効果が得られること、単位体積当りの反応速度
が大であるため、装置の小型化が可能であること、汚泥
の返送、沈澱池が不要となること、硝化菌のような増殖
速度の小さな菌も担体表面に付着し、流出し難くその利
用度を向上できること、汚泥のバッキングの心配がない
こと、という利点を有する。しかしながら、かかる方法
では脱リン効果が殆んどないという問題がある。
FIG. 6 shows the flow when fluidized bed type treatment tanks 31 and 32 are used instead of the activated sludge treatment tank shown in FIG. 3 described above. In this wastewater treatment method, BO in raw water
Since the D component is used as a denitrification carbon source, it is possible to reduce the amount of carbon sources used such as methanol, and because the alkalinity generated in the denitrification tank can be used in the nitrification tank, it is possible to reduce the amount of alkali used. The reaction rate per unit volume is high, making it possible to downsize the equipment, eliminating the need for sludge return or settling tanks, and allowing bacteria with low growth rates, such as nitrifying bacteria, to be grown on the surface of the carrier. It has the advantage that it adheres to the sludge and is difficult to flow out, improving its utilization, and there is no need to worry about sludge backing. However, this method has a problem in that it has almost no dephosphorizing effect.

第7図は、前述した第6図の好気状態の流動床式処理槽
を2つ(321,322)用いた流れを示すものである
。こうした廃水の処理においては、■第1流動床式処理
槽31では脱窒菌、第2流動床式処理槽321ではSO
D除去除去箱3流動床式処理槽322では硝化菌が優先
種となるため、それぞれの単位汚泥量当りの反応速度を
大きくできること、■原水中のBOD成分を脱窒炭素源
に利用しているため、メタノール等の炭素源使用量の削
減効果が得られること、■脱窒槽で生じるアルカリ度を
硝化槽で利用できるので、アルカリ使用量削減効果が得
られること、■単位体積当りの反応速度が大であるため
、装置の小型化が可能であること、■汚泥の返送、沈澱
池が不要となること、■硝化菌のような増殖速度の小さ
な菌も担体表面に付着し、流出し難くその利用度を向上
できること、■汚泥のバッキングの心配がないこと、■
第3流動床式処理槽322の流入水は、既に好気処理を
受けているため、第3流動床式処理槽322に流入する
硝化妨害物質が少なく、安定した硝化が可能となること
、という前述した第3図のA20法等の活性汚泥法に比
べて種々の優れた利点を有する。しかしながら、この方
法の唯一の問題点は、脱リン効果が殆んど得られないこ
とである。つまり、生物学的脱リンの原理は、嫌気状態
でリンを放出した汚泥が好気条件で放出量以上のリンを
摂取するという性質を利用するのに対し、前述した第5
図〜第7図の方法では相対付着汚泥は常に好気又は嫌気
の条件下のいずれか一方に置かれ続けるため、脱リン効
果は得られない。
FIG. 7 shows the flow using the two aerobic fluidized bed treatment tanks (321, 322) shown in FIG. 6 described above. In the treatment of such wastewater, ■ Denitrifying bacteria is used in the first fluidized bed treatment tank 31, and SO is added to the second fluidized bed treatment tank 321.
Since nitrifying bacteria are the priority species in the D removal removal box 3 fluidized bed treatment tank 322, the reaction rate per unit amount of sludge can be increased, and the BOD component in the raw water is used as a denitrification carbon source. Therefore, the effect of reducing the amount of carbon sources used such as methanol can be obtained; ■ The alkalinity generated in the denitrification tank can be used in the nitrification tank, resulting in the effect of reducing the amount of alkali used; ■ The reaction rate per unit volume is reduced. Because of its large size, it is possible to miniaturize the equipment; ■ Eliminates the need for sludge return and settling tanks; ■ Bacteria with low growth rates, such as nitrifying bacteria, adhere to the surface of the carrier and are difficult to flow out. The utilization rate can be improved, ■ There is no need to worry about sludge backing, ■
Since the water flowing into the third fluidized bed treatment tank 322 has already been subjected to aerobic treatment, there are few substances that interfere with nitrification flowing into the third fluidized bed treatment tank 322, and stable nitrification is possible. This method has various advantages over activated sludge methods such as the A20 method shown in FIG. 3 described above. However, the only problem with this method is that almost no dephosphorization effect is obtained. In other words, the principle of biological dephosphorization utilizes the property that sludge that releases phosphorus under anaerobic conditions absorbs more phosphorus than the released amount under aerobic conditions.
In the methods shown in FIGS. 7 to 7, the relative adhesion sludge is always kept under either aerobic or anaerobic conditions, so no dephosphorization effect can be obtained.

