JPS61191978A - Measurement for concentration of tritium in gaseous phase - Google Patents

Measurement for concentration of tritium in gaseous phase

Info

Publication number
JPS61191978A
JPS61191978A JP20680084A JP20680084A JPS61191978A JP S61191978 A JPS61191978 A JP S61191978A JP 20680084 A JP20680084 A JP 20680084A JP 20680084 A JP20680084 A JP 20680084A JP S61191978 A JPS61191978 A JP S61191978A
Authority
JP
Japan
Prior art keywords
tritium
hydrogen
water
hto
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20680084A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Kenji Kunihara
健二 国原
Hisao Osawa
大沢 久男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP20680084A priority Critical patent/JPS61191978A/en
Publication of JPS61191978A publication Critical patent/JPS61191978A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable highly accurate measurement, by selectively separating tritium and hydrogen from a sample while water type tritium condensable at the normal temperature is converted into a chemical form of hydrogen molecule non-condensable at the normal temperature followed by introducing into a radiation detector. CONSTITUTION:A gas sample containing tritium of various chemical forms is passed through a reactor 1 to convert tritium and hydrogen contained in the sample into chemical forms of water (H2O, HTO and T2O) to be introduced into an electrolytic cell 2. Then, the water (H2O, HTO and T2O) in the gas sample introduced into a cell 2 is electrolyzed selectively with an anode to form an oxygen atom (O2) and hidrogen ion (H<+> or T<+>) and the oxygen atom is exhausted together with other components in the gas sample. The hydrogen ion is moved to an cathode through a solid electrolyte to form an hydrogen atom (H2, HT or T2) continuously and selectively with the cathode. The hydrogen atom containing tritium generated on the cathode side is introduced to a radiation detector 4 through a hydrogen flowmeter 3 to detect the concentration of tritium.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、気体試料中に含まれるトリチウム■の濃度測
定法に関する0 原子炉施設やその他放射性物質を扱う施設からのトリチ
ウムの環境への放出は、その濃度が低くとも半減期が長
い核種であるために、環境汚染防護上、極低濃度におい
て測定、監視する必要がある。さらに、トリチウムは、
生体を構成する有機化合物の基本構成元素の一つである
水素の放射性同位元素であるために、医用、生物学的応
用、原子力安全関連面よシ重要な測定対象となっている
0この種のトリチウム測定法には、一般に、高感度であ
ること、検出部の汚染がなく、安定性がよいこと、連続
測定が可能であること等が望まれる0〔従来技術とその
問題点〕 放射性物質数シ扱い施設からの排ガス又は環境中におい
て、トリチウム(T)は、通常水型トリチウム(HTO
、T2O)として存在するQ従来、気体試料中に含まれ
るトリチウム濃度の測定法としては、気体試料を直接通
気型電離箱へ導き、トリチウム濃度を検出する方法が主
に用いられておシ、連続測定が可能であるが、(1) 
 検出感度が十分でないQ (2)検出部への水型トリチウム(HTO、T2O)等
の吸着、吸蔵によりバックグラウンドが増大する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method for measuring the concentration of tritium contained in a gas sample. Because it is a nuclide with a long half-life even if its concentration is low, it is necessary to measure and monitor it at extremely low concentrations to protect against environmental pollution. Furthermore, tritium
Because it is a radioactive isotope of hydrogen, which is one of the basic constituent elements of organic compounds that make up living organisms, it is an important measurement target for medical, biological applications, and nuclear safety. In general, it is desirable for tritium measurement methods to have high sensitivity, no contamination of the detection part, good stability, and the possibility of continuous measurement0 [Prior art and its problems] Number of radioactive substances Tritium (T) is usually found in water-type tritium (HTO) in the exhaust gas from facilities that handle water or in the environment.
,T2O) Although it is possible to measure, (1)
Detection sensitivity is insufficient Q (2) Background increases due to adsorption and occlusion of water-type tritium (HTO, T2O), etc. to the detection part.

