JPS61189502A - Method and device for forming diffraction grating - Google Patents

Method and device for forming diffraction grating

Info

Publication number
JPS61189502A
JPS61189502A JP2931085A JP2931085A JPS61189502A JP S61189502 A JPS61189502 A JP S61189502A JP 2931085 A JP2931085 A JP 2931085A JP 2931085 A JP2931085 A JP 2931085A JP S61189502 A JPS61189502 A JP S61189502A
Authority
JP
Japan
Prior art keywords
diffraction grating
phase
optical path
changing
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2931085A
Other languages
Japanese (ja)
Inventor
Shinji Tsuji
伸二 辻
Makoto Okai
誠 岡井
Hiroyoshi Matsumura
宏善 松村
Hitoshi Nakamura
均 中村
Shinji Sakano
伸治 坂野
Motonao Hirao
平尾 元尚
Naoki Kayane
茅根 直樹
Akio Oishi
大石 昭夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2931085A priority Critical patent/JPS61189502A/en
Publication of JPS61189502A publication Critical patent/JPS61189502A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form diffraction gratings which have the same period and are out of phase with each other on the same substrate with good reproducibility by providing an optical path length varying means which varies the phase of light in an adjustable state at least one luminous flux side in luminous flux after splitting. CONSTITUTION:A mechanism for phase adjustment is provided at one of positions 21-23 or to a mirror 142 to obtain the diffraction gratings which has the same grating intervals and are out of phase on the same substrate. This mechanism for phase adjustment employs the rotation of an optical parallel plate 2a which differs in reflective index from an ambient atmosphere, the reflection of a multiple reflecting mirror 2b which moves in parallel, the parallel movement of a prism 2c, or the electrooptic effect of a dielectric 2d. Consequently, the diffraction gratings which has the same period and are out of phase with each other are formed on the same substrate with good reproducibility and a single longitudinal mode laser is obtained with good reproducibility.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、回折格子形成方法及び形成装置に係り、特に
、光フアイバ通信の光源用の均一な回折格子から成るD
FB(分布帰還型、Distributed Fee−
dback )レーザの作製に適した、2光束干渉露光
による回折格子形成方法及び装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method and apparatus for forming a diffraction grating, and particularly to a D diffraction grating formed of a uniform diffraction grating for a light source of optical fiber communication.
FB (Distributed Feedback Type, Distributed Fee-
dback) The present invention relates to a method and apparatus for forming a diffraction grating by two-beam interference exposure, which is suitable for manufacturing a laser.

〔発明の背景〕[Background of the invention]

第5図に示す従来のDFBレーザは文献1.H6Kog
elnik、 et、 al、応用物理学会誌(J−A
ppl、 Phys、 )。
The conventional DFB laser shown in FIG. 5 is described in Document 1. H6Kog
elnik, et. al., Journal of Applied Physics (J-A
ppl, Phys, ).

Vol、 43. p−p、 2327〜2335.1
972に示すように、2つの異なる波長λ(あるいは伝
搬定数β)に対してしきい値の縮退が生じるため、本質
的に二波長発撮状態をとることになる。従って、軸重−
モード化を図るには文献2. T、 Matsuoka
、 et、 al、 日本応用物理学会誌(Jpn、 
J、 Appl、 Phys、)、 Vol、 23.
 p、p、L138− L 140.1984に実験的
に示されているように、骨間面と回折格子の相対位置制
御が必須の条件であった。これを実現するための位置精
度は±100 Aの程度であり、通常の骨間によって制
御するのは不可能である。これに対し、第4図に示すよ
うに、素子のほぼ中央部において、回折格子をπ/2だ
け位相をずらすことにより、単一軸モード発振が安定的
に得られることが文献3. H,A。
Vol, 43. p-p, 2327-2335.1
As shown at 972, since the threshold value degenerates for two different wavelengths λ (or propagation constant β), a two-wavelength shooting state is essentially taken. Therefore, the axle load -
Reference 2. T, Matsuoka
, et, al, Journal of the Japanese Society of Applied Physics (Jpn,
J. Appl. Phys.), Vol. 23.
As shown experimentally in p, p, L138-L 140.1984, relative position control of the interosseous plane and the diffraction grating was an essential condition. The positional accuracy to achieve this is on the order of ±100 A, and cannot be controlled by normal interosseous spacing. On the other hand, as shown in FIG. 4, by shifting the phase of the diffraction grating by π/2 at approximately the center of the element, single-axis mode oscillation can be stably obtained as described in Reference 3. H, A.

