JPS61190990A - Superconductive element - Google Patents

Superconductive element

Info

Publication number
JPS61190990A
JPS61190990A JP60030366A JP3036685A JPS61190990A JP S61190990 A JPS61190990 A JP S61190990A JP 60030366 A JP60030366 A JP 60030366A JP 3036685 A JP3036685 A JP 3036685A JP S61190990 A JPS61190990 A JP S61190990A
Authority
JP
Japan
Prior art keywords
superconducting
impurity concentration
layer
electrode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60030366A
Other languages
Japanese (ja)
Other versions
JP2568995B2 (en
Inventor
Juichi Nishino
西野 壽一
Mutsuko Miyake
三宅 睦子
Ushio Kawabe
川辺 潮
Yutaka Harada
豊 原田
Masaaki Aoki
正明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60030366A priority Critical patent/JP2568995B2/en
Priority to DE3588086T priority patent/DE3588086T2/en
Priority to EP95104470A priority patent/EP0667645A1/en
Priority to EP85308009A priority patent/EP0181191B1/en
Publication of JPS61190990A publication Critical patent/JPS61190990A/en
Priority to US07/073,408 priority patent/US4884111A/en
Priority to US07/412,201 priority patent/US5126801A/en
Priority to US07/875,431 priority patent/US5311036A/en
Priority to US08/201,410 priority patent/US5442196A/en
Application granted granted Critical
Publication of JP2568995B2 publication Critical patent/JP2568995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/128Junction-based devices having three or more electrodes, e.g. transistor-like structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To increase gains at a time when controlling the state of coupling between superconducting electrodes by applied voltage by changing the distribution of impurity concentration in semiconductor layers forming the superconducting electrodes. CONSTITUTION:When negative voltage is applied to a control electrode 5, the storage layer of positive charges easily extends into a low impurity- concentration layer 3. Consequently, the state of superconductive coupling between a first superconducting electrode 6 and a second superconducting electrode 7 can be changed by a small control signal of approximately 10mV at that time, thus making gains larger than the uniform distribution of an impurity by approximately 2.5-3 times. When positive voltage is applied to the control electrode 5, the inversion layer of negative charges hardly extends at small control voltage. When fixed voltage or more is applied, the inversion layer expands to the low impurity-concentration layer 3 first, and the state of superconductive coupling between the first and second superconducting electrodes 6, 7 begins to change rapidly. Accordingly, a superconductive element having a function of large gains is acquired.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、極低温で動作する超電導素子に係り、特に半
導体中をトンネルする超電導あるいは常電導電子の数を
、制御電極に印加する電圧によって制御する超電導素子
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a superconducting device that operates at extremely low temperatures, and in particular to controlling the number of superconducting or normal conducting electrons tunneling through a semiconductor by a voltage applied to a control electrode. The present invention relates to superconducting elements.

〔発明の背景〕[Background of the invention]

半導体を使用し、デバイスの特性を制御するための電極
を有する超電導デバイスとしては、 T、 D。
Superconducting devices that use semiconductors and have electrodes to control device characteristics include T and D.

Phys、)2736.51 (1980)に報告され
ており公知である。JOFETにおいては高濃度にドー
プされた半導体基板上に超電導体より成る電極を形成す
るか。
Phys, ) 2736.51 (1980) and is well known. In a JOFET, should an electrode made of a superconductor be formed on a heavily doped semiconductor substrate?

あるいは高純度のバッファ層上にドープ層を形成し、そ
の上に超電導体より成る電極を形成する。
Alternatively, a doped layer is formed on a high-purity buffer layer, and an electrode made of a superconductor is formed thereon.

この場合、デバイス特性の制御は、制御電極に電圧を印
加し1反転層を制御電極側から半導体側へ拡げることに
よって行っている。この場合、制御電極直下の半導体層
の不純物濃度が高いために、制御電極に印加すべき電圧
は、数百ミリボルトに達するのに対して出力として得ら
れる電圧はこれと同程度かあるいはこれよりも小さく、
従来の半導体技術において使用されている回路と同様の
回路を使用することはできなかった。
In this case, the device characteristics are controlled by applying a voltage to the control electrode to spread one inversion layer from the control electrode side to the semiconductor side. In this case, because the impurity concentration of the semiconductor layer directly under the control electrode is high, the voltage that should be applied to the control electrode reaches several hundred millivolts, whereas the voltage obtained as an output is about the same level or even higher. small,
It was not possible to use circuits similar to those used in conventional semiconductor technology.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、印加電圧で超電導電極間の結合状態を
制御する際の利得が大きい超電導素子を提供することに
ある。
An object of the present invention is to provide a superconducting element that has a large gain when controlling the coupling state between superconducting electrodes using an applied voltage.

