JPS6119086B2 - - Google Patents

Info

Publication number
JPS6119086B2
JPS6119086B2 JP57170549A JP17054982A JPS6119086B2 JP S6119086 B2 JPS6119086 B2 JP S6119086B2 JP 57170549 A JP57170549 A JP 57170549A JP 17054982 A JP17054982 A JP 17054982A JP S6119086 B2 JPS6119086 B2 JP S6119086B2
Authority
JP
Japan
Prior art keywords
loss
porosity
transformer core
mol
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57170549A
Other languages
Japanese (ja)
Other versions
JPS5963705A (en
Inventor
Kunio Kanai
Shunichi Nishama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP57170549A priority Critical patent/JPS5963705A/en
Publication of JPS5963705A publication Critical patent/JPS5963705A/en
Publication of JPS6119086B2 publication Critical patent/JPS6119086B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、焼結体の空孔率を3.5%以下と少な
くした低損失トランスコアに関するものである。 一般にトランスコアとしては、モル比で
Fe2O3:48〜56,MnO:32〜40,ZnO:8〜13を
主成分とするMn−Zn系のフエライトが主に用い
られている。その際コアに要求される特性は、電
磁気的損失の低減であり、特に近年著しく伸長し
てするスイツチング電源用トランスコアは、高周
波化の点においてますますコア損失の低減が重要
となつてきている。 一般にトランスコアの損失は渦電流損失、ヒス
テリス損失、残留損失の和で決定される。これら
損失項の中で渦電流損失は、主に添加物、例えば
CaCO3,V2O5,SiO2等を加えることにより電気
抵抗を高めることで低減が計られている。また第
2項のヒステリシス損失は、焼結体の結晶粒径、
異相の有無等により変化することが知られてい
る。したがつて、ヒステリシス損失の低減には主
にその製造方法を考慮し作成することが重要とな
つてくる。 そこで本発明は、Mn−Zn系フエライトにおい
て、その製造方法を考慮し空孔率を小なくするこ
とにより、ヒステリシス損失を小さくすることで
コアの損失の低減化を計つたものである。 本発明における上記Mn−Zn系フエライトは、
通常使用されているFe2O3:48〜56,MnO:32〜
40%,ZnO:8〜13mol%の組成のものであり、
このような組成のMn−Zn系フエライト、焼結体
の空孔率を小ならしめることにより加工性あるい
は耐摩耗性を改良したものに、例えば磁気ヘツド
材料がある。しかしながら空孔率と高周波での損
失の関係は明確化されていない。さらに本発明の
トランスコアと大幅に異なる点として、透磁率の
第2次ピーク温度が上げられる。磁気ヘツド材は
そのピーク温度が室温付近であるのに対し、トラ
ンスコアではトランスの動作温度(約80℃)付近
にそのピーク温度を設定していることである。こ
れは一般に透磁率の第2次ピーク温度付近でコア
の損失が最小となることによるものである。さら
に磁気ヘツド材には、高周波での信号を記録、再
生することが必要であるため、高周波で高い透磁
率を要求される。これに対し本発明のトランスコ
アはそれ程高い透磁率は必要はなく、例えば
0.1MHzで1500〜2500程度である。したがつて上
記の様な諸特性の違いから当然のことながら両者
の組成領域は異なるものである。 以下に本発明を実施例により詳細に説明する。 実施例 1 Fe2O3:53.5モル%,MnO:36.0モル%,
ZnO:10.5モル%およびCaOを0.1wt%となる様
に、Fe2O3,MnO,ZnO,CaCO3を秤量し混合し
た。その後850℃で仮焼成し、微粉砕し圧縮成形
後1300〜1400℃で焼成した。得られた焼成体試料
の諸特性測定結果を第1表に示す。
The present invention relates to a low-loss transformer core in which the porosity of the sintered body is reduced to 3.5% or less. In general, as a transformer core, the molar ratio is
Mn-Zn-based ferrite whose main components are Fe 2 O 3 :48-56, MnO:32-40, and ZnO:8-13 is mainly used. In this case, the required characteristic of the core is the reduction of electromagnetic loss.In particular, in the transformer cores for switching power supplies, which have been growing rapidly in recent years, reduction of core loss is becoming increasingly important as the frequency increases. . Generally, transformer core loss is determined by the sum of eddy current loss, hysteresis loss, and residual loss. Among these loss terms, eddy current loss is mainly caused by additives, e.g.
Reductions are being attempted by increasing the electrical resistance by adding CaCO 3 , V 2 O 5 , SiO 2 , etc. In addition, the second term, hysteresis loss, is determined by the crystal grain size of the sintered body,
It is known that it changes depending on the presence or absence of different phases. Therefore, in order to reduce hysteresis loss, it is important to mainly consider the manufacturing method. Therefore, the present invention aims to reduce the core loss by reducing the hysteresis loss in Mn--Zn ferrite by considering its manufacturing method and reducing the porosity. The above Mn-Zn ferrite in the present invention is
Usually used Fe 2 O 3 : 48~56, MnO: 32~
40%, ZnO: 8 to 13 mol%,
For example, there is a magnetic head material that has improved workability or wear resistance by reducing the porosity of Mn--Zn ferrite and sintered bodies having such compositions. However, the relationship between porosity and loss at high frequencies has not been clarified. Furthermore, a significant difference from the transformer core of the present invention is that the second peak temperature of magnetic permeability is increased. The peak temperature of the magnetic head material is near room temperature, whereas the peak temperature of the transformer core is set near the operating temperature of the transformer (approximately 80°C). This is because the core loss generally becomes minimum near the second peak temperature of magnetic permeability. Furthermore, since it is necessary for the magnetic head material to record and reproduce signals at high frequencies, it is required to have high magnetic permeability at high frequencies. On the other hand, the transformer core of the present invention does not need to have such high magnetic permeability; for example,
It is about 1500 to 2500 at 0.1MHz. Therefore, due to the above-mentioned differences in various properties, the composition ranges of the two are naturally different. The present invention will be explained in detail below using examples. Example 1 Fe 2 O 3 : 53.5 mol%, MnO: 36.0 mol%,
Fe 2 O 3 , MnO, ZnO, and CaCO 3 were weighed and mixed so that ZnO: 10.5 mol % and CaO 0.1 wt %. Thereafter, it was calcined at 850°C, pulverized, compression molded, and then calcined at 1300 to 1400°C. Table 1 shows the results of measuring various properties of the obtained fired body sample.

【表】 第1表において、試料A,B,Cは各々1300,
1380,1400℃で焼成したものである。電気抵抗は
これら試料で大差なく、ほぼ400Ω・cmであつ
た。 以上の実施例より明らかなごとく、本発明のト
ランスコアは空孔率を減少させることにより、損
失を減少させることができる。また3.5%を越え
ると、トランスコアの損失は減少させることがで
きないため空孔率は3.5%以下にすることが理想
的である。 実施例 2 Fe2O3:52.5モル%,MnO:37.0モル%,
ZnO:10.5モル%およびCaOを0.1wt%となる様
に混合し、900℃で仮焼を行い、1360℃で焼成し
た。得られた試料の諸特性を第1表Aの試料の特
性と比較し第2表に示す。
[Table] In Table 1, samples A, B, and C each have 1300,
It was fired at 1380 and 1400℃. The electrical resistance of these samples was approximately 400Ω·cm, with no significant difference. As is clear from the above examples, the transformer core of the present invention can reduce loss by reducing the porosity. Furthermore, if the porosity exceeds 3.5%, the loss of the transformer core cannot be reduced, so ideally the porosity should be 3.5% or less. Example 2 Fe 2 O 3 : 52.5 mol%, MnO: 37.0 mol%,
ZnO: 10.5 mol% and CaO were mixed at 0.1 wt%, calcined at 900°C, and fired at 1360°C. The characteristics of the obtained sample are compared with the characteristics of the sample in Table 1A and are shown in Table 2.

【表】 以上の実施例より明らかなごとく、実施例1と
同様、空孔率を減少させることによりトランスコ
アの損失が減少していることが判る。なお、試料
Dの電気抵抗は360Ω・cmであつた。 実施例 3 Fe2O3:53.5モル%,MnO:34.5モル%,
ZnO:12.0モル%およびCaOを0.1wt%となる様
に混合し、950℃で仮焼を行い、1420℃で焼成し
た試料Eの諸特性を測定した。測定結果を第3表
に示す。
[Table] As is clear from the above examples, it can be seen that the loss of the transformer core is reduced by reducing the porosity, as in Example 1. Note that the electrical resistance of sample D was 360 Ω·cm. Example 3 Fe 2 O 3 : 53.5 mol%, MnO: 34.5 mol%,
ZnO: 12.0 mol % and CaO were mixed at 0.1 wt %, calcined at 950°C, and various properties of sample E were measured after firing at 1420°C. The measurement results are shown in Table 3.

【表】 以上の様に実施例1と同様空孔率を減少させる
ことにより、トランスコアの損失が減少している
ことがわかる。 実施例 4 先に実施例1により得られたAおよびCの試料
について、周波数に対するトランスコアの損失値
(室温)を測定した。この結果を第1図に示す。 図から縦軸の切片がヒステリシス損失に相当す
るが、その値を換算すると、試料Aが約
570mw/cm3の損失値に対し、空孔率を減少させ
た試料Cでは約280mw/cm3と非常に小さな値と
なることがわかる。 また、第1図で直線の傾きの大小が渦電流損失
の大小を表わすが、電気抵抗がほぼ同じなので試
料A,Cの渦電流損は同じである。CaCO3
V2O5あるいはSiO2を添加し、電気抵抗を高める
ことにより、渦電流損を小さくできることは公知
であり、実施例ではCaCO3を添加した。この効
果とは別に、実施例から判る様に、空孔率の減少
によりヒステリシス損を低減できる。 さらに両試料単体での温度上昇を測定した結果
を第2図に示す。図から明らかなごとく、空孔率
を減少させた試料Cは、試料Aに比しトランスコ
アの温度上昇を極力低下させることができる。 以上実施例1〜4に述べた様に、Mn−Zn系フ
エライトをトランスコアとして用いる場合、焼成
体の空孔率を3.5%以下にすることによつて低損
失トランスコアを得ることができる。 なお、3.5%の空孔率で損失は通常の試料の空
孔率〜4%の試料Aに対し、0.89の割合である。
顕著な損失低減効果の認められる範囲は100%以
上の低源と考えられることから請求範囲を3.5%
以下とした。
[Table] As shown above, it can be seen that the loss of the transformer core is reduced by reducing the porosity as in Example 1. Example 4 For samples A and C previously obtained in Example 1, the loss value (room temperature) of the transformer core with respect to frequency was measured. The results are shown in FIG. From the figure, the intercept on the vertical axis corresponds to the hysteresis loss, but when converting that value, sample A is approximately
It can be seen that while the loss value is 570 mw/cm 3 , sample C with reduced porosity has a very small value of about 280 mw/cm 3 . Further, in FIG. 1, the magnitude of the slope of the straight line indicates the magnitude of the eddy current loss, and since the electrical resistances are almost the same, the eddy current losses of Samples A and C are the same. CaCO3 ,
It is known that eddy current loss can be reduced by adding V 2 O 5 or SiO 2 to increase electrical resistance, and in the examples CaCO 3 was added. Apart from this effect, as can be seen from the examples, the hysteresis loss can be reduced by reducing the porosity. Furthermore, the results of measuring the temperature rise of both samples alone are shown in Figure 2. As is clear from the figure, Sample C with reduced porosity can reduce the temperature rise of the transformer core as much as possible compared to Sample A. As described in Examples 1 to 4 above, when Mn--Zn ferrite is used as a transformer core, a low-loss transformer core can be obtained by controlling the porosity of the fired body to 3.5% or less. Incidentally, at a porosity of 3.5%, the loss is at a rate of 0.89 compared to sample A whose porosity is 4%, which is a normal sample.
The claimed range has been increased to 3.5% because the range in which significant loss reduction effects are recognized is considered to be 100% or more of low sources.
The following was made.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はトランスコアの損失の周波数特性を示
し、第2図はトランスコア単体で温度上昇値を示
す図である。
FIG. 1 shows the frequency characteristics of the loss of the transformer core, and FIG. 2 shows the temperature rise value of the transformer core alone.

Claims (1)

【特許請求の範囲】[Claims] 1 Fe2O3:48〜56,MnO:32〜40,ZnO:8〜
13モル%の組成からなるトランス用Mn−Zn系フ
エライトコアにおいて、その焼結体の空孔率を
3.5%以下にしたことを特徴とする低損失トラン
スコア。
1 Fe2O3 : 48~56, MnO: 32~40, ZnO : 8~
In the Mn-Zn ferrite core for transformers with a composition of 13 mol%, the porosity of the sintered body is
A low loss transformer core characterized by a loss of 3.5% or less.
JP57170549A 1982-09-29 1982-09-29 Transformer core Granted JPS5963705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57170549A JPS5963705A (en) 1982-09-29 1982-09-29 Transformer core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57170549A JPS5963705A (en) 1982-09-29 1982-09-29 Transformer core

Publications (2)

Publication Number Publication Date
JPS5963705A JPS5963705A (en) 1984-04-11
JPS6119086B2 true JPS6119086B2 (en) 1986-05-15

Family

ID=15906935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57170549A Granted JPS5963705A (en) 1982-09-29 1982-09-29 Transformer core

Country Status (1)

Country Link
JP (1) JPS5963705A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8403282A (en) * 1984-10-30 1986-05-16 Philips Nv TITANIC AND COBALT-CONTAINING MANGANESE-ZINC FERRITE CORE AND METHOD OF MANUFACTURING THE SAME
JP2609853B2 (en) * 1986-11-05 1997-05-14 ティーディーケイ株式会社 Ferrite core for data line noise filter
JPH01136309A (en) * 1987-11-24 1989-05-29 Mitsubishi Electric Corp Low loss oxide magnetic material
JP4813025B2 (en) * 2004-03-25 2011-11-09 Jfeフェライト株式会社 High saturation magnetic flux density Mn-Zn-Ni ferrite

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328633A (en) * 1976-08-28 1978-03-17 Yamasan Shiyouji Kk Decoration material for building
JPS5836974A (en) * 1981-08-27 1983-03-04 住友特殊金属株式会社 Low magnetic loss mn-zn ferrite and manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328633A (en) * 1976-08-28 1978-03-17 Yamasan Shiyouji Kk Decoration material for building
JPS5836974A (en) * 1981-08-27 1983-03-04 住友特殊金属株式会社 Low magnetic loss mn-zn ferrite and manufacture

Also Published As

Publication number Publication date
JPS5963705A (en) 1984-04-11

Similar Documents

Publication Publication Date Title
JP2000286119A (en) Ferrite
JPH1064715A (en) Low loss ferrite magnetic core material
JPH06120022A (en) Oxide magnetic material
JPS6119086B2 (en)
JP3597673B2 (en) Ferrite material
JPH06310320A (en) Oxide magnetic substance material
JPH081844B2 (en) High frequency low loss ferrite for power supply
JP2855990B2 (en) Oxide magnetic material
JP2727579B2 (en) Low loss ferrite
JP3597666B2 (en) Mn-Ni ferrite material
JP3739849B2 (en) Low-loss oxide magnetic material
JPH08148322A (en) Oxide magnetic material and switching power supply employing the same
JP4761175B2 (en) Low-loss ferrite and magnetic core using the same
JP3039784B2 (en) High frequency low loss ferrite for power supply
JP3790606B2 (en) Mn-Co ferrite material
JPH09295862A (en) Low loss ferrite material and signal chip inductor using the same
JPH07130527A (en) Oxide magnetic material
JP2510788B2 (en) Low power loss oxide magnetic material
JP3469429B2 (en) Oxide magnetic material
JPH10270229A (en) Mn-ni ferrite material
JP3366708B2 (en) Low loss Mn-Zn ferrite
JP3550247B2 (en) Ferrite material
JPH10326706A (en) Manganese-nickel-based ferrite material
JP2627639B2 (en) Low loss oxide magnetic material
JPH09134815A (en) Manganese zinc ferrite