このようなことから、単一の流動床式処理槽を好気(1
m気)−嫌気(II気停止)のサイクル運転を行うこと
が考えられる。この方法では、前記原水中のBOD成分
を脱窒炭素源に利用しているため、メタノール等の炭素
源使用量の削減効果を得られること、脱リン効果が得ら
れること、汚泥の返送、沈澱池が不要となること、硝化
菌のような増殖速度の小さな菌も担体表面に付着し、流
出し難くその利用度を向上できること、汚泥のバッキン
グの心配がないこと、等の特徴を有する反面、(イ)単
一の汚泥でBOD除去、硝化、脱窒を行うため、汚泥中
にBOD除去菌、硝化菌、脱窒菌が混在し、夫々の単位
汚泥当りの反応速度が小さいこと、(ロ)単位汚泥当り
の反応速度が小さいため、装置が大型化すること、〈ハ
)リン放出時にNO2、NO3が存在するため、リンの
放出が妨害を受けること、という問題がある。つまり、
かかる方法は第7図の方法に比べて説リン効果を発揮で
きるという特徴が得られるものの、その特徴としての前
記■、■及び■が失われるばかりか、更に前記(イ)、
(ロ)、(ハ)の欠点が加わる。
For this reason, a single fluidized bed treatment tank is aerobic (1
It is conceivable to perform a cycle operation of m gas)-anaerobic (II gas stop). In this method, the BOD component in the raw water is used as a carbon source for denitrification, so it is possible to achieve the effect of reducing the amount of carbon sources used such as methanol, the effect of dephosphorization, and the reduction of sludge return and sedimentation. On the other hand, it has the following characteristics: it eliminates the need for a pond, bacteria with low growth rates such as nitrifying bacteria adhere to the surface of the carrier, making it difficult for them to flow out and improving its utilization, and there is no need to worry about sludge backing. (b) Since BOD removal, nitrification, and denitrification are performed with a single sludge, BOD removal bacteria, nitrifying bacteria, and denitrifying bacteria are mixed in the sludge, and the reaction rate per unit of sludge is low; (b) Since the reaction rate per unit sludge is low, there are problems in that the size of the device increases, and (iii) the presence of NO2 and NO3 during phosphorus release hinders the release of phosphorus. In other words,
Although such a method has the characteristic that it can exhibit a phosphorus effect compared to the method shown in FIG.
The disadvantages of (b) and (c) are added.

〔発明の目的〕[Purpose of the invention]

本発明は、従来法の特徴を生かしつつ、充分な脱リンを
行うことが可能な廃水の処理方法を提供しようとするも
のである。
The present invention aims to provide a wastewater treatment method that can perform sufficient dephosphorization while taking advantage of the features of conventional methods.

(発明の概要〕 本発明は、4台の流動床式生物処理槽を用い、このうち
の1台を常時好気槽、1台を常時嫌気槽、仙の2台のう
ちの1台を嫌気槽、残りを好気槽とし、原水を前記嫌気
槽に導入し、その処理水を前記常時嫌気槽で処理し、更
に前記好気槽で処理した後、前記常時好気槽で処理を行
ない、この処理水の一部を前記常時嫌気槽に循環する廃
水の処理にあたり、一定時間間隔で前記嫌気槽と好気槽
の組合わせ及び処理の流れを切り換えることを特徴とす
る廃水の処理方法である。
(Summary of the invention) The present invention uses four fluidized bed biological treatment tanks, one of which is a constant aerobic tank, one of which is a constant anaerobic tank, and one of the two is an anaerobic tank. tank, the rest being an aerobic tank, raw water is introduced into the anaerobic tank, the treated water is treated in the constant anaerobic tank, further treated in the aerobic tank, and then treated in the constant aerobic tank, In treating wastewater in which a part of the treated water is constantly circulated to the anaerobic tank, the method is characterized in that the combination of the anaerobic tank and the aerobic tank and the flow of treatment are switched at fixed time intervals. .

