JPS61189363A - Rolling friction transmission - Google Patents

Rolling friction transmission

Info

Publication number
JPS61189363A
JPS61189363A JP2928585A JP2928585A JPS61189363A JP S61189363 A JPS61189363 A JP S61189363A JP 2928585 A JP2928585 A JP 2928585A JP 2928585 A JP2928585 A JP 2928585A JP S61189363 A JPS61189363 A JP S61189363A
Authority
JP
Japan
Prior art keywords
rollers
roller
rolling friction
power transmission
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2928585A
Other languages
Japanese (ja)
Inventor
Yasunobu Jiyufuku
寿福 康信
Susumu Okawa
進 大川
Yoshio Kumada
喜生 熊田
Yoshiyuki Hagiwara
萩原 義幸
Masaki Kitauchi
北内 正喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiho Kogyo Co Ltd
Toyota Motor Corp
Original Assignee
Taiho Kogyo Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiho Kogyo Co Ltd, Toyota Motor Corp filed Critical Taiho Kogyo Co Ltd
Priority to JP2928585A priority Critical patent/JPS61189363A/en
Publication of JPS61189363A publication Critical patent/JPS61189363A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H13/00Gearing for conveying rotary motion with constant gear ratio by friction between rotary members
    • F16H13/06Gearing for conveying rotary motion with constant gear ratio by friction between rotary members with members having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/32Friction members
    • F16H55/36Pulleys
    • F16H55/38Means or measures for increasing adhesion

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pulleys (AREA)
  • Friction Gearing (AREA)

Abstract

PURPOSE:To prevent production of abnormal wear and to provide a high traction rate, by a method wherein the surface of a roller is coarsened and proper flatness is provided. CONSTITUTION:The surface of at least the one roller 12 of roller 10 and 12 is coarsened. Surface coarseness of the coarsened surface is 5mum or more in 10 point average coarseness. This constitution causes an oil film bottom to be partially divided, and since power transmission, in which a power transmission, produced by viscosity of a oil film F, is combined with power transmission produced by contact between the rollers 10 and 12, the coefficient of traction can be sharply improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明はころがり摩擦変速装置に関する。[Detailed description of the invention] [Industrial application field] This invention relates to a rolling friction transmission.

〔従来の技術〕[Conventional technology]

接触するローラを使用したころがり摩擦変速装置では、
ローラその少なくとも一方が他方に食い込むように相互
に予圧がかけられ、これによりローラの摩擦回転が引き
起こされるようになっている。摩擦面積を可及的に大き
くし、滑りを無くすためローラの表面は可能な限りにお
いて表面粗さがおさえられ平面となるように形成され、
ローラ表面間に潤滑油を介在させ、動力伝達を流体潤滑
状態にして行うようにしている。即ち、ローラの高速回
転に伴って潤滑油がローラ間に絞りこまれるスクイ−冬
効果によって接触面間に潤滑油の薄い膜が形成され、そ
の膜の剪断力に抗する粘性力によって動力伝達が行われ
る。
In rolling friction transmissions using contacting rollers,
A preload is applied to each other such that at least one of the rollers bites into the other, thereby causing frictional rotation of the rollers. In order to maximize the friction area and eliminate slippage, the surface of the roller is formed to be flat and have as little surface roughness as possible.
Lubricating oil is interposed between the roller surfaces, and power is transmitted in a fluid lubrication state. In other words, as the rollers rotate at high speed, the squee-winter effect causes the lubricating oil to be squeezed between the rollers, forming a thin film of lubricating oil between the contact surfaces, and the viscous force that resists the shearing force of this film inhibits power transmission. It will be done.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の構造では流体潤滑状態での動力伝達を行うことが
らローラの接触表面は平坦化されている。
In the conventional structure, the contact surface of the roller is flattened because power is transmitted under fluid lubrication.

ところが、流体潤滑状態での動力伝達ではトラクション
係数が小さいことがらローラを高速回転しないと有効な
伝達動力が得られない。ところが高回転で運転すると、
ローラの遠心力の影響でローラ間の隙間管理が困難とな
り、その上高回転のために軸受部の発熱が生じ、冷却装
置が必要となる等の問題点が出てくる。
However, in power transmission under fluid lubrication, the traction coefficient is small, so effective transmitted power cannot be obtained unless the rollers are rotated at high speed. However, when driving at high rpm,
The influence of the centrifugal force of the rollers makes it difficult to manage the gap between the rollers, and the high rotation speed also causes problems such as heat generation in the bearings and the need for a cooling device.

特開昭55−86949号や特開昭59−113357
号ではローラの表面に溝を形成することを提案している
JP-A-55-86949 and JP-A-59-113357
The paper proposes forming grooves on the surface of the roller.