Haus、 et、 al、電気電子技術者協会、量子
エレクトロニクス誌(I EEE J、 Quantu
m Electronics、 )、 Vol、 QE
−12、I)、1)、 532〜539.1976に報
告されている。このような位相シフトを有する回折格子
の作製には、文献4 、 K、 5ekartedjo
、 et、 al、 x L/クトロニクス・レターズ
(Electron、 Letter)、 1933.
に示された、電子ビームによる直接描画による方法、ま
た文献5.稲葉重幸、他、電子通信学会光・電波部西全
国大会。
Haus, et al., Institute of Electrical and Electronics Engineers, Quantum Electronics Journal (IEEE J, Quantu
m Electronics, ), Vol, QE
-12, I), 1), 532-539.1976. The fabrication of a diffraction grating with such a phase shift is described in References 4, K, 5ekartedjo
, et, al, x L/Electron, Letters, 1933.
There is also a method using direct writing using an electron beam, as shown in Reference 5. Shigeyuki Inaba and others, Institute of Electronics and Communication Engineers Optical and Radio Division Western National Conference.

Nα265.昭和59年、に示された、ポジ、ネガの両
レジストを用いる方法が提案されている。ところが、電
子ビーム直接描画では、本質的にスループットが悪いと
いう問題点があり、また、ポジ、ネガの両レジストを用
いる方法では、レジストの厚さに分布が生じるため、得
られる回折格子の回折効率が、素子の左右で非対称とな
り、単一モード動作を得るには再現性が欠けるという問
題点があった。
Nα265. In 1981, a method using both positive and negative resists was proposed. However, direct electron beam writing has the problem of inherently low throughput, and methods that use both positive and negative resists have a distribution in the thickness of the resist, which reduces the diffraction efficiency of the resulting diffraction grating. However, there was a problem in that the left and right sides of the device were asymmetric, and reproducibility was lacking in obtaining single mode operation.

なお、第4図及び第5図における符号1〜9及び8] 
、 82の詳細については、後述の実施例の項において
述べる。
Note that the symbols 1 to 9 and 8 in FIGS. 4 and 5]
, 82 will be described in detail in the Examples section below.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、従来技術での上記した問題点を解決し
、同一基板上に周期が同一で位相の異なる回折格子を再
現性良く形成することができ、これにより、単−縦モー
ドレーザを再現性良く発生させることを可能とする回折
格子形成方法及び装置を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the prior art, to form diffraction gratings with the same period and different phases on the same substrate with good reproducibility, thereby making it possible to generate a single-longitudinal mode laser. It is an object of the present invention to provide a method and apparatus for forming a diffraction grating that can generate the diffraction grating with good reproducibility.

〔発明の概要〕[Summary of the invention]

本発明では、上記目的を達成するために、レーザ光を少
なくとも2つの光束に分割した後に合波することで干渉
を生ぜしめ、この干渉に応じて速度あるいは性質が変化
する光化学反応を利用して物体面上、例えば半導体基板
面上、に回折格子を形成する方法及び装置において、上
記分割後の光束中の少なくとも一光束側で光の位相を調
整可能に変化させる形成方法及び上記・分割後の光束中
の少なくとも一光束側に光の位相を調整可能に変化させ
る光路長可変手段を配置した形成装置を採用する。
In order to achieve the above object, the present invention utilizes a photochemical reaction in which a laser beam is split into at least two beams and then combined to cause interference, and the speed or properties change depending on this interference. A method and apparatus for forming a diffraction grating on an object plane, for example, on a semiconductor substrate surface, wherein the formation method adjustably changes the phase of light on at least one side of the light beam after the above-mentioned splitting, and the above-mentioned after the splitting. A forming device is employed in which an optical path length variable means for adjusting the phase of light is disposed on at least one side of the light beam.