〔発明の概要〕[Summary of the invention]

本発明は、半導体層(若しくは基板)に少なくとも2個
の超電導電極を接して設けるとともに該超電導電極間に
流れる電流を制御する(超電導電極間の超電導弱結合状
態を変化させる)電極を少なくとも1個設け、かつ半導
体層に含まれる不純物の分布が、平均以上の不純物濃度
を有する少なくとも1つの高不純物濃度部と平均以下の
不純物濃度を有する少なくとも1つの低不純物濃度部と
から成るように構成するものである。すなわち。
The present invention provides at least two superconducting electrodes in contact with a semiconductor layer (or substrate), and at least one electrode that controls the current flowing between the superconducting electrodes (changes the superconducting weak coupling state between the superconducting electrodes). and configured such that the distribution of impurities contained in the semiconductor layer consists of at least one high impurity concentration part having an impurity concentration above the average and at least one low impurity concentration part having an impurity concentration below the average. It is. Namely.

超電導電極を形成する半導体層中に含まれる不純物の濃
度分布に変化を持たせることによって前記目的を達成す
るものである。
The above object is achieved by varying the concentration distribution of impurities contained in the semiconductor layer forming the superconducting electrode.

従来の超電導デバイスにおける半導体層は不純物を高濃
度かつ均一に含有しているため制御電極に印加する電圧
に比して電荷の蓄積層若しくは反転層の拡がりが小さい
。本発明においては不純物の分布に変化をつけているこ
とから均一に不純物を含有している場合に比べて電荷の
蓄積層若しくは反転層の拡がりが異なり、小さな印加電
圧でも容易に蓄積層若しくは反転層を拡げることができ
利得を大きくすることができる。
The semiconductor layer in a conventional superconducting device uniformly contains impurities at a high concentration, so the spread of the charge accumulation layer or inversion layer is small compared to the voltage applied to the control electrode. In the present invention, since the distribution of impurities is varied, the spread of the charge accumulation layer or inversion layer is different from that in the case where impurities are uniformly contained, and even with a small applied voltage, the accumulation layer or inversion layer can be easily formed. can be expanded and the gain can be increased.

例えば本発明の推奨される一実施例においては半導体層
の一方に2つの超電導電極を設けるとともに半導体層の
他方に絶縁膜を介して制御電極を設け、かつ半導体層の
深さ方向に濃度分布が形成されるように、制御電極に近
い側の半導体中の不純物濃度を高くし超電導電極に近い
側の半導体中の不純物濃度を低くしている。このような
不純物分布の場合、小さな制御電圧でも高不純物濃度層
から低不純物濃度層に電荷の蓄積層が容易に拡がること
ができる。従って、このような特性を利用すれば超電導
弱結合状態を小さな制御電圧で容易に変えることができ
利得を大きくすることができる。一方反転層に関しては
、制御電圧が一定の値を越すまでは(すなわち高不純物
濃度層に反転層が拡がるまでは)反転層は拡がりにくい
が1反転層が低不純物濃度層に拡がるような電圧になる
と電圧の小さな増加でも反転層は容易に拡がるようにな
る。従ってこのような特性を利用すれば、制御電圧が一
定の値になるまでは殆ど特性が変化せず、その後制御電
圧が一定の値を越すと素子特性が急に変化する利得の大
きい超電導素子が得られる。
For example, in one recommended embodiment of the present invention, two superconducting electrodes are provided on one side of the semiconductor layer, and a control electrode is provided on the other side of the semiconductor layer with an insulating film interposed therebetween, and the concentration distribution is adjusted in the depth direction of the semiconductor layer. In order to achieve this, the impurity concentration in the semiconductor on the side closer to the control electrode is increased, and the impurity concentration in the semiconductor on the side closer to the superconducting electrode is lowered. In the case of such an impurity distribution, a charge accumulation layer can easily spread from a high impurity concentration layer to a low impurity concentration layer even with a small control voltage. Therefore, by utilizing such characteristics, the superconducting weakly coupled state can be easily changed with a small control voltage, and the gain can be increased. On the other hand, regarding the inversion layer, the inversion layer does not spread easily until the control voltage exceeds a certain value (that is, until the inversion layer spreads to the high impurity concentration layer), but at a voltage that causes the inversion layer to spread to the low impurity concentration layer, The inversion layer then expands easily even with a small increase in voltage. Therefore, by utilizing these characteristics, it is possible to create a high-gain superconducting element in which the characteristics hardly change until the control voltage reaches a certain value, and then the device characteristics suddenly change when the control voltage exceeds a certain value. can get.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図面により詳細に説明する。第
1図に本発明の一実施例を示す。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows an embodiment of the present invention.

