JP2006133198A - Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis - Google Patents

Tritium removal method at manufacturing of pharmaceutical products for positron emission tomography diagnosis Download PDF

Info

Publication number
JP2006133198A
JP2006133198A JP2004325628A JP2004325628A JP2006133198A JP 2006133198 A JP2006133198 A JP 2006133198A JP 2004325628 A JP2004325628 A JP 2004325628A JP 2004325628 A JP2004325628 A JP 2004325628A JP 2006133198 A JP2006133198 A JP 2006133198A
Authority
JP
Japan
Prior art keywords
tritium
gas
target water
positron emission
emission tomography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004325628A
Other languages
Japanese (ja)
Other versions
JP4613307B2 (en
Inventor
Yoichi Sakuma
洋一 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Natural Sciences
Original Assignee
National Institute of Natural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Natural Sciences filed Critical National Institute of Natural Sciences
Priority to JP2004325628A priority Critical patent/JP4613307B2/en
Publication of JP2006133198A publication Critical patent/JP2006133198A/en
Application granted granted Critical
Publication of JP4613307B2 publication Critical patent/JP4613307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Nuclear Medicine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for safely discharging tritium as gas in the air, that has accumulated in target water as a byproduct, during manufacturing pharmaceutical products for positron emission tomography diagnosis. <P>SOLUTION: For discharging tritium T as HT gas in the air which is contained in target water, by having it irradiated with positrons by a cyclotron, the tritium-containing target water is lead to electrolysis cell 4 and decomposed by electrolysis into molecular oxygen<SP>18</SP>O<SB>2</SB>and HT gas. The HT gas is discharged through a stack 10, and for flow-out molecular oxygen<SP>18</SP>O<SB>2</SB>, a carrier gas N<SB>2</SB>and hydrogen gas H<SB>2</SB>are made to merge, and are cooled and collected as H<SB>2</SB><SP>18</SP>O by way of a coupling column 8. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、陽電子断層診断用医薬品の製造時に副産物として生じるトリチウムを、安全に処理するための方法に関する。   The present invention relates to a method for safely treating tritium generated as a by-product during the manufacture of a positron emission tomography diagnostic drug.

従来、陽電子断層診断(以下、Positron Emission Tomography の頭文字を組み合わせてPETと呼ぶ。)に用いられる医薬品としてのFDG([18F]−2−fluoro−2−deoxy−D−glucose)は、糖代謝診断に用いられているが、これに含まれる、フッ素の放射性同位体であるフッ素18(18F)は、半減期109.8minの陽電子(ポジトロン)放出核種である。
FDGは一般に、サイクロトロンで陽子を酸素18が濃縮された水(濃縮[18O]−H2O)に照射して、18O(p,n)18F反応によって18Fを生成し、それを原料にして合成されているが、その際、競合核反応である18O(p,t)16O反応によってトリチウム(3H)も生成される。
ある研究によれば、ターゲット水回収量は1回当たり約1mLで、トリチウム生成量は18F生成量の2.4×10-6であった。
トリチウム(3H)は水素の放射性同位体で半減期12.3年のβ崩壊核種である。したがって、FDG合成を行う作業者のトリチウムによる放射線被曝や使用済みターゲット水の処分などが問題になり、ターゲット水に蓄積されるトリチウムを取り除くことが望まれている。しかし、使用されるターゲット水が少量でかつ高価であることから、操作が困難であり、実際には行われていない。
伊藤茂樹他、第4回環境放射能研究会プロシーディングス、(2003年)345−351頁
Conventionally, FDG ([ 18 F] -2-fluoro-2-deoxy-D-glucose) as a pharmaceutical used for positron emission tomography diagnosis (hereinafter referred to as PET in combination with the acronym of Positron Emission Tomography) is sugar Fluorine 18 ( 18 F), which is a radioisotope of fluorine, used for metabolic diagnosis, is a positron emission nuclide having a half-life of 109.8 min.
FDG generally by irradiating protons in water oxygen 18 enriched (enriched [18 O] -H 2 O) in a cyclotron, 18 O (p, n) 18 by F reaction generates 18 F, it In this case, tritium ( 3 H) is also produced by the 18 O (p, t) 16 O reaction which is a competitive nuclear reaction.
According to one study, the amount of target water recovered was about 1 mL per time, and the amount of tritium produced was 2.4 × 10 −6 of 18 F produced.
Tritium ( 3 H) is a radioisotope of hydrogen and a beta decay nuclide with a half-life of 12.3 years. Therefore, radiation exposure by tritium of an operator who performs FDG synthesis, disposal of used target water, and the like become problems, and it is desired to remove tritium accumulated in the target water. However, since the amount of target water used is small and expensive, it is difficult to operate and is not actually performed.
Shigeki Ito et al., 4th Environmental Radioactivity Research Group Proceedings, (2003) 345-351