(3)検出部への腐蝕・汚染物質(例えばHCl。(3) Corrosion and contaminants (e.g. HCl) to the detection part.

SOx・・・)の混入によシ安定性が低下する0などの
欠点がある0 また、気体試料中に含まれるトリチウム水を凝縮し採取
した後に液体シンチレータ−などによりトリチウム濃度
を測定する方法もあり、検出感度は高いが、 (1)凝縮工程が必要であシ、連続測定が困難である。
There are also drawbacks such as a decrease in stability due to the contamination of SOx (...).In addition, there is also a method of measuring the tritium concentration using a liquid scintillator after condensing and collecting the tritium water contained in the gas sample. Yes, the detection sensitivity is high, but (1) a condensation process is required, making continuous measurement difficult.

(2)測定操作が煩雑であるQ (3)トリチウムを含む放射性廃棄物が残る0などの欠
点がある。
(2) The measurement operation is complicated (3) There are disadvantages such as the fact that radioactive waste containing tritium remains.

さらに、その他の測定法として、トリチウム水を凝縮採
取後、プロトン導電性高分子電解質膜よりなる電解セル
を用いて電気分解し、生成する水素分子(H2、HT 
、T2 )中のトリチウム濃度を検出する方法があシ、
検出部のバックグラウンドの低減、腐蝕・汚染物質の除
去が可能であるが、凝縮工程を必要とするために連続測
定が困難であるなどの欠点を有する。
Furthermore, as another measurement method, tritium water is condensed and collected, and then electrolyzed using an electrolytic cell made of a proton-conductive polymer electrolyte membrane, resulting in hydrogen molecules (H2, HT).
, T2) There is a method to detect the tritium concentration in
Although it is possible to reduce the background of the detection part and remove corrosion and contaminants, it has drawbacks such as the difficulty of continuous measurement because it requires a condensation process.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、前述の従来技術の欠点を除去し、検出
部の汚染がなく、高感度で安定なトリチウム濃度の連続
測定法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks of the prior art and to provide a highly sensitive and stable method for continuously measuring tritium concentration without contaminating the detection section.

〔発明の要点〕[Key points of the invention]

本発明は、種々の化学形態で含まれる気体試料中のトリ
チウムを一旦水(H2O,HTO、T2O)の化学形態
に変換し、プロトン導電性固体電解質よりなる電解セル
において気相状態のままで連続かつ選択的に電気分解し
て水素分子(Hz 、 HT 、 T2)の化学形態に
変換した後、放射線検出器に導き、トリチウムを検出す
ることによシ気体試料中のトリチウム濃度を測定しよう
とするものである0しかして、本発明は、次の各工程、 (1)トリチウム(T)を水(HTO、’r2o )、
水素分子(HT、T2)又は炭化水素(CH3T・・・
)などの種々の化学形態で含む試料中のトリチウム(T
)及び水素(H)を一旦気相で水(H2O。
The present invention involves converting tritium in a gaseous sample, which is contained in various chemical forms, into the chemical form of water (H2O, HTO, T2O), and then continuously converting the tritium in a gaseous state in an electrolytic cell made of a proton-conducting solid electrolyte. And try to measure the tritium concentration in the gas sample by selectively electrolyzing and converting it into the chemical form of hydrogen molecules (Hz, HT, T2) and then guiding it to a radiation detector to detect tritium. 0 However, the present invention involves the following steps: (1) converting tritium (T) into water (HTO, 'r2o);
Hydrogen molecules (HT, T2) or hydrocarbons (CH3T...
Tritium (T) in samples containing various chemical forms such as
) and hydrogen (H) once in the gas phase with water (H2O.