(100)方位のSi単結晶基板1に、ホウ素を加速電
圧70KeVで10”cm−”の密度でイオン打込みし
、900℃において窒素中で35分間のアニールを行っ
た。この処理によって厚さ約200nmの高不純物濃度
層2が形成される。表面を清浄化処理したのち、続いて
その上に分子線エピタキシー法あるいは気相成長法によ
ってホウ素を不純物として1016〜10”dll−”
程度含んだ低不純物濃度層3が形成される。低不純物濃
度層3に含まれる不純物ホウ素の量は、高不純物濃度層
2に含まれる不純物ホウ素の量よりも少なくなるように
選ぶ、半導体がSiの場合不純物濃度は、低不純物濃度
層では1014〜10”an−’程度、高不純物濃度層
では101′〜101s程度であることが望ましい。
Boron ions were implanted into a (100)-oriented Si single crystal substrate 1 at a density of 10 cm at an acceleration voltage of 70 KeV, and annealed at 900° C. in nitrogen for 35 minutes. Through this treatment, a high impurity concentration layer 2 with a thickness of about 200 nm is formed. After cleaning the surface, boron is added as an impurity by molecular beam epitaxy or vapor phase epitaxy.
A low impurity concentration layer 3 containing a certain amount of impurity is formed. The amount of impurity boron contained in the low impurity concentration layer 3 is selected to be smaller than the amount of impurity boron contained in the high impurity concentration layer 2. When the semiconductor is Si, the impurity concentration is 1014~10 for the low impurity concentration layer. Desirably, it is about 10"an-', and about 101' to 101s in a high impurity concentration layer.

次に常圧気相成長法によって形成したSiO2等をマス
クとしてKOH等の薬品によってSi単結晶基板1を裏
面からエツチングする。このエツチングでは、Si単結
晶の(100)面のエツチング速度が(111)面のエ
ツチング速度に比べて大きいことから、第1図に示した
ような形状を得ることができる。続いてSi単結晶基板
1の表面を1000℃の純酸素中で酸化して厚さ約40
nmのS i Ox層4を形成し、次にAQを抵抗加熱
蒸着法により約500nm堆積させ制御電極5とした。
Next, the Si single crystal substrate 1 is etched from the back side using a chemical such as KOH using SiO2 or the like formed by normal pressure vapor phase growth as a mask. In this etching, since the etching rate of the (100) plane of the Si single crystal is higher than the etching rate of the (111) plane, the shape shown in FIG. 1 can be obtained. Subsequently, the surface of the Si single-crystal substrate 1 is oxidized in pure oxygen at 1000°C to a thickness of approximately 40°C.
A SiOx layer 4 with a thickness of about 500 nm was formed, and then AQ was deposited to a thickness of about 500 nm using a resistance heating evaporation method to form a control electrode 5.