本発明は、前述のPET製造時に副産物としてターゲット水に蓄積されるトリチウムを、気体として大気中へ安全に放出できるようにした方法を提供することを課題とする。   An object of the present invention is to provide a method in which tritium accumulated in target water as a by-product during the above-described PET production can be safely released into the atmosphere as a gas.

前述の課題を解決するため、本発明のトリチウム除去方法は、陽電子断層診断用医薬品としてのフルオロ・デオキシ・グルコースを合成するため、酸素18が濃縮されたターゲット水にサイクロトロンで陽子を照射して18O(p,n)18F反応により18Fを生成する際に、競合核反応である18O(p,t)16O反応によって生成されるトリチウム含有ターゲット水について、トリチウムを除去すべく、同トリチウム含有ターゲット水を電解セルへ導いて電気分解により分子状酸素182とHTガスとに分解し、流出する上記分子状酸素についてはキャリヤーガスN2および水素ガスH2を合流させて結合カラムを介しH2 18Oとして冷却捕集するとともに、上記HTガスは大気中へ放出することを特徴としている。 To solve the problems mentioned above, tritium removal method of the present invention, for synthesizing fluoro-deoxy-glucose as a medicament for positron tomography, oxygen 18 is irradiated with protons in a cyclotron onto a target water enriched 18 In order to remove tritium from the tritium-containing target water produced by the 18 O (p, t) 16 O reaction, which is a competitive nuclear reaction, when 18 F is produced by the O (p, n) 18 F reaction, The tritium-containing target water is led to an electrolytic cell and decomposed into molecular oxygen 18 O 2 and HT gas by electrolysis, and for the molecular oxygen flowing out, carrier gas N 2 and hydrogen gas H 2 are combined to form a coupling column. The HT gas is cooled and collected as H 2 18 O through the gas, and the HT gas is released into the atmosphere.

上述の本発明のトリチウム除去方法では、陽電子断層診断用医薬品の製造時に生成されたトリチウム含有ターゲット水HT18Oが、電解セルへ導かれて、同電解セル内の陽極および陰極の作用で電気分解されることにより分子状酸素182とHTガスとに分解される。 In the above-described tritium removal method of the present invention, the tritium-containing target water HT 18 O produced during the production of the positron emission tomography diagnostic drug is led to the electrolysis cell and electrolyzed by the action of the anode and cathode in the electrolysis cell. As a result, it is decomposed into molecular oxygen 18 O 2 and HT gas.

このようにして生成されたHTガスは、所要の濃度限度以下であることを確かめながら大気中へ放出される。HTガスはHTOよりも遥かに人体影響が小さく、大気中におけるHTからHTOへの変換速度は非常に遅い。さらに、半減期12.3年でトリチウムは次第に無害なHeに壊変していくことから、安全性は十分に確保されることになる。   The HT gas produced in this way is released into the atmosphere while ensuring that it is below the required concentration limit. HT gas has much less human influence than HTO, and the conversion rate from HT to HTO in the atmosphere is very slow. Furthermore, since tritium gradually decays into harmless He with a half-life of 12.3 years, safety is sufficiently ensured.