ローラの表面の溝により給油特性の改良を狙ったものと
見受けられる。しかしながら、この従来技術でも基本的
には動力伝達は流体潤滑状態での動力伝達であり、トラ
クション係数は小さい。従ってローラを高速回転さセな
いと有効な伝達動力が得られないという問題点は内包し
ている。
The grooves on the surface of the roller appear to be aimed at improving oil supply characteristics. However, even with this prior art, power transmission is basically performed under fluid lubrication, and the traction coefficient is small. Therefore, there is a problem in that effective transmission power cannot be obtained unless the rollers are rotated at high speed.

〔問題点を解決するための手段〕[Means for solving problems]

この発明では、少なくとも一対の接触するローラを備え
、接触面にはローラの摩擦回転を引き起こすように予圧
がかけられており、ローラの接触表面は平面として形成
され、接触面間に潤滑油を介在させてローラ間の動力伝
達を行うころがり摩擦変速装置において、ローラのうち
少なくとも一つのローラの接触表面は粗化されている。
This invention includes at least a pair of rollers that are in contact with each other, the contact surfaces are preloaded to cause frictional rotation of the rollers, the contact surfaces of the rollers are formed as flat surfaces, and lubricating oil is interposed between the contact surfaces. In a rolling friction transmission device that transmits power between rollers, the contact surface of at least one of the rollers is roughened.

好ましくは、その粗化された面の表面粗さは10点平均
粗さで5μm以上である。
Preferably, the roughened surface has a 10-point average roughness of 5 μm or more.

好ましくは、その粗化された面は表面の異常突起のみを
除去するように部分的に平坦化処理されている。
Preferably, the roughened surface is partially planarized to remove only abnormal protrusions on the surface.

〔作 用〕[For production]

ローラの少なくとも一つの表面の粗化を行うことによっ
て動力伝達は従来の流体潤滑状態から、混合または境界
潤滑によって行われるようになる。
By roughening the surface of at least one of the rollers, power transmission is changed from conventional hydrodynamic lubrication to mixed or boundary lubrication.

即ち、ローラ間の潤滑油膜を表面の粗化によって部分的
に分断して、動力伝達を粘性油膜の剪断とローラの接触
とを組合わせて行わせることができる。そのため、トラ
クション係数を向上することができる。
That is, by partially dividing the lubricating oil film between the rollers by roughening the surface, power transmission can be performed by combining the shearing of the viscous oil film and the contact of the rollers. Therefore, the traction coefficient can be improved.

〔実施例〕〔Example〕

第1図はこの発明の一実施例としての遊星ローラ機構の
軸断面図であって、10は太陽ローラ、12は遊星ロー
ラ、14はリングローラである。
FIG. 1 is an axial sectional view of a planetary roller mechanism as an embodiment of the present invention, in which 10 is a sun roller, 12 is a planetary roller, and 14 is a ring roller.

15は4個の遊星ローラ12を円周方向に等間隔に回転
自在に保持するキャリアである。遊星ローラ12は中空
体として形成され、太陽ローラ1oとリングローラ14
との間に圧縮状態で適当に弾性変形するように配置され
、これによって太陽ローラ10と遊星ローラ1−2との
間、及び遊星ローラ12とリングローラ14との間のこ
ろがり摩擦接触が確保されるように成っている。遊星ロ
ーラ12を回転自在に保持するキャリア15は4個の軸
方向に片持上に延びる突g15aを有し、近接する突起
15aの間に遊星ローラ12が回転自在に保持されるこ
とになる。太陽ローラ10は第1の軸18として延びて
おり、一方キャリア15は第2の軸20として延びてお
り、これらの第1の軸18及び第2の軸20はハウジン
グ22に回転自在に軸支されている。変速装置の使用時
、周知のように、3個のローラ10 、12 、14の
うち一つは図示しないブレーキによって拘束され、第1
の軸18及び第2の軸20のうち一方が入力軸、他方が
出力軸となり、ローラ径に応じた変速比が得られる。図
示しないが、ローラ間に潤滑油を供給する手段が設けら
れている。
A carrier 15 rotatably holds four planetary rollers 12 at equal intervals in the circumferential direction. The planetary roller 12 is formed as a hollow body, and includes a sun roller 1o and a ring roller 14.
The rollers are arranged so as to be appropriately elastically deformed in a compressed state between them, thereby ensuring rolling frictional contact between the sun roller 10 and the planetary rollers 1-2 and between the planetary rollers 12 and the ring roller 14. It is designed so that The carrier 15 that rotatably holds the planetary roller 12 has four axially cantilevered protrusions g15a, and the planetary roller 12 is rotatably held between adjacent protrusions 15a. The sun roller 10 extends as a first shaft 18 , while the carrier 15 extends as a second shaft 20 , the first shaft 18 and the second shaft 20 being rotatably supported in a housing 22 . has been done. When the transmission is used, as is well known, one of the three rollers 10, 12, 14 is restrained by a brake (not shown), and the first
One of the shaft 18 and the second shaft 20 serves as an input shaft, and the other serves as an output shaft, and a speed ratio corresponding to the roller diameter is obtained. Although not shown, means for supplying lubricating oil between the rollers is provided.