Sin、層4を形成した際に、低不純物濃度層30表面
にもSiの酸化膜が成長しているので、これを化学エツ
チングによって除去し、低不純物濃度層3の表面を清浄
化する。この清浄化した低不純物濃度層3上に厚さ約3
00nmのNbをDCマグネトロンスパッタリング法に
よって堆積させ、これを厚さ約350nmの電子線レジ
ストのパターンをマスクとして反応性イオンエツチング
法によって加工して、第1の超電導電極6及び第2の超
電導電極7とした。第1及び第2の超電導電極の電極間
距離は、半導体の材料がSiの場合にあっては、0.2
μm以下であることが望ましい。以上によって本発明の
超電導素子を作製することができた。この超電導素子を
液体ヘリウム温度に冷却して動作させた。制御電極に負
の電圧を印加した場合、低不純物濃度層3の中へ正の電
荷の蓄積層が容易に拡がる。従ってこの場合には、10
mV程度の小さな制御信号によって第1の超電導電極6
と第2の超電導電極7の間の超電導的な結合状態を変化
させることができ、均一に不純物が分布している場合に
比べ利得を2.5〜3倍程度大きくすることができる。
When the Si layer 4 is formed, a Si oxide film is also grown on the surface of the low impurity concentration layer 30, so this is removed by chemical etching to clean the surface of the low impurity concentration layer 3. On this cleaned low impurity concentration layer 3, a thickness of approximately 3.
00 nm of Nb was deposited by DC magnetron sputtering, and this was processed by reactive ion etching using an electron beam resist pattern with a thickness of about 350 nm as a mask to form the first superconducting electrode 6 and the second superconducting electrode 7. And so. The distance between the first and second superconducting electrodes is 0.2 when the semiconductor material is Si.
It is desirable that it is less than μm. Through the above steps, the superconducting element of the present invention could be manufactured. This superconducting element was cooled to liquid helium temperature and operated. When a negative voltage is applied to the control electrode, a positive charge accumulation layer easily spreads into the low impurity concentration layer 3. Therefore, in this case, 10
The first superconducting electrode 6 is activated by a small control signal on the order of mV.
It is possible to change the superconducting bonding state between the superconducting electrode 7 and the second superconducting electrode 7, and the gain can be increased by about 2.5 to 3 times compared to the case where impurities are uniformly distributed.

制御電極に正の電圧を印加した場合には、小さな制御電
圧では負の電荷の反転層は殆ど拡がらず、ある一定の電
圧以上になると低不純物濃度層3に初めて反転層が拡が
り、第1および第2の超電導電極6・7の間の超電導的
な結合状態が急に変化を始める。従ってこの場合には、
均一に不純物が分布している場合に比べて、動作を始め
るためのゼロでない一定のしきい値を有し、しかも利得
が大きいという機能を併せ持つ超電導素子が得られる。
When a positive voltage is applied to the control electrode, the negative charge inversion layer hardly spreads at a small control voltage, and when the voltage exceeds a certain level, the inversion layer spreads for the first time in the low impurity concentration layer 3, and the first Then, the superconducting coupling state between the second superconducting electrodes 6 and 7 suddenly begins to change. Therefore, in this case,
Compared to a case where impurities are uniformly distributed, a superconducting element can be obtained that has a constant non-zero threshold for starting operation and also has a large gain.

本実施例においては、制御電極に近い側に高不純物濃度
層を、超電導電極に近い側に低不純物濃度層を設けたが
、これを逆転させて、制御電極に近い側に低不純物濃度
層を、超電導電極に近い側に高不純物濃度層を設けても
良い。この場合にも小さな制御電圧で、電荷の反転層若
しくは蓄積層が低不純物濃度層に容易に拡がるので利得
を大きくすることができる。尚、この場合にはある一定
の電圧以上になると反転層・蓄積層は高不純物濃度層の
中を拡がるようになるので1反転層・蓄積層はそれ以上
波がりにくくなり素子特性の変化が小さくなるという性
質を有する。また超電導電極側の不純物濃度が高い場合
には、半導体と超電導体との界面に存在するショットキ
障壁の高さと幅を低減し、超電導電極から半導体中への
電子のしみ出しを容易にするという別の効果を生ずる。
In this example, a high impurity concentration layer was provided on the side closer to the control electrode and a low impurity concentration layer was provided on the side closer to the superconducting electrode, but by reversing this, a low impurity concentration layer was provided on the side closer to the control electrode. , a high impurity concentration layer may be provided on the side closer to the superconducting electrode. In this case as well, the charge inversion layer or accumulation layer can easily spread to the low impurity concentration layer with a small control voltage, so that the gain can be increased. In this case, when the voltage exceeds a certain level, the inversion layer/accumulation layer begins to spread through the high impurity concentration layer, so the inversion layer/accumulation layer becomes difficult to wave any further, and changes in device characteristics are small. It has the property of becoming. In addition, when the impurity concentration on the superconducting electrode side is high, the height and width of the Schottky barrier that exists at the interface between the semiconductor and the superconductor is reduced, making it easier for electrons to seep from the superconducting electrode into the semiconductor. produces the effect of

この場合には、第1および第2の超電導電極の空間的な
距離を従来よりも長くして良いために、素子の作製が容
易になる。
In this case, the spatial distance between the first and second superconducting electrodes can be made longer than before, making it easier to manufacture the device.