HTO、’r、o )の化学形態に変換する第一工程、
(2))!jチウムを含む水を気相状態のまま、その両
面に電極が接合されたプロトン導電性固体電解質よりな
る電解セルの陽極側よシ固体電解質へ連続的に供給する
第二工程、 (3)電極間に電圧を加えておき、陰極側に水素分子(
H2,HT、T2)を連続かつ選択的に発生させる第三
工程、 (4)  発生したトリチウムを含む水素分子を放射線
検出器へ連続的に導いてトリチウム濃度を測定する第四
工程、 からなる気相中トリチウム濃度の測定法に係る0本発明
では、試料中よシトリチウム(T)及び水素(H)を選
択的に分離するとともに、常温で凝縮する水型トリチウ
ムを常温で凝縮しない水素分子の化学形態に変換した後
に放射線検出器へ連続的に導入するようにしたために濃
縮効果も得られ、前述したような従来技術の欠点を除去
することができる0 〔発明の詳細な説明〕 以下に、本発明の測定法の具体的実施例を図面を参照し
ながら説明する。
a first step of converting into the chemical form HTO,'r,o);
(2))! A second step in which water containing lithium is continuously supplied in a vapor state from the anode side to the solid electrolyte of an electrolytic cell made of a proton-conductive solid electrolyte with electrodes bonded to both sides, (3) electrodes; A voltage is applied between them, and hydrogen molecules (
(4) a fourth step of continuously guiding the generated tritium-containing hydrogen molecules to a radiation detector to measure the tritium concentration. In the present invention, citritium (T) and hydrogen (H) are selectively separated from a sample, and water-type tritium, which condenses at room temperature, is separated from hydrogen molecules, which do not condense at room temperature. Since it is continuously introduced into the radiation detector after being converted into a chemical form, a concentration effect is also obtained, and the drawbacks of the prior art as described above can be eliminated. [Detailed Description of the Invention] Below, A specific example of the measuring method of the present invention will be described with reference to the drawings.

実施例1 第1図は、本発明の測定法の実施に用いられる装置の一
具体例の概略構成図である0 このような装置で本発明の測定法を実施するには、まず
、トリチウムを種々の化学形態で含む気体試料を、高温
に加熱されかつPt/A40sなどの酸化触媒が充填さ
れた反応器1に通すことによシ試料中に含まれるトリチ
ウム(T)及び水素(I()を全て水(H2O、HTO
、T2O)の化学形態に変換した後、電解セル2へ導く
。電解セル2は、P2O5−BaOなどのシん酸塩ガラ
ス又は8rCe l−x Mx 0a−a (x=0.
05〜0.1 ; M=Yb、 Sc 、 Y、 Mg
など)組成のペロプスカイト型酸化物などのプロトン導
電性を有する固体電解質21とアルミナ管又は石英管な
どの外筒るによシ二重構造とし、固体電解質21の両面
には多孔質白金電極nが接合されている。電解セル2は
、図示していない加熱器によ#)soo−ioo。
Example 1 FIG. 1 is a schematic diagram of a specific example of an apparatus used for carrying out the measuring method of the present invention. In order to carry out the measuring method of the present invention with such an apparatus, first, tritium is Tritium (T) and hydrogen (I All water (H2O, HTO
, T2O) and then introduced into the electrolytic cell 2. The electrolytic cell 2 is made of sinate glass such as P2O5-BaO or 8rCel-x Mx 0a-a (x=0.
05~0.1; M=Yb, Sc, Y, Mg
A solid electrolyte 21 having proton conductivity such as a perovskite-type oxide with a composition and an outer tube such as an alumina tube or a quartz tube have a double structure. are joined. The electrolytic cell 2 is heated by a heater (not shown).