ある試料面上に照射する波長λの互いに相関のある2光
束があって、それらのなす角を20.また、角度の中線
方向と試料面の法線とがなす角をδとすれば、試料面上
に、下記の周期Aの縞状模様ができる。
There are two mutually correlated beams of wavelength λ that are irradiated onto a certain sample surface, and the angle between them is 20. Further, if the angle between the midline direction of the angle and the normal to the sample surface is δ, then a striped pattern with the following period A is formed on the sample surface.

] 干渉模様の明線と暗線は、Nを任意の整数と、して、2
光束の位相差が2Nπ、(2N+1)πに等しいことに
相当する。従って、少なくとも一方の光束側に位相の遅
延を生ぜしめることにより、干渉縞の明線と暗線を反転
させることが可能となる。試料表面上で、干渉光による
光化学反応を用いることにより回折格子を得ることが可
能であるが、また、マスクを用いて光の位相を変えなが
ら露光することにより試料表面上に異なる位相をもつ回
折格子を得ることが可能となる。なお、光の位相の変化
量は、モアレ像の明暗の変化から検知可能である。
] The bright lines and dark lines of the interference pattern are 2, where N is an arbitrary integer.
This corresponds to the fact that the phase difference of the light flux is equal to 2Nπ, (2N+1)π. Therefore, by causing a phase delay on at least one side of the light beam, it is possible to reverse the bright lines and dark lines of the interference fringes. It is possible to obtain a diffraction grating on the sample surface by using a photochemical reaction using interference light, but it is also possible to obtain diffraction gratings with different phases on the sample surface by exposing the sample while changing the phase of the light using a mask. It becomes possible to obtain a grid. Note that the amount of change in the phase of light can be detected from the change in brightness of the moiré image.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を、従来例と比較しつつ説明する
。第1図は本発明実施例の位相遅延干渉露光装置の模式
図、第2図は位相遅延の各種の具体的な実施例を示す模
式図、第3図は従来の干渉露光装置の模式図である。第
3図従来例では、He−CdあるいはArレーザ等のレ
ーザ光源11から放射されたレーザ光をビームスプリッ
タ12で分割した後、それぞれの光をビームエキスパン
ダ131゜132でビーム径を拡大した後、それぞれ鏡
141゜142で反射させることで進行方向を変えて試
料15面上で縞状の干渉模様を得ていた。しかし、この
従来例方式では、2つの光束に対し、位相を調整する機
構がないため、格子間隔は等しく保つたまま位相の異な
る回折格子を意図的に得ることができない。
Hereinafter, embodiments of the present invention will be described while comparing them with conventional examples. Fig. 1 is a schematic diagram of a phase delay interference exposure apparatus according to an embodiment of the present invention, Fig. 2 is a schematic diagram showing various specific embodiments of phase delay, and Fig. 3 is a schematic diagram of a conventional interference exposure apparatus. be. In the conventional example shown in FIG. 3, a laser beam emitted from a laser light source 11 such as a He-Cd or Ar laser is split by a beam splitter 12, and the beam diameter of each beam is expanded by beam expanders 131 and 132. , respectively, by reflecting them with mirrors 141° and 142 to change the traveling direction and obtain a striped interference pattern on the surface of the sample 15. However, in this conventional method, since there is no mechanism for adjusting the phase of the two light beams, it is not possible to intentionally obtain diffraction gratings having different phases while maintaining the same grating spacing.