第2図に本発明の他の実施例を示す。この実施例では不
純物濃度の低い部分が半導体層の中央に位置するように
なっている。ななわち、第1図に示す実施例と同様に形
成した低不純物濃度層2上に分子線エピタキシー法等に
よって高不純物濃度層3′を形成している。この実施例
の場合、前述の2つの実施例(制御電極側に高不純物濃
度層を設は超電導電極側に低不純物濃度層を設けた実施
例とその逆の構造を有する実施例)の効果を併せ持つ、
すなわち、利得が大きく、素子の作成が容易となる。
FIG. 2 shows another embodiment of the invention. In this embodiment, the portion with low impurity concentration is located at the center of the semiconductor layer. That is, a high impurity concentration layer 3' is formed by molecular beam epitaxy or the like on a low impurity concentration layer 2 formed in the same manner as in the embodiment shown in FIG. In the case of this example, the effects of the two previous examples (an example in which a high impurity concentration layer is provided on the control electrode side, a low impurity concentration layer on the superconducting electrode side, and an example with the opposite structure) are obtained. have both,
That is, the gain is large and the device can be easily manufactured.

第3図に本発明の他の実施例であり、超電導電極を形成
する半導体層の面と同じ側に制御電極を設けた場合を示
す。不純物としてリンを10”am−’含んだSi基板
上301に分子線エピタキシー法によってリンを10”
an−”含んだ低不純物濃度層302、リンをI Q”
am−”含んだ高不純物濃度層303、リンを10”a
m−”含んだ低不純物濃度層302′を形成する。次い
で500℃の低温でSiO□層を形成しパターン化した
のち、これをマスクとしてリンをイオン打ち込みする。
FIG. 3 shows another embodiment of the present invention, in which a control electrode is provided on the same side as the surface of the semiconductor layer forming the superconducting electrode. On a Si substrate 301 containing 10 am-' of phosphorus as an impurity, 10 am-' of phosphorus was added by molecular beam epitaxy.
an-"Low impurity concentration layer 302 containing phosphorus IQ"
am-” high impurity concentration layer 303, 10”a of phosphorus
A low impurity concentration layer 302' containing m-" is formed. Next, a SiO□ layer is formed at a low temperature of 500 DEG C. and patterned. Using this as a mask, phosphorus is ion-implanted.

このリンをイオン打ち込みした面上にNbを約200n
mスパッタしたのち、マスクとして用いたSin2層を
エツチングにより除去する。このようにして超電導電極
306,307を形成する。続いて02プラズマの酸化
によりSin、膜304を形成し、最後に厚さ500n
mのAQ蒸着膜により成る制御電極305を形成する。
Approximately 200n of Nb was added onto the surface into which phosphorous was ion-implanted.
After m sputtering, the Sin2 layer used as a mask is removed by etching. In this way, superconducting electrodes 306 and 307 are formed. Next, a Si film 304 is formed by 02 plasma oxidation, and finally a film 304 with a thickness of 500 nm is formed.
A control electrode 305 made of an AQ vapor-deposited film of m is formed.

この実施例の場合でも制W電極305に電圧を印加する
ことにより蓄積層若しくは反転層が低不純物濃度層30
2′に容易に拡がるので前述の実施例と同様に利得を大
きくすることができる。
Even in the case of this embodiment, by applying a voltage to the W control electrode 305, the accumulation layer or the inversion layer is changed to the low impurity concentration layer 305.
2', the gain can be increased as in the previous embodiment.

これまで述べた実施例においては、超電導電極を2つ含
んだ場合について説明したが、超電導電極の数は3つ又
はそれ以上であっても良い、制御電極の数についても同
様である。例えば第4図に示すように3つの超電導電極
を有する超電導素子の場合でも本発明の効果を得られる
。このような超電導素子は超電導電極の形成と加工の際
の形状が異なるだけで、他は第1図に説明した実施例と
全く同様の工程によって作製できる。406゜406′
はソース超電導電極、407はドレイン超電導電極に対
応する。このようなデバイスは、1つの素子で、2つの
素子を並列に接続した場合と同じ効果を有し、回路の集
積度を向上させることができる利点がある。
In the embodiments described so far, a case has been described in which two superconducting electrodes are included, but the number of superconducting electrodes may be three or more, and the same applies to the number of control electrodes. For example, the effects of the present invention can be obtained even in the case of a superconducting element having three superconducting electrodes as shown in FIG. Such a superconducting element can be manufactured by the same process as the embodiment described in FIG. 1, except for the shape of the superconducting electrode formed and processed. 406°406'
4 corresponds to a source superconducting electrode, and 407 corresponds to a drain superconducting electrode. Such a device has the advantage that one element has the same effect as two elements connected in parallel, and can improve the degree of circuit integration.