℃の範囲の一定温度に保たれる0また、白金電極nは、
固体電解質21の内側(気体試料側)を正(陽極)、反
体側を負(陰極)となるように直流電源Uが接続されて
いる0電解セル2へ導入された気体試料中の水(H2O
,HTO、T2O )は、陽極において1反応式■に示
すように選択的に電気分解され、酸素分子(02)と水
素イオン(H”lT”)が生成する。H2O(HTO、
T2O)→2H”CT+)十し2Og+2e・・・・・
・■ ここで生成した酸素分子は気体試料中の他の成分(例え
ば窒素、腐蝕・汚染物質(HC4SOx・・・)など)
とともに排気される0水素イオン(H+、T+)は、固
体電解質中を陰極側へ移動し、陰極において反応式■に
示すように水素分子(H2、HT 、 T2 )が連続
かつ選択的に生成する。
Also, the platinum electrode n is kept at a constant temperature in the range of °C.
Water (H 2 O
, HTO, T2O) are selectively electrolyzed at the anode as shown in reaction formula 1, and oxygen molecules (02) and hydrogen ions (H"IT") are generated. H2O (HTO,
T2O) → 2H"CT+) 20g+2e...
・■ The oxygen molecules generated here are absorbed by other components in the gas sample (e.g. nitrogen, corrosion/contaminants (HC4SOx...), etc.)
The zero hydrogen ions (H+, T+) that are exhausted along with the reaction move to the cathode side in the solid electrolyte, and hydrogen molecules (H2, HT, T2) are continuously and selectively generated at the cathode as shown in reaction formula (■). .

2H+(T+)+2e−+H2(HT、T2)・・・・
・・・・・・・・・・・■陰極側に発生したトリチウム
を含む水素分子は、水素流量計3を通して放射線検出器
4へ導き、トリチウム濃度を検出する。検出値に水素流
量計3で得られた値を掛けることによシ試料中のトリチ
ウム濃度を求めることができる0 また、気体試料をプロトン導電性固体電解質管の外側へ
流す構成としても同様の効果が得られることは勿論であ
る。
2H+(T+)+2e-+H2(HT, T2)...
......■Hydrogen molecules containing tritium generated on the cathode side are guided to the radiation detector 4 through the hydrogen flow meter 3, and the tritium concentration is detected. The tritium concentration in the sample can be determined by multiplying the detected value by the value obtained by the hydrogen flowmeter 3.Also, the same effect can be obtained by flowing the gas sample outside the proton conductive solid electrolyte tube. Of course, this can be obtained.

実施例2 第2図は、実施例1で用いた電解セルの変形例であって
、一方を閉鎖した試験管型固体電解質を用いた場合を示
している。
Example 2 FIG. 2 is a modification of the electrolytic cell used in Example 1, in which a test tube type solid electrolyte with one end closed is used.

第2図において、31は固体電解質21内に設けられた
アルミナ又は石英などの試料導入管、32はアルミナな
どの外筒、おは加熱器で500〜1000℃の範囲内の
一定温度に電解セルを保つ。あはグラファイトなどのバ
ッキングである0 第1図の反応器1を通電、水型′トリチウムを含んだ気
体試料は、試料導入管31内で予備加熱され、固体電解
質21の底部に導入される。ここで、固体電解質21の
内側を正(陽極)、外側を負(陰極)となるように一定
電圧を加えておくと、固体電解質管内を上昇する間に気
体試料中の水(H2O,HTO。
In Fig. 2, 31 is a sample introduction tube made of alumina or quartz provided in the solid electrolyte 21, 32 is an outer cylinder made of alumina, etc., and the electrolytic cell is heated to a constant temperature within the range of 500 to 1000°C using a heater. keep it. A is a backing made of graphite or the like 0 When the reactor 1 shown in FIG. Here, if a constant voltage is applied so that the inside of the solid electrolyte 21 is positive (anode) and the outside is negative (cathode), water (H2O, HTO) in the gas sample will be absorbed while rising inside the solid electrolyte tube.

T2O)は電気分解され、陽極側に酸素(0□)、陰極
側に水素分子(H2、HT 、 T2 )が連続かつ選
択的に発生する。陽極側に発生した酸素は、気体試料中
の未電解成分とともに排気される。外筒32内には、一
定流量のキャリアガス(例えば窒素、アルゴンなど)を
流しておき、陰極側に発生したトリチウムを含む水素分
子を放射線検出器へ導き、トリチウムを検出し、気体試
料中のトリチウム濃度を測定する。
T2O) is electrolyzed, and oxygen (0□) is continuously and selectively generated on the anode side and hydrogen molecules (H2, HT, T2) on the cathode side. Oxygen generated on the anode side is exhausted together with unelectrolyzed components in the gas sample. A constant flow rate of carrier gas (for example, nitrogen, argon, etc.) is allowed to flow inside the outer cylinder 32, and hydrogen molecules containing tritium generated on the cathode side are guided to a radiation detector to detect tritium and detect the presence of tritium in the gas sample. Measure tritium concentration.