以下、本発明を第1図を参照して詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to FIG.

第1図の廃水処理装置は、4台の流動床式処理槽41〜
44から構成されている。廃水処理は、まず、実線の矢
印で示す流れで行う。即ち、原水を嫌気状態の第1流動
床式処理槽41に導入し、ここで汚泥からのリンの放出
を行なう。つづいて、この処理水を常時嫌気状態の第2
流動床式処理槽42に導入し、ここで原水中のBOD成
分を利用し、(不足する場合はメタノール等を加える)
、常時好気状態の第4流動床式処理槽44からの循環流
入するNO2、NO9の脱窒を行う。ひきつづき、前記
第2の処理槽42中の処理水を好気状態の第3流動床式
処理槽43に導入する。この第3の処理槽43で、BO
D除去、リンの摂取の各51!1yIIが行われる。第
3の処理槽43の処理水は、前記常時好気状態である第
4の処理槽44に導入される。この第4の処理槽44で
、硝化処理が行われ、必要に応じて消石灰等のアルカリ
成分を加えてpHII整を行う。この第4の処理槽44
の処理水の一部は、前記第2の処理槽42に循環させる
The wastewater treatment equipment shown in Fig. 1 consists of four fluidized bed treatment tanks 41 to 41.
It consists of 44. Wastewater treatment is first carried out according to the flow shown by the solid arrow. That is, raw water is introduced into the first fluidized bed treatment tank 41 in an anaerobic state, where phosphorus is released from the sludge. Next, this treated water is transferred to a second tank in a constant anaerobic state.
Introduced into the fluidized bed treatment tank 42, where the BOD component in the raw water is used (if insufficient, methanol etc. is added)
, NO2 and NO9 circulating and flowing from the fourth fluidized bed treatment tank 44 which is always in an aerobic state are denitrified. Subsequently, the treated water in the second treatment tank 42 is introduced into the third fluidized bed type treatment tank 43 in an aerobic state. In this third treatment tank 43, BO
Each 51!1yII of D removal and phosphorus intake is performed. The treated water in the third treatment tank 43 is introduced into the fourth treatment tank 44 which is always in an aerobic state. In this fourth treatment tank 44, nitrification treatment is performed, and if necessary, an alkaline component such as slaked lime is added to adjust the pH II. This fourth treatment tank 44
A part of the treated water is circulated to the second treatment tank 42.

次いで、上記条件で一定時間運転した後、破線の矢印で
示す流れに切り換える。即ち、第1流動床式処理槽41
を好気状態、第3流動床式処理槽43を嫌気状態とし、
原水を第3の処理!43に導入し、処理水の流れを、第
3流動床式処理摺43→第1流動床式処理槽42→第3
流動床式処理槽43→第4流動床式処理槽44(第4の
処理槽44の一部を第2の処理槽42に循環)の順序と
する。この流れにおいては、第2の処理槽42では脱窒
、第4の処理槽44では硝化処理がなされる。第1の処
理槽41では、実線で示す流れにおいて嫌気条件下でリ
ンを放出した汚泥が好気条件下に変わることにより放出
量以上のリンを摂取すると同時に、SOD成分を除去す
る。第3の処理槽43では、リンの放出がなされる。こ
うした方法において、リンは第1、第3の両者の流動床
式処理槽41.43内の汚泥中に取り込まれる。
Next, after operating under the above conditions for a certain period of time, the flow is switched to the flow indicated by the dashed arrow. That is, the first fluidized bed treatment tank 41
is in an aerobic state, and the third fluidized bed treatment tank 43 is in an anaerobic state,
Third treatment of raw water! 43, and the flow of the treated water is transferred from the third fluidized bed treatment slide 43 to the first fluidized bed treatment tank 42 to the third
The order is fluidized bed type treatment tank 43 → fourth fluidized bed type treatment tank 44 (part of the fourth treatment tank 44 is circulated to the second treatment tank 42). In this flow, denitrification is performed in the second treatment tank 42 and nitrification treatment is performed in the fourth treatment tank 44. In the first treatment tank 41, in the flow shown by the solid line, the sludge that has released phosphorus under anaerobic conditions is changed to aerobic conditions, thereby taking in more phosphorus than the released amount, and at the same time removing SOD components. In the third treatment tank 43, phosphorus is released. In such a method, phosphorus is incorporated into the sludge in both the first and third fluidized bed treatment tanks 41,43.