本発明で提案する第1図実施例では、位置21゜22.
23のいずれかに、あるいは鏡142に、位相を調整す
る機構を設けることによって、格子間隔が等しく、位相
の異なる回折格子を同一基板上に得ることが可能となる
。位置21.22あるいは23に設けられて位相を調整
する機構としては、第2図に示す種々の方式のものを用
いることができる。即ち、第2図(a)のように、周囲
の雰囲気とは屈折率が異なる光学平行板2aの回転によ
るもの、(b)のように平行移動可能な多重反射鏡2b
の反射による、(C)のようにプリズム2Cの平行移動
によるもの、(d)のように誘電体2dの電気光学効果
を用いるもの、のいずれについても位相の遅延の効果が
確かめられた。
In the embodiment of FIG. 1 proposed by the present invention, the positions 21°, 22.
23 or the mirror 142, it becomes possible to obtain diffraction gratings with equal grating spacing and different phases on the same substrate. As the mechanism provided at the position 21, 22 or 23 for adjusting the phase, various systems shown in FIG. 2 can be used. That is, as shown in FIG. 2(a), it is caused by the rotation of an optical parallel plate 2a whose refractive index is different from that of the surrounding atmosphere, and as shown in FIG.
The effect of phase delay was confirmed for both the reflection of , the parallel movement of the prism 2C as in (C), and the electro-optic effect of the dielectric 2d as in (d).

ここではその−例として、第1図の位置21に石英製の
光学平行板(厚さ1c++++両面に無反射膜付き)を
設置し、光軸に対する回転によって位相の遅延を生ぜし
めた場合について説明する。まず、光学平行板2a(第
2図の(a)〕を光軸に対してθ=2度だけ傾けた状態
でスクリーンマスク16を通して試料15表面上へ部分
露光を行なう。次いで、スクリーンマスク16を平行移
動し、かつ、光学平行板2aをさらに0.05度傾けた
状態で試料15表面上への部分露光を行なう。上記0.
05度傾けたことにより、光路差の変化はλ/2となり
、露光部の干渉ノタンに反転を生じさせることができた
。干渉パタンの反転ii、例えばスクリーンマスク16
上に基準回折格子17を設置しておくことにより、モア
レパタンを観察して直読できるようにする。
Here, as an example, we will explain the case where an optical parallel plate made of quartz (thickness 1c+++ with anti-reflection film on both sides) is installed at position 21 in Figure 1, and rotation about the optical axis causes a phase delay. do. First, partial exposure is performed on the surface of the sample 15 through the screen mask 16 with the optical parallel plate 2a ((a) in FIG. 2) tilted by θ=2 degrees with respect to the optical axis. Partial exposure is performed on the surface of the sample 15 while moving in parallel and tilting the optical parallel plate 2a further by 0.05 degrees.
By tilting it by 0.5 degrees, the change in optical path difference was λ/2, and it was possible to reverse the interference angle at the exposure section. Inversion of interference pattern ii, e.g. screen mask 16
By installing a reference diffraction grating 17 above, the moiré pattern can be observed and read directly.

試料15としてInP基板にAZ系レジストを塗布した
ものを用いることにより、AZDを用いて現像を行なっ
た浚に位相の異なるグレーティングをレジストパタンと
して得ることができた。このレジストをマスクとしてH
Br : HNOs : HzO(= 1 : 1 :
30)のエツチング液を用いることでInP基板上にこ
のグレーティングを転写する。転写された位相差付グレ
ーティング2〔第4図〕を有するn型InP基板1上に
液相エピタキシャル法によりIn Ga As P光ガ
イド層3(Teドープ、キャリア濃度I X 1011
0l8厚さ約0.1μm、バンドギャップ波長1.3μ
m)、InGaAsP活性層4(アンドープ、厚さ約0
.1 ttm。
By using an InP substrate coated with an AZ-based resist as Sample 15, gratings with different phases could be obtained as a resist pattern on the surface developed using AZD. Use this resist as a mask
Br: HNOs: HzO (= 1: 1:
This grating is transferred onto the InP substrate by using the etching solution of 30). An InGaAsP optical guide layer 3 (Te doped, carrier concentration I x 1011
0l8 thickness approximately 0.1μm, bandgap wavelength 1.3μm
m), InGaAsP active layer 4 (undoped, thickness approximately 0
.. 1 ttm.