このような電解セルを用いることにより、電気分解の前
において、気体試料を予備加熱することができ、このた
め気体試料の流量を大きくシ、短時間で多量の気体試料
中の水を電気分解することができる。また、装置を小型
化することが可能となる。
By using such an electrolytic cell, it is possible to preheat the gas sample before electrolysis, thus increasing the flow rate of the gas sample and electrolyzing a large amount of water in the gas sample in a short period of time. be able to. Moreover, it becomes possible to downsize the device.

実施例3 第3図は、実施例1で用いた電解セルの他の変形例で板
状固体電解質を用いた場合の積層形電解セルの単位電解
セルである。
Example 3 FIG. 3 shows a unit electrolytic cell of a laminated electrolytic cell, which is another modification of the electrolytic cell used in Example 1 and uses a plate-shaped solid electrolyte.

第3図において、あは直流電源冴と白金電極乙を電気的
に接続しかつ気体の通過が可能な通気性のカレントコレ
クタである0 このような電解セルを用いて本発明の測定法を実施する
には、第3図に示す単位電解セルを多層構造となるよう
に構成し、そして各単位電解セルの陽極側に第1図の反
応器1を通過した水型トリチウムを含む気体試料を連続
的に導入し、また陰極側にはキャリア−ガス(例えば窒
素、アルゴンなど)を流す。次いで実施例1と同様にト
リチウム濃度の測定を行う。
In Figure 3, A is an air-permeable current collector that electrically connects the DC power source and the platinum electrode and allows gas to pass through.The measurement method of the present invention is carried out using such an electrolytic cell. In order to do this, the unit electrolytic cells shown in Fig. 3 are constructed to have a multilayer structure, and a gas sample containing water-type tritium that has passed through the reactor 1 shown in Fig. 1 is continuously applied to the anode side of each unit electrolytic cell. A carrier gas (for example, nitrogen, argon, etc.) is flowed on the cathode side. Next, the tritium concentration is measured in the same manner as in Example 1.

この電解セルを用いることによシ気体試料の流量を大き
くシ、短時間で多量の気体試料中の水を電気分解するこ
とができ、しかも装置を小型化することができる。
By using this electrolytic cell, the flow rate of the gas sample can be increased, a large amount of water in the gas sample can be electrolyzed in a short time, and the apparatus can be made smaller.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、種々の化学形態で含まれる気体試料中
のトリチウムを一旦水(H2O,HTO,T2O)の化
学形態に変換し、プロトン導電性固体電解質よりなる電
解セルにおいて気相状態のままで連続的かつ選択的に電
気分解して水素分子(H2,HT。
According to the present invention, tritium contained in a gaseous sample in various chemical forms is once converted into the chemical form of water (H2O, HTO, T2O), and then remains in a gas phase in an electrolytic cell made of a proton-conducting solid electrolyte. to continuously and selectively electrolyze hydrogen molecules (H2, HT).

T2)の化学形態に変換した後、放射線検出器に導いて
トリチウムを検出してトリチウム濃度を測定するように
したために気相状態のままで試料中よシトリチウム(T
)及び水素(H:を選択的に分離するとともに、常温で
凝縮する水型トリチウムを常温で凝縮しない水素分子の
化学形態に変換して連続的に放射線検出器へ導入するこ
とができる。
After converting to the chemical form of citritium (T2), it is introduced into a radiation detector to detect tritium and measure the tritium concentration.
) and hydrogen (H:) can be selectively separated, and water-type tritium, which condenses at room temperature, can be converted into the chemical form of hydrogen molecules, which does not condense at room temperature, and can be continuously introduced into the radiation detector.