このため、処理系内からのリン除去は(1)第1、第3
の処理槽41.43内の汚泥の引抜き、(2)処理水中
に含まれる担体からの脱離汚泥の処理(凝集沈澱等)の
いずれか一方又は両方で行う。
For this reason, the removal of phosphorus from within the processing system is as follows: (1) first and third steps;
(2) treatment of the sludge released from the carrier contained in the treated water (coagulation and sedimentation, etc.), or both.

このように、4台の流動床式処理槽41〜44間の流れ
を実線の矢印と破線の矢印の如く一定時間間隔で切り換
え、第1流動床式処理槽41を嫌気状態から好気状態に
、第3流動床式処理槽43を好気状態から嫌気状態に変
えることによって、前述した第7図の従来法の特徴であ
る■〜■を有し、更に循環水中にNO2、NO3が含ま
れていても、リンの放出槽(第1流動床式処理槽41又
は第3流動床式処理槽43)に流入しないため、リンの
放出が妨害されない利点を有すると共に、脱リン効果を
発揮し得る廃水処理を達成できる。
In this way, the flow between the four fluidized bed treatment tanks 41 to 44 is switched at regular time intervals as shown by the solid line arrow and the broken line arrow, and the first fluidized bed treatment tank 41 is changed from an anaerobic state to an aerobic state. By changing the third fluidized bed treatment tank 43 from an aerobic state to an anaerobic state, the characteristics of the conventional method shown in FIG. Even if the phosphorus is removed, it does not flow into the phosphorus release tank (the first fluidized bed treatment tank 41 or the third fluidized bed treatment tank 43), so it has the advantage that the release of phosphorus is not hindered, and the dephosphorization effect can be exerted. Wastewater treatment can be achieved.

上記第1、第3の流動床式処理槽41.43の形態は、
嫌気及び好気の両条件下で使用することが可能な機械撹
拌方式又は水流動方式が適当である。第4流動床式処理
槽43は常時好気状態とするため、機械撹拌方式、水流
動方式、又はエアーリフト方式のいずれも採用し得る。
The configuration of the first and third fluidized bed treatment tanks 41 and 43 is as follows:
Mechanical stirring systems or water flow systems that can be used under both anaerobic and aerobic conditions are suitable. Since the fourth fluidized bed treatment tank 43 is always kept in an aerobic state, any of a mechanical stirring method, a water fluidization method, or an air lift method can be adopted.

上記各流動床式処理槽中に装填される担体としては、活
性炭、プラスチック、ゼオライト、砂、転炉スラグ、高
炉スラグ、コークス粉等を使用できる。
Activated carbon, plastic, zeolite, sand, converter slag, blast furnace slag, coke powder, etc. can be used as the carrier loaded in each of the above fluidized bed treatment tanks.

運転におけるサイクル時間、各流動床式処理槽の容積及
び汚泥混合液の循環量等は、原水の水質、原水の処理量
、求められる処理水の水質によって決定することが望ま
しい。
It is desirable that the cycle time during operation, the volume of each fluidized bed treatment tank, the circulation amount of the sludge mixture, etc. be determined based on the quality of raw water, the amount of raw water to be treated, and the desired quality of treated water.

(発明の実施例) 以下、本発明の実施例を詳細に説明する。(Example of the invention) Examples of the present invention will be described in detail below.