また、以上の実施例においては、不純物濃度の差を層全
体にわたって設けた場合について述べたが、低不純物濃
度部あるいは高不純物濃度部を半導体層のある部分に限
定して設けても良い6例えば超電導電極の直下を含む範
囲に限定して高不純物濃度部あるいは低不純物濃度部を
設けても同様の効果を得ることができる。また不純物濃
度の差を階段上に設けずに徐々に変化するように設けて
も同様の効果が得られる。
Further, in the above embodiments, a case was described in which a difference in impurity concentration was provided over the entire layer, but a low impurity concentration portion or a high impurity concentration portion may be provided only in a certain portion of the semiconductor layer6. A similar effect can be obtained by providing a high impurity concentration area or a low impurity concentration area in a limited area including directly below the superconducting electrode. Further, the same effect can be obtained even if the difference in impurity concentration is not provided stepwise but is provided so as to gradually change.

また以上説明した実施例においては半導体材料にSi単
結晶を用いたが、アモルファス状あるいは多結晶状のS
iを用いても本発明の目的を達することができる。また
Siに替えてG8 + GaAs。
Furthermore, in the embodiments described above, Si single crystal was used as the semiconductor material, but amorphous or polycrystalline S
The purpose of the present invention can also be achieved using i. Also, G8 + GaAs was used instead of Si.

InAs、 InP、 InSb等の材料を用いても良
い、超電導電極の材料としてはNbの他にpb及びpb
を主成分とする合金+ N b N 、 Nb、Sn、
 Nb5A Q 、 Nb、Gs等のNb化合物を用い
ても同様の効果が得られる。
Materials such as InAs, InP, and InSb may be used. In addition to Nb, pb and pb may be used as materials for the superconducting electrode.
Alloy whose main component is + N b N , Nb, Sn,
Similar effects can be obtained by using Nb compounds such as Nb5A Q , Nb, and Gs.

制御電極の材料についてもAQに限ることなくPb等の
超電導金属を用いても同様の効果が得られる。また絶縁
膜を介して制御電極を設けているがショットキ障壁を介
して制御電極を形成しても良い。
The material of the control electrode is not limited to AQ, and the same effect can be obtained by using a superconducting metal such as Pb. Further, although the control electrode is provided through an insulating film, the control electrode may be formed through a Schottky barrier.

第5図に参考のために本発明に係る超電導素子の使用例
を示す。
FIG. 5 shows an example of use of the superconducting element according to the present invention for reference.

本発明の超電導素子は液体ヘリウム温度あるいはそれに
近い極低温環境において使用され、低消費電力で高速の
スイッチングを実現できる。このため本発明の超電導素
子によって演算装置を作ると、小型でしかも高速の処理
が実現できる。第5図はこの特長を利用して構成された
もので、核磁気共鳴を用いた人体の医用診断装置のため
の画像信号処理装置を示している。該診断装置において
、磁場の発生用に液体ヘリウムを使った超電導マグネッ
ト21が用いられており、液体ヘリウムの供給には小型
の液体ヘリウム冷凍機22が使用されている。この装置
に断熱器23に入った本発明の超電導素子を使った演算
装置24を用いると、従来の半導体素子による演算装置
を用いた場合に比べて複雑な画像信号の処理が5〜10
倍程度高速になり患者の診断に要する時間が低減される
とともに、より高度な画像の処理が可能となり診断に対
してより多くの適切な情報を提供できるようになる。ま
た、このときの演算装置に用いられる液体ヘリウムの量
はほとんど無視できる程の増加で済む。尚第5図におい
て、液体ヘリウムは冷凍機22より配管31,32を通
って供給されている。
The superconducting element of the present invention is used in an extremely low temperature environment at or near liquid helium temperature, and can realize high-speed switching with low power consumption. Therefore, if an arithmetic unit is made using the superconducting element of the present invention, it is possible to realize compact and high-speed processing. FIG. 5 shows an image signal processing device for a human body medical diagnostic device using nuclear magnetic resonance, which is constructed by taking advantage of this feature. In this diagnostic device, a superconducting magnet 21 using liquid helium is used to generate a magnetic field, and a small liquid helium refrigerator 22 is used to supply the liquid helium. If the arithmetic device 24 using the superconducting element of the present invention, which is housed in the insulator 23, is used in this device, the processing of complex image signals will be 5 to 10 times faster than when using a conventional arithmetic device using semiconductor elements.
The speed is about twice as fast, reducing the time required to diagnose a patient, and it also becomes possible to process more sophisticated images and provide more appropriate information for diagnosis. Further, the amount of liquid helium used in the arithmetic device at this time is increased by an almost negligible amount. In FIG. 5, liquid helium is supplied from the refrigerator 22 through pipes 31 and 32.