このため、 (i)  凝縮工程を必要としない。For this reason, (i) No condensation step is required.

(11)放射線検出器への水型トリチウムの吸着による
バックグラウンドの増加を防ぐ。
(11) Preventing background increase due to adsorption of water-type tritium onto radiation detectors.

(iii)  放射線検出器の前段において腐蝕・汚染
物質を除去し得る。
(iii) Corrosion and contaminants can be removed before the radiation detector.

Gv)  固体電解質を用いているために安定である0
(■)トリチウムを濃縮する ことが可能となシ、シたがって (1)  連続測定が可能 (2)  バックグラウンドの低下 (3)安定性の向上 (4)  検出感度の向上 という効果が得られる0
Gv) 0 which is stable because it uses a solid electrolyte
(■) It is possible to concentrate tritium, which results in the following effects: (1) Continuous measurement is possible (2) Background is reduced (3) Stability is improved (4) Detection sensitivity is improved 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の測定法の実施に用いられる装置の一
具体例の概略構成図である0第2図及び第3図は、第1
図の装置における電解セルの他の変形例をそれぞれ示す
図である0 1・・・反応器、2・・・電解セル、3・・・放射線検
出器、21・・・固体電解質、n・・・白金電極宴1ソ
FIG. 1 is a schematic diagram of a specific example of an apparatus used for carrying out the measurement method of the present invention. FIGS.
0 1... Reactor, 2... Electrolytic cell, 3... Radiation detector, 21... Solid electrolyte, n...・Platinum electrode banquet 1 so

Claims (1)

【特許請求の範囲】 1)次の各工程からなる気相中トリチウム濃度測定法。 (1)トリチウム(T)を水素分子(HT、T_2)、
水(HTO、T_2O)又は炭化水素(CH_3T、・
・・)等の化学形態で含む気体試料中のトリチウム(T
)及び水素(H)を水(H_2O、HTO、T_2O)
の形態に変換する第一工程、 (2)水(H_2O、HTO、T_2O)の化学形態で
トリチウム(T)を含む気体試料を、その両面に電極が
接合されたプロトン導電性固体電解質よりなる電解セル
の陽極側より電解質へ供給する第二工程、(3)電極間
に電圧を加えて水の電気分解を行い、これにより陰極側
にトリチウム(T)を含む水素分子(HT、T_2、H
_2)を発生させる第三工程、及び(4)陰極側に発生
したトリチウム(T)を含む水素分子(H_2、HT、
T_2)を放射線検出器へ導入してトリチウム濃度を測
定する第四工程。 2)特許請求の範囲第1項記載の測定法において、陰極
側に発生したトリチウム(T)を含む水素分子(H_2
、HT、T_2)を不活性キャリア−ガスとともに検出
器に導入することを特徴とする気相中トリチウム濃度測
定法。
[Claims] 1) A method for measuring tritium concentration in a gas phase, which comprises the following steps. (1) Tritium (T) and hydrogen molecules (HT, T_2),
Water (HTO, T_2O) or hydrocarbons (CH_3T, ・
Tritium (T
) and hydrogen (H) to water (H_2O, HTO, T_2O)
(2) A gaseous sample containing tritium (T) in the chemical form of water (H_2O, HTO, T_2O) is electrolyzed using a proton-conductive solid electrolyte with electrodes bonded to both sides. The second step is to supply water to the electrolyte from the anode side of the cell.
_2), and (4) hydrogen molecules containing tritium (T) generated on the cathode side (H_2, HT,
A fourth step of introducing T_2) into a radiation detector and measuring the tritium concentration. 2) In the measurement method described in claim 1, hydrogen molecules (H_2) containing tritium (T) generated on the cathode side
, HT, T_2) into a detector together with an inert carrier gas.
JP20680084A 1984-10-02 1984-10-02 Measurement for concentration of tritium in gaseous phase Pending JPS61191978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20680084A JPS61191978A (en) 1984-10-02 1984-10-02 Measurement for concentration of tritium in gaseous phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20680084A JPS61191978A (en) 1984-10-02 1984-10-02 Measurement for concentration of tritium in gaseous phase