バンドギャップ波長1.5μm)、InGaAsPバッ
ファ層5(Znドープ、キャリア濃度7 X io17
Cm−3+厚さ約0..1μm、バンドギャップ波長1
.3 μm )、p型InP層6(Znドープ、キャリ
ア濃度7 X 1017cm−3,厚さ3μm)、p型
InGaAsPキャップ層7(Znドープ。
bandgap wavelength 1.5 μm), InGaAsP buffer layer 5 (Zn doped, carrier concentration 7
Cm-3+thickness approx. 0. .. 1 μm, bandgap wavelength 1
.. 3 μm), p-type InP layer 6 (Zn doped, carrier concentration 7×1017 cm−3, thickness 3 μm), p-type InGaAsP cap layer 7 (Zn doped).

キャリア濃度5 X 1018cm−3,厚さ0.4μ
m、ハントキャップ波長1.5μm)を順次積層した後
、n型電極81 (Au/Cr )、n型電極82(A
u/Sn)を蒸着し、骨間した後、骨間面に無反射膜9
(SiN)を形成して第4図に示す半導体レーザ素子を
作製した。
Carrier concentration 5 x 1018cm-3, thickness 0.4μ
m, hunt cap wavelength 1.5 μm), and then an n-type electrode 81 (Au/Cr) and an n-type electrode 82 (A
After depositing u/Sn) and placing it between the bones, a non-reflective film 9 is applied to the interosseous surface.
(SiN) was formed to produce a semiconductor laser device shown in FIG.

この素子は、ブラッグ波長で軸重−モード動作し、位相
シフトの効果が確かめられた。
This element operated in an axial load mode at the Bragg wavelength, and the effect of phase shift was confirmed.

なお、干渉露光において位相シフトを生じさせる他の方
法として、第1図において矢印24として示すように鏡
142を平行移動させる方法によっても良(、同様の効
果が確かめられた。
Note that as another method for producing a phase shift in interference exposure, a method of moving the mirror 142 in parallel as shown by the arrow 24 in FIG. 1 may also be used (the same effect was confirmed).

〔発明の効果〕〔Effect of the invention〕

以上のように、干渉露光法において、一方の光束側に光
の遅延を生ぜしめることにより、干渉縞の明暗の位置を
定量的に変化させることができ、さらに、遅延量は、モ
アレパタンの変化により定量化できた。上記の効果を利
用して、部分露光による多重露光を用いることで、同一
基板上に周期が同一で位相の異なる回折格子を形成する
ことが再現性良く行なえるようになり、この結果、単−
縦モードレーザが再現性良(得られる効果がある。
As described above, in the interference exposure method, by causing a light delay on one side of the light beam, it is possible to quantitatively change the bright and dark positions of the interference fringes, and furthermore, the amount of delay can be changed by changing the moiré pattern. I was able to quantify it. By utilizing the above effect and using multiple exposure using partial exposure, it becomes possible to form diffraction gratings with the same period and different phases on the same substrate with good reproducibility.
Longitudinal mode laser has good reproducibility (effects obtained).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による位相遅延型の干渉露光装置の模式
上面図、第2図は本発明実施例の各種の位相遅延方式を
示す模式図、第3図は従来の干渉露光装置の模式上面図
、第4図は本発明による位相シフト型・DFBレーザの
断面図、第5図は従来のDFBレーザの断面図である。 く符号の説明〉 11・・・レーザ光源 12・・・ビームスプリッタ 131、132・・・ビームスプリッタ141、142
・・・鏡 15・・・試料 16・・・スクリーンマスク 17・・・基準回折格子
FIG. 1 is a schematic top view of a phase delay type interference exposure apparatus according to the present invention, FIG. 2 is a schematic diagram showing various phase delay methods according to embodiments of the present invention, and FIG. 3 is a schematic top view of a conventional interference exposure apparatus. 4 are cross-sectional views of a phase-shifted DFB laser according to the present invention, and FIG. 5 is a cross-sectional view of a conventional DFB laser. Description of symbols> 11... Laser light source 12... Beam splitter 131, 132... Beam splitter 141, 142
...Mirror 15...Sample 16...Screen mask 17...Reference diffraction grating