また、核磁気共鳴信号34は信号検出器25から演算装
置24へ送られ、処理された画像信号はケーブル35を
通して表示器26に出力される。また、マグネット21
の制御も演算装置24からの信号33を送ることにより
行っている。本使用例においては、マグネット21と演
算装置24とは別の断熱容器に収納されているが、これ
を同一の断熱の容器に収納しても良い。本使用例では、
医用診断装置について述べたが、同様の効果は、液体ヘ
リウムを使用した装置の制御、あるいは信号処理につい
て、一般的に得ることができるものである。
Further, the nuclear magnetic resonance signal 34 is sent from the signal detector 25 to the arithmetic unit 24, and the processed image signal is output to the display 26 through the cable 35. Also, magnet 21
is also controlled by sending a signal 33 from the arithmetic unit 24. In this usage example, the magnet 21 and the computing device 24 are housed in separate heat-insulating containers, but they may be housed in the same heat-insulating container. In this usage example,
Although a medical diagnostic device has been described, similar effects can generally be obtained for control of devices using liquid helium or signal processing.

〔発明の効果〕 本発明によれば、超電導電極を形成する半導体層中の不
純物濃度の分布に変化をつけるようにしたので、印加電
圧で超電導電極間の結合状態を制御する際の利得を大き
くすることができる。
[Effects of the Invention] According to the present invention, since the impurity concentration distribution in the semiconductor layer forming the superconducting electrode is varied, the gain when controlling the bonding state between the superconducting electrodes by the applied voltage can be increased. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はそれぞれ本発明の一実施例である超電
導素子の断面図、第4図は本発明の一実施例である超電
導素子の平面図、第5図は本発明法 に係る超電導素子の使用力−の参考例を示すブロック図
である。
Figures 1 to 3 are cross-sectional views of a superconducting element that is an embodiment of the present invention, Figure 4 is a plan view of a superconducting element that is an embodiment of the present invention, and Figure 5 is a method according to the present invention. It is a block diagram showing a reference example of the working power of a superconducting element.

Claims (1)

【特許請求の範囲】 1、半導体層と、該半導体層に接して設けられた少なく
とも2個の超電導電極と、該超電導電極間を流れる電流
を制御する少なくとも1個の制御電極とを有し、かつ前
記半導体層に含まれる不純物の分布は、少なくとも1つ
の平均以上の不純物濃度を有する高不純物濃度部と、少
なくとも1つの平均以下の不純物濃度を有する低不純物
濃度部とから成ることを特徴とする超電導素子。 2、特許請求の範囲第1項において、前記超電導電極は
半導体層の一方に設けられ、前記制御電極は該半導体層
の他方に設けられていることを特徴とする超電導素子。 3、特許請求の範囲第1項又は第2項において、前記高
不純物濃度部は、制御電極に接して存在することを特徴
とする超電導素子。 4、特許請求の範囲第1項又は第2項において、前記高
不純物濃度部は、前記超電導電極に接して存在すること
を特徴とする超電導素子。 5、特許請求の範囲第1項又は第2項において、前記高
不純物濃度部は、前記制御電極に接して存在する部分と
、前記超電導電極に接して存在する部分から成ることを
特徴とする超電導素子。
[Claims] 1. A semiconductor layer comprising a semiconductor layer, at least two superconducting electrodes provided in contact with the semiconductor layer, and at least one control electrode for controlling a current flowing between the superconducting electrodes, The distribution of impurities contained in the semiconductor layer is characterized by comprising at least one high impurity concentration region having an impurity concentration above the average and at least one low impurity concentration region having an impurity concentration below the average. Superconducting element. 2. A superconducting element according to claim 1, wherein the superconducting electrode is provided on one side of the semiconductor layer, and the control electrode is provided on the other side of the semiconductor layer. 3. A superconducting element according to claim 1 or 2, wherein the high impurity concentration portion is present in contact with a control electrode. 4. The superconducting element according to claim 1 or 2, wherein the high impurity concentration portion is present in contact with the superconducting electrode. 5. The superconductor according to claim 1 or 2, characterized in that the high impurity concentration portion consists of a portion that is in contact with the control electrode and a portion that is in contact with the superconducting electrode. element.
JP60030366A 1984-11-05 1985-02-20 Superconducting element Expired - Lifetime JP2568995B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP60030366A JP2568995B2 (en) 1985-02-20 1985-02-20 Superconducting element
DE3588086T DE3588086T2 (en) 1984-11-05 1985-11-04 Superconductor arrangement
EP95104470A EP0667645A1 (en) 1984-11-05 1985-11-04 Superconducting device
EP85308009A EP0181191B1 (en) 1984-11-05 1985-11-04 Superconducting device
US07/073,408 US4884111A (en) 1984-11-05 1987-07-13 Superconducting device
US07/412,201 US5126801A (en) 1984-11-05 1989-09-25 Superconducting device
US07/875,431 US5311036A (en) 1984-11-05 1992-04-29 Superconducting device
US08/201,410 US5442196A (en) 1984-11-05 1994-02-24 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60030366A JP2568995B2 (en) 1985-02-20 1985-02-20 Superconducting element

Publications (2)

Publication Number Publication Date
JPS61190990A true JPS61190990A (en) 1986-08-25
JP2568995B2 JP2568995B2 (en) 1997-01-08

Family

ID=12301862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60030366A Expired - Lifetime JP2568995B2 (en) 1984-11-05 1985-02-20 Superconducting element

Country Status (1)

Country Link
JP (1) JP2568995B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200485150Y1 (en) 2017-07-18 2017-12-04 선일터미날주식회사 Bucket device for loading and unloading

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103389A (en) * 1982-12-04 1984-06-14 Nippon Telegr & Teleph Corp <Ntt> Superconductive element and manufacture thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103389A (en) * 1982-12-04 1984-06-14 Nippon Telegr & Teleph Corp <Ntt> Superconductive element and manufacture thereof

Also Published As

Publication number Publication date
JP2568995B2 (en) 1997-01-08

Similar Documents

Publication Publication Date Title
JP3275836B2 (en) Superconducting device
EP0181191B1 (en) Superconducting device
EP0160456B1 (en) Superconducting device
US20030107033A1 (en) Trilayer heterostructure junctions
US6541789B1 (en) High temperature superconductor Josephson junction element and manufacturing method for the same
JPH10107337A (en) Single electronic controlled magnetic resistance element
JPS61190990A (en) Superconductive element
JPS62131588A (en) Manufacture of superconductive transistor
Villegier et al. RF-sputter-deposited magnesium oxide films as high-quality adjustable tunnel barriers
JP2796137B2 (en) Superconducting transistor
US5248663A (en) Method of forming oxide superconductor patterns
JP2731513B2 (en) Superconducting element and method of manufacturing the same
JPS6120377A (en) Superconductive circuit
JP3075788B2 (en) Manufacturing method of weakly coupled superconducting thin film
JP2877313B2 (en) Method for manufacturing microbridge and method for manufacturing DC-SQUID
JP2994190B2 (en) High-temperature superconducting thin film structure and method for producing the same
JP3570418B2 (en) Superconducting device
JP3323278B2 (en) Method for manufacturing superconducting device
JP2641971B2 (en) Superconducting element and fabrication method
JPS6212212A (en) Superconduction circuit
JPS61110481A (en) Superconductive transistor
JP2597745B2 (en) Superconducting element and fabrication method
JP2647251B2 (en) Superconducting element and fabrication method
JP2738144B2 (en) Superconducting element and fabrication method
JPH02292877A (en) Oxide superconducting transistor device