また、分子状酸素182については、キャリヤーガスN2および水素ガスH2を合流させて、結合カラムを介し容易に無害のH2 18Oとして冷却捕集することができる。 Further, the molecular oxygen 18 O 2 can be easily cooled and collected as harmless H 2 18 O through the combined column by combining the carrier gas N 2 and the hydrogen gas H 2 .

糖代謝診断などに用いられるPET用医薬品としてのFDGの製造時に、サイクロトロンで陽子を照射されるターゲット水には、水素の放射性同位元素としての危険なトリチウムTが含まれる。そこで、本実施例では、電解セルにおける電気分解によって、上記ターゲット水に含まれるトリチウムTを、分子状水素(HT)に移動させてから、これを大気中へ放出する手段が採用される。   The target water irradiated with protons by a cyclotron at the time of production of FDG as a PET pharmaceutical used for sugar metabolism diagnosis and the like contains dangerous tritium T as a radioisotope of hydrogen. Therefore, in this embodiment, a means is adopted in which tritium T contained in the target water is moved to molecular hydrogen (HT) by electrolysis in an electrolytic cell and then released into the atmosphere.

すなわち、人体に対する影響の違いから、放射線管理区域から排出する場合、分子状水素(水素ガス)のトリチウムの法規制値は、水蒸気状に比べて[表1]に示すように、約10,000倍緩くなっているので放出には問題はない。

Figure 2006133198
That is, due to the difference in the effects on the human body, when discharged from a radiation control area, the legally regulated value of molecular hydrogen (hydrogen gas) tritium is about 10,000 as shown in [Table 1] as compared to that of water vapor. There is no problem with the release because it is twice as loose.
Figure 2006133198

上記の電気分解による反応は、[数1]式のように行われる。
[数1]
1318O(liquid)→ 213H(gas)+182(gas)
The reaction by the above electrolysis is performed as shown in [Formula 1].
[Equation 1]
2 1 H 3 H 18 O (liquid) → 2 1 H 3 H (gas) + 18 O 2 (gas)

また、再結合反応は、[数2]式のように行われる。
[数2]
1H(gas)+182(gas)→ 212 18O(liquid)
In addition, the recombination reaction is performed as shown in [Formula 2].
[Equation 2]
2 1 H (gas) + 18 O 2 (gas) → 2 1 H 2 18 O (liquid)

本実施例では、図1に示すように、直流電源1に接続された陽極2および陰極3を有する電解セル4の内部に、トリチウム含有ターゲット水HT18Oが導かれて、同電解セル4の内部で電気分解により分子状酸素182とHTガスとに分解される作用が行われる。
なお、陽極2と陰極3との間にはSPE膜5が設けられている。
そして、発生したトリチウムを含むHTガスは、煙突10を通じ大気中へ放出される。
In this embodiment, as shown in FIG. 1, tritium-containing target water HT 18 O is led into an electrolytic cell 4 having an anode 2 and a cathode 3 connected to a DC power source 1, and The inside is decomposed into molecular oxygen 18 O 2 and HT gas by electrolysis.
An SPE film 5 is provided between the anode 2 and the cathode 3.
The generated HT gas containing tritium is released into the atmosphere through the chimney 10.

また、上記の分子状酸素182については、第1ボンベ6から導かれたキャリヤーガスN2と第2ボンベ7から導かれた水素ガスH2とを合流させることにより、結合カラム8を介し容易に無害のH2 18Oとしてタンク9内に冷却捕集することができる。
そして、余剰ガス(H2+N2)は別の図示しないタンクへ移される。
The molecular oxygen 18 O 2 is combined with the carrier gas N 2 guided from the first cylinder 6 and the hydrogen gas H 2 guided from the second cylinder 7 through the coupling column 8. It can be easily cooled and collected in the tank 9 as harmless H 2 18 O.
The surplus gas (H 2 + N 2 ) is transferred to another tank (not shown).