従来技術では太陽ローラ10、遊星ローラ12及びリン
グローラエ4の表面はできる限り表面粗さが押さえられ
、平坦面として仕上げられるのが普通であった。これは
、ローラ間に潤滑油を供給して油膜を形成し、ローラの
回転によってその油膜に加わる剪断力によって動力伝達
を行なわせる、所謂流体潤滑状態での動力伝達作用を得
るためである。ところが、この原理での動力伝達では小
さなトラクシシン係数しか得られず、ローラの速度を大
きくとらないと有効な動力伝達が行えない間題があった
。この発明ではローラの接触面を次のような構造にする
ことにより、この従来の問題点の解決を図るものである
In the prior art, the surfaces of the sun roller 10, the planetary rollers 12, and the ring roller 4 are usually finished as flat surfaces with the surface roughness suppressed as much as possible. This is to obtain a power transmission effect in a so-called fluid lubrication state, in which lubricating oil is supplied between the rollers to form an oil film, and power is transmitted by the shear force applied to the oil film as the rollers rotate. However, power transmission based on this principle only yields a small traction coefficient, and there is a problem in that effective power transmission cannot be achieved unless the speed of the rollers is increased. The present invention attempts to solve this conventional problem by providing the contact surface of the roller with the following structure.

即ち、第3図にローラの接触部分を拡大して、かつ模式
的に示すように、ローラの一つ、この実施例では遊星ロ
ーラ12の表面は粗化されている。
That is, as shown schematically in an enlarged view of the contact portion of the rollers in FIG. 3, the surface of one of the rollers, the planetary roller 12 in this embodiment, is roughened.

尚、太陽ローラ10及びリングローラ14の表面は従来
と同様に研磨加工仕上げによって極力小さい表面粗さく
10点平均の粗さで1.0μm以下)の平坦面に形成さ
れである。遊星ローラ12と太陽ローラ10 (又はリ
ングローラ14)との間の動力伝達はこれらのローラの
接触面間社潤滑油を矢印rのように供給しながら行われ
る。この発明のようにローラの接触表面の一方を粗化す
ることによって、ローラ間の油膜Fは部分的に分断され
、油膜の粘性による動力伝達とローラとローラとの接触
による動力伝達とが組合わさった、混合若しくは境界潤
滑状態での動力伝達が行われ、トラクション係数を大き
くとることができるようになる。
Incidentally, the surfaces of the sun roller 10 and the ring roller 14 are formed into flat surfaces with as small a surface roughness as possible (10-point average roughness of 1.0 .mu.m or less) by polishing and finishing as in the prior art. Power transmission between the planetary roller 12 and the sun roller 10 (or ring roller 14) is performed while lubricating oil is supplied between the contact surfaces of these rollers as indicated by arrow r. By roughening one of the contact surfaces of the rollers as in this invention, the oil film F between the rollers is partially separated, and power transmission by the viscosity of the oil film and power transmission by contact between the rollers are combined. In addition, power is transmitted in a mixed or boundary lubrication state, making it possible to increase the traction coefficient.

ローラの表面の粗化は、公知のどのような方法でもよい
が、例えばアルミナ粒子を砥粒としてラフピングを行う
方法がある。第4図は、第1図の装置において、ローラ
の接触荷重を27kgfとし、リングローラの回転数を
200Orpmとし、かつ潤滑油ATF  D−IIを
10滴/分の割合で供給するという実験条件において、
表面粗さが変化したときのすべり率とトラクション係数
との関係をとったものである。表面粗さは10点をとっ
てその平均の大きさとして表されている。すべり率は、
で表される。ただし、変速比は1と仮定した場合である
。トラクション係数は、 として表され、トラクション係数が大きい程伝達力力が
高いことを意味する。第4図から、5μm程度から25
μmの範囲の表面粗さのときのデータをみると、従来の
表面粗さが1μmの場合と比較してトラクション係数を
大幅に向上することができることが明らかである。
Any known method may be used to roughen the surface of the roller; for example, there is a method of roughening using alumina particles as abrasive grains. Figure 4 