Publications (1)

Publication Number Publication Date
JPS61191978A true JPS61191978A (en) 1986-08-26

Family

ID=16529302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20680084A Pending JPS61191978A (en) 1984-10-02 1984-10-02 Measurement for concentration of tritium in gaseous phase

Country Status (1)

Country Link
JP (1) JPS61191978A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154981A (en) * 1986-12-18 1988-06-28 Aloka Co Ltd Radioactive water monitoring apparatus
JP2006133198A (en) * 2004-11-09 2006-05-25 National Institutes Of Natural Sciences Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis
GB2523732A (en) * 2014-02-11 2015-09-09 Univ Lancaster Tritium measurement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154981A (en) * 1986-12-18 1988-06-28 Aloka Co Ltd Radioactive water monitoring apparatus
JPH0551111B2 (en) * 1986-12-18 1993-07-30 Aloka Co Ltd
JP2006133198A (en) * 2004-11-09 2006-05-25 National Institutes Of Natural Sciences Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis
JP4613307B2 (en) * 2004-11-09 2011-01-19 大学共同利用機関法人自然科学研究機構 Tritium removal method for manufacturing positron emission tomography medicines
GB2523732A (en) * 2014-02-11 2015-09-09 Univ Lancaster Tritium measurement
GB2523732B (en) * 2014-02-11 2022-08-17 Lancaster Univ Business Enterprises Ltd Lubel Tritium measurement

Similar Documents

Publication Publication Date Title
Conway et al. Ultrapurification of water for electrochemical and surface chemical work by catalytic pyrodistillation
Gubbins et al. The solubility and diffusivity of oxygen in electrolytic solutions
JP2004191271A (en) Water electrolyzer for measuring water stable isotope ratio, and water stable isotope ratio mass spectrometric analytical method
Šıma et al. The efficiency of the electrochemical generation of volatile hydrides studied by radiometry and atomic absorption spectrometry
Roy Influence of temperature on the electrolytic separation factor of hydrogen isotopes
CN103743693A (en) Total organic carbon analysis instrument and method based on electrochemical catalytic oxidation
JPS61191978A (en) Measurement for concentration of tritium in gaseous phase
Garber et al. Determination of atmospheric sulfur dioxide by differential pulse polarography
Tanaka et al. Extraction of hydrogen and tritium using high-temperature proton conductor for tritium monitoring
EP0096417B1 (en) Apparatus for measuring dissolved hydrogen concentration
JPS6175281A (en) Measurement of tritium concentration
JPS59164976A (en) Measurement of tritium concentration
Alvarez Sub-microgram per gram concentrations of mercury in orchard leaves determined by isotope dilution and spark-source mass spectrometry
Momoshima et al. Electrolytic enrichment of tritium with solid polymer electrolyte for application to environmental measurements
Saito Enrichment reliability of solid polymer electrolysis for tritium water analysis
Soreefan et al. Determination of tritium enrichment parameters of a commercially available PEM electrolyzer: a comparison with conventional enrichment electrolysis
Bae et al. Efficiency enhanced electrolysis-based tritium continuous monitor
JPH0551111B2 (en)
JPS6080755A (en) Determination process for tritium concentration
Tanaka et al. Hydrogen extraction characteristics of proton-conducting ceramics under a wet air atmosphere for a tritium stack monitor
Sherwood X-ray photoelectron spectroscopic (XPS) studies of electrode surfaces
Satake et al. Electrolytic enrichment of tritium with Fe-Ni and Ni-Ni electrodes and estimation of tritium enrichment factor using Fe-Ni electrodes
JP3780627B2 (en) Underwater TOC monitor
Muranaka et al. A study to estimate tritium concentrations of 1 Bq/L or lower in water samples
Cohen et al. Determination of 18O concentrations in musamples of biological fluids