このようにして、煙突10から大気中へ放出されたHTガスは、空気よりも軽いので大気圏上層へ向かって上昇し、安全性が確保されるようになるが、生活圏に存在しても、液体(ターゲット水)に含まれるトリチウムの場合に比べれば、ほとんど無害になるといえる。   In this way, the HT gas released from the chimney 10 into the atmosphere is lighter than air, so it rises toward the upper atmosphere, ensuring safety, but even if it exists in the living sphere, Compared to the case of tritium contained in the liquid (target water), it can be said that it is almost harmless.

PETが急速に普及し始めているので、トリチウムの蓄積されたターゲット水の無害化処理が急がれることになるが、トリチウムの蓄積の割合が基準値を超えたターゲット水を処理センターに集めて、本発明の方法により総合的にトリチウム除去処理を施すことが望まれる。   Since PET has begun to spread rapidly, detoxification processing of target water with accumulated tritium will be urgent, but target water whose tritium accumulation rate has exceeded the standard value is collected at the treatment center. It is desirable to perform a tritium removal treatment comprehensively by the method of the present invention.

本発明の一実施例としての方法に用いられる装置を模式的に示す説明図である。It is explanatory drawing which shows typically the apparatus used for the method as one Example of this invention.

符号の説明Explanation of symbols

1 直流電源
2 陽極
3 陰極
4 電解セル
5 SPE膜
6 第1ボンベ
7 第2ボンベ
8 結合カラム
9 タンク
10 煙突
DESCRIPTION OF SYMBOLS 1 DC power supply 2 Anode 3 Cathode 4 Electrolysis cell 5 SPE film 6 1st cylinder 7 2nd cylinder 8 Coupling column 9 Tank
10 Chimney

Claims (1)

陽電子断層診断用医薬品としてのフルオロ・デオキシ・グルコースを合成するため、酸素18が濃縮されたターゲット水にサイクロトロンで陽子を照射して18O(p,n)18F反応により18Fを生成する際に、競合核反応である18O(p,t)16O反応によって生成されるトリチウム含有ターゲット水について、トリチウムを除去すべく、同トリチウム含有ターゲット水を電解セルへ導いて電気分解により分子状酸素182とHTガスとに分解し、流出する上記分子状酸素についてはキャリヤーガスN2および水素ガスH2を合流させて結合カラムを介しH2 18Oとして冷却捕集するとともに、上記HTガスは大気中へ放出することを特徴とする、陽電子断層診断用医薬品製造時のトリチウム除去方法。 To synthesize fluoro-deoxy-glucose as a medicament for positron tomography, irradiated with protons in a cyclotron onto a target water oxygen 18 is concentrated 18 O (p, n) 18 when generating F reaction with 18 F In addition, with respect to the tritium-containing target water produced by the 18 O (p, t) 16 O reaction which is a competitive nuclear reaction, in order to remove tritium, the tritium-containing target water is led to an electrolytic cell and electrolyzed to form molecular oxygen. The molecular oxygen that decomposes and flows out into 18 O 2 and HT gas is combined with carrier gas N 2 and hydrogen gas H 2 to be cooled and collected as H 2 18 O through a coupling column, and the HT gas Is a method for removing tritium during the manufacture of a positron emission tomography diagnostic drug, characterized by being released into the atmosphere.
JP2004325628A 2004-11-09 2004-11-09 Tritium removal method for manufacturing positron emission tomography medicines Active JP4613307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004325628A JP4613307B2 (en) 2004-11-09 2004-11-09 Tritium removal method for manufacturing positron emission tomography medicines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004325628A JP4613307B2 (en) 2004-11-09 2004-11-09 Tritium removal method for manufacturing positron emission tomography medicines

Publications (2)

Publication Number Publication Date
JP2006133198A true JP2006133198A (en) 2006-05-25
JP4613307B2 JP4613307B2 (en) 2011-01-19