Claims (8)

【特許請求の範囲】[Claims] (1)レーザ光を少なくとも2つの光束に分割した後に
合波することで干渉を生ぜしめ、この干渉に応じて速度
あるいは性質が変化する光化学反応を利用して物体面上
に回折格子を形成する方法において、上記分割後の光束
中の少なくとも一光束側で光の位相を調整可能に変化さ
せることを特徴とする回折格子形成方法。
(1) Laser light is split into at least two beams and then combined to create interference, and a diffraction grating is formed on the object plane using a photochemical reaction in which the speed or properties change according to this interference. A method for forming a diffraction grating, characterized in that the phase of light is adjustable on at least one side of the divided beam.
(2)前記位相を変化させる方法が、光路中に挿入され
た、周囲の雰囲気とは屈折率が異なる物質の回転によっ
て実効的に光路長を変化させる方法であることを特徴と
する特許請求の範囲第1項記載の回折格子形成方法。
(2) The method of changing the phase is a method of effectively changing the optical path length by rotating a substance inserted into the optical path and having a refractive index different from that of the surrounding atmosphere. A method for forming a diffraction grating according to scope 1.
(3)前記位相を変化させる方法が、光路中に挿入され
た鏡あるいはプリズムの平行移動によって空間的に光路
長を変化させる方法であることを特徴とする特許請求の
範囲第1項記載の回折格子形成方法。
(3) Diffraction according to claim 1, wherein the method of changing the phase is a method of spatially changing the optical path length by parallel movement of a mirror or prism inserted in the optical path. How to form a lattice.
(4)前記位相を変化させる方法が、光路中に挿入され
た誘電体の電気光学効果によって実効的に光路長を変化
させる方法であることを特徴とする特許請求の範囲第1
項記載の回折格子形成方法。
(4) The method of changing the phase is a method of effectively changing the optical path length by an electro-optic effect of a dielectric inserted into the optical path.
Diffraction grating formation method described in .
(5)レーザ光を少なくとも2つの光束に分割した後に
合波することで干渉を生ぜしめ、この干渉に応じて速度
あるいは性質が変化する光化学反応を利用して物体面上
に回折格子を形成する装置において、上記分割後の光束
中の少なくとも一光束側に光の位相を調整可能に変化さ
せる光路長可変手段を配置したことを特徴とする回折格
子形成装置。
(5) A diffraction grating is formed on the object plane by using a photochemical reaction in which the laser beam is split into at least two beams and then combined to cause interference, and the speed or properties change according to this interference. A diffraction grating forming device characterized in that an optical path length variable means for adjustablely changing the phase of light is disposed on at least one side of the divided beam.
(6)前記光路長可変手段が、周囲の雰囲気とは屈折率
が異なる物質を回転させる手段、鏡あるいはプリズムを
平行移動させる手段、誘電体の電気光学効果を変化させ
る手段のいずれかであることを特徴とする特許請求の範
囲第5項記載の回折格子形成装置。
(6) The optical path length variable means is any of a means for rotating a substance having a refractive index different from that of the surrounding atmosphere, a means for moving a mirror or a prism in parallel, or a means for changing the electro-optic effect of a dielectric. A diffraction grating forming apparatus according to claim 5, characterized in that:
(7)前記物体面への光照射側に光照射を部分的に遮ぎ
るマスクを設けたことを特徴とする特許請求の範囲第5
項記載の回折格子形成装置。
(7) Claim 5, characterized in that a mask for partially blocking light irradiation is provided on the side of light irradiation to the object surface.
Diffraction grating forming device as described in 2.
(8)前記物体面への合波光照射部分にモアレパタンを
発生する基準回折格子を設けたことを特徴とする特許請
求の範囲第5項記載の回折格子形成装置。
(8) The diffraction grating forming device according to claim 5, further comprising a reference diffraction grating that generates a moiré pattern in a portion where the combined light is irradiated onto the object surface.
JP2931085A 1985-02-19 1985-02-19 Method and device for forming diffraction grating Pending JPS61189502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2931085A JPS61189502A (en) 1985-02-19 1985-02-19 Method and device for forming diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2931085A JPS61189502A (en) 1985-02-19 1985-02-19 Method and device for forming diffraction grating