前述した第1図図示の本発明の方法、及び第3図図示、
第4図図示、第7図図示の従来の方法により原水(生活
系廃水)を処理するに際し、下記第1表に示す条件で運
転して処理水中のBODi、全窒素(T−N>量、仝リ
ン(T−P)量等を測定した。その結果を、下記第2表
に示した。なお、本発明方法では第1流動床式処理槽4
1と第3流動床式処理槽43の嫌気から好気、好気から
嫌気の切り換え、原水の切り換えは1時間間隔のサイク
ルで行なった。
The method of the present invention as shown in FIG. 1 and as shown in FIG.
When treating raw water (domestic wastewater) using the conventional methods shown in Figure 4 and Figure 7, the operation is performed under the conditions shown in Table 1 below to determine the amount of BODi, total nitrogen (T-N> amount, etc.) in the treated water. The amount of phosphorus (T-P), etc. was measured.The results are shown in Table 2 below.In addition, in the method of the present invention, the first fluidized bed treatment tank 4
Switching from anaerobic to aerobic, from aerobic to anaerobic, and switching of raw water in the first and third fluidized bed treatment tanks 43 were performed in cycles of one hour.

上記第1表及び第2表から明らかなように、第1図図示
の本実施例の廃水処理方法では、第4図図示の従来の処
理法の約1/4の容積で、同従来法と同等の脱リン効果
を有し、かつ第7図図示の従来の処理方法と同等の硝化
、脱窒能力を有することがわかる。
As is clear from Tables 1 and 2 above, the wastewater treatment method of this embodiment shown in Figure 1 has a volume that is about 1/4 of the conventional treatment method shown in Figure 4. It can be seen that it has the same dephosphorizing effect and the same nitrification and denitrification ability as the conventional treatment method shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればメタノール等の炭素
源の使用量削減、アルカリ成分の使用量削減や装置の小
型化を達成でき、かつ循環水中にNO2、NO3が含ま
れていても、リンの放出槽に流入しないため、リンの放
出が妨害されず充分な硝化、脱窒能力を有すると共に、
充分な鋭リンを行うことが可能な廃水の処理方法を提供
できる。
As detailed above, according to the present invention, it is possible to reduce the amount of carbon sources such as methanol used, reduce the amount of alkaline components used, and downsize the device, and even if the circulating water contains NO2 and NO3, Since phosphorus does not flow into the release tank, phosphorus release is not hindered and it has sufficient nitrification and denitrification ability.
It is possible to provide a method for treating wastewater that can sufficiently remove phosphorus.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の廃水処理に使用される装置を示す概略
図、第2図乃至第7図は夫々従来の廃水処理に使用され
る装置を示す概略図である。 41・・・第1流動床式処理槽、42・・・第2流動床
式処理槽(常時嫌気槽)、43・・・第3流動床式処理
槽、44・・・第4流動床式処理槽(常時好気槽)。 第1図 唖                 0目     
       転 軒   5 ヘ     央         D @            法 A7ζ−
FIG. 1 is a schematic diagram showing an apparatus used for wastewater treatment according to the present invention, and FIGS. 2 to 7 are schematic diagrams showing apparatuses used for conventional wastewater treatment. 41...First fluidized bed treatment tank, 42...Second fluidized bed treatment tank (continuously anaerobic tank), 43...Third fluidized bed treatment tank, 44...Fourth fluidized bed treatment tank Treatment tank (continuous aerobic tank). Figure 1 dumb 0 eyes
Tenken 5 He center D @ method A7ζ-

Claims (1)

【特許請求の範囲】[Claims] 4台の流動床式生物処理槽を用い、このうちの1台を常
時好気槽、1台を常時嫌気槽、他の2台のうちの1台を
嫌気槽、残りを好気槽とし、原水を前記嫌気槽に導入し
、その処理水を前記常時嫌気槽で処理し、更に前記好気
槽で処理した後、前記常時好気槽で処理を行ない、この
処理水の一部を前記常時嫌気槽に循環する廃水の処理に
あたり、一定時間間隔で前記嫌気槽と好気槽の組合わせ
及び処理の流れを切り換えることを特徴とする廃水の処
理方法。
Four fluidized bed biological treatment tanks are used, one of which is a permanent aerobic tank, one is a permanent anaerobic tank, one of the other two is an anaerobic tank, and the rest are aerobic tanks. Raw water is introduced into the anaerobic tank, the treated water is treated in the continuous anaerobic tank, further treated in the aerobic tank, and then treated in the continuous aerobic tank, and a part of this treated water is treated in the continuous aerobic tank. A method for treating wastewater, which comprises switching the combination of the anaerobic tank and the aerobic tank and the flow of treatment at regular time intervals in treating the wastewater circulating in the anaerobic tank.
JP3395685A 1985-02-22 1985-02-22 Treatment of waste water Pending JPS61192398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3395685A JPS61192398A (en) 1985-02-22 1985-02-22 Treatment of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3395685A JPS61192398A (en) 1985-02-22 1985-02-22 Treatment of waste water

Publications (1)

Publication Number Publication Date
JPS61192398A true JPS61192398A (en) 1986-08-26

Family

ID=12400940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3395685A Pending JPS61192398A (en) 1985-02-22 1985-02-22 Treatment of waste water

Country Status (1)

Country Link
JP (1) JPS61192398A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126599A (en) * 1986-11-17 1988-05-30 Nippon Steel Corp Biochemical treatment of waste water
KR100836231B1 (en) 2007-06-01 2008-06-09 충북대학교 산학협력단 Process of small-scale wastewater treatment using biosorption mechanism
JP2009522101A (en) * 2006-01-05 2009-06-11 アイ.クルーガー インコーポレイテッド Method and system for nitrifying and denitrifying sewage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63126599A (en) * 1986-11-17 1988-05-30 Nippon Steel Corp Biochemical treatment of waste water
JPH0575478B2 (en) * 1986-11-17 1993-10-20 Nippon Steel Corp
JP2009522101A (en) * 2006-01-05 2009-06-11 アイ.クルーガー インコーポレイテッド Method and system for nitrifying and denitrifying sewage
JP4796631B2 (en) * 2006-01-05 2011-10-19 アイ.クルーガー インコーポレイテッド Method and system for nitrifying and denitrifying sewage
KR100836231B1 (en) 2007-06-01 2008-06-09 충북대학교 산학협력단 Process of small-scale wastewater treatment using biosorption mechanism

Similar Documents

Publication Publication Date Title
JP3351149B2 (en) Simultaneous removal of nitrogen and phosphorus from wastewater.
JPS61192398A (en) Treatment of waste water
JPH0788500A (en) Method for treating sewage countercurrent water
JPS61192397A (en) Treatment of waste water
JPS58216790A (en) Method and device for denitrifying and dephosphorizing sewage biologically
JPH0722757B2 (en) Biological removal method of nitrogen and phosphorus and its treatment device
JP3449862B2 (en) Advanced purification method for organic wastewater
JP2841131B2 (en) Activated sludge treatment method for sewage
JPH0318958B2 (en)
JPH0975992A (en) Treatment of waste water containing high concentrated phosphorus and ammoniacal nitrogen
JPS5830393A (en) Biological denitrifying and dephosphorizing method for sewage
JPH1157778A (en) Waste water treating device and treatment
JPS645958B2 (en)
JP3239306B2 (en) Wastewater treatment method
KR960011888B1 (en) Method and apparatus for biological treatment of waste water including nitrogen and phosphorus
JPS6052880B2 (en) Biological denitrification and dephosphorization equipment for wastewater
JPH06335698A (en) Nitrification method
JP2000107797A (en) Purification method and apparatus
JPS59199098A (en) Treatment of organic filthy water
JPS60129194A (en) Treatment of sewage
JP2556409B2 (en) Treatment of organic wastewater containing nitrogen and phosphorus
JPS6010798B2 (en) Sewage treatment method
JP3381071B2 (en) Denitrification and dephosphorization method using returned sludge by activated sludge method
JPS6344040B2 (en)
JPH06218390A (en) Waste water treatment device