Family

ID=36726855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004325628A Active JP4613307B2 (en) 2004-11-09 2004-11-09 Tritium removal method for manufacturing positron emission tomography medicines

Country Status (1)

Country Link
JP (1) JP4613307B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177105B1 (en) * 2020-07-08 2020-11-10 김정묵 Device and method for safe water regeneration containing oxygen isotope 18

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228996A (en) * 1984-04-26 1985-11-14 昭和電工株式会社 Method of processing water containing tritium
JPS61191978A (en) * 1984-10-02 1986-08-26 Fuji Electric Co Ltd Measurement for concentration of tritium in gaseous phase
JPS6338197A (en) * 1986-08-04 1988-02-18 三菱重工業株式会社 Hydrogen isotope gas removing device
JP2004294300A (en) * 2003-03-27 2004-10-21 Sumitomo Heavy Ind Ltd Target device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60228996A (en) * 1984-04-26 1985-11-14 昭和電工株式会社 Method of processing water containing tritium
JPS61191978A (en) * 1984-10-02 1986-08-26 Fuji Electric Co Ltd Measurement for concentration of tritium in gaseous phase
JPS6338197A (en) * 1986-08-04 1988-02-18 三菱重工業株式会社 Hydrogen isotope gas removing device
JP2004294300A (en) * 2003-03-27 2004-10-21 Sumitomo Heavy Ind Ltd Target device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102177105B1 (en) * 2020-07-08 2020-11-10 김정묵 Device and method for safe water regeneration containing oxygen isotope 18

Also Published As

Publication number Publication date
JP4613307B2 (en) 2011-01-19

Similar Documents

Publication Publication Date Title
JP5268936B2 (en) Target for producing radioisotope material, method for producing the same and system
JP6478558B2 (en) Radiopharmaceutical manufacturing system, radiopharmaceutical manufacturing apparatus and radiopharmaceutical manufacturing method
CA2666570A1 (en) Manufacturing method of radioactive molybdenum, manufacturing apparatus and radioactive molybdenum manufactured thereby
US20120090431A1 (en) Method of recovering enriched radioactive technetium and system therefor
RU2756621C1 (en) Method for obtaining ac-225 from ra-226
EP2788989A1 (en) Radionuclide generator having first and second atoms of a first element
Richards et al. Cyclotron production of 99mTc using 100Mo2C targets
JP4613307B2 (en) Tritium removal method for manufacturing positron emission tomography medicines
CA2788546A1 (en) Method and device for producing 99mtc
Naseri et al. Effective isolation of europium impurities from 153Sm using electro amalgamation approach based on response surface methodology
JP4613306B2 (en) Tritium removal method for manufacturing positron emission tomography medicines
Qaim et al. Production of longer-lived positron emitters 73Se, 82mRb and 124I
KR20140023514A (en) Extracting method of radioactive 99mo from low enriched uranium target
Bartoś et al. 103 Ru/103m Rh generator
Koch et al. Production of Ac-225 and application of the Bi-213 daughter in cancer therapy
KR102177105B1 (en) Device and method for safe water regeneration containing oxygen isotope 18
JP4898152B2 (en) High yield production of 18F [F2] fluorine from 18O [O2] oxygen
Pashentsev Production of radionuclides for cyclotron positron-emission tomography
JP7324921B2 (en) Surplus water treatment method and surplus water treatment system
JP2006110533A (en) Separation recovery method for positron emitting nuclides derived from halogen and synthetic method for 18f labeling compound and na18f
JP7426324B2 (en) Radioisotope production method, radioisotope production system and capsule
US20220108813A1 (en) Novel method to separate isotopes created by photonuclear reactions
Naseri et al. Separation of 153Sm as a therapeutic radionuclide from Eu impurities using electro-amalgamation
Dikiy et al. Development of new electron irradiation based technology for technetium-99m production
DE10028056A1 (en) Process and apparatus for production of carrier-free 72As useful as component of positron emission tomography pharmaceuticals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150