Publications (1)

Publication Number Publication Date
JPS61189502A true JPS61189502A (en) 1986-08-23

Family

ID=12272645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2931085A Pending JPS61189502A (en) 1985-02-19 1985-02-19 Method and device for forming diffraction grating

Country Status (1)

Country Link
JP (1) JPS61189502A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335626A (en) * 1991-02-11 1992-11-24 Hughes Aircraft Co System and method for generating holographic projection screen
JPH08110266A (en) * 1994-10-07 1996-04-30 Nec Corp Method and apparatus for measuring phase difference
JP2002303712A (en) * 2001-04-03 2002-10-18 Fujikura Ltd Device for manufacturing fiber grating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156003A (en) * 1984-12-27 1986-07-15 Sharp Corp Production of diffraction grating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61156003A (en) * 1984-12-27 1986-07-15 Sharp Corp Production of diffraction grating

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04335626A (en) * 1991-02-11 1992-11-24 Hughes Aircraft Co System and method for generating holographic projection screen
JPH08110266A (en) * 1994-10-07 1996-04-30 Nec Corp Method and apparatus for measuring phase difference
JP2002303712A (en) * 2001-04-03 2002-10-18 Fujikura Ltd Device for manufacturing fiber grating
JP4531285B2 (en) * 2001-04-03 2010-08-25 株式会社フジクラ Fiber grating manufacturing equipment

Similar Documents

Publication Publication Date Title
JPH0672962B2 (en) Method and apparatus for forming diffraction grating
US5340637A (en) Optical device diffraction gratings and a photomask for use in the same
CA1270934A (en) Spatial phase modulating masks and production processes thereof, and processes for the formation of phase-shifted diffraction gratings
Okai et al. Novel method to fabricate corrugation for a λ/4‐shifted distributed feedback laser using a grating photomask
EP0188919B1 (en) A method for the formation of a diffraction grating
US4859548A (en) Method for generating a lattice structure with a phase shift on the surface of a substrate
CA2023510C (en) Single wavelength oscillating semiconductor laser device and method for manufacturing diffraction grating
JPH02129616A (en) Light modulation apparatus and method
Nakao et al. Distributed feedback laser arrays fabricated by synchrotron orbital radiation lithography
JPH1126344A (en) Method and device for forming pattern, and manufacture of semiconductor device
JPS61190368A (en) Formation of fine pattern
JPS61189502A (en) Method and device for forming diffraction grating
GB2148595A (en) Distributed feedback semiconductor laser
JPS62158377A (en) Distributed feedback type semiconductor laser
JPH11337713A (en) Formation of diffraction grating
Heise et al. Phase-shifted holographic gratings for distributed feedback lasers
JP2735589B2 (en) Manufacturing method of diffraction grating
JPH041703A (en) Production of phase shift type diffraction grating
JP3916773B2 (en) Method for measuring period of diffraction grating
JPH0461331B2 (en)
Bradley et al. Control of Bragg grating resonant wavelength through its dependence on the effective index of a waveguide
Nishida et al. Synchrotron radiation lithography for DFB laser gratings
JPH05136521A (en) Semiconductor laser
KR100243737B1 (en) Compound semiconductor and method for manufacturing the same
JPH031589A (en) Method for forming phase shifting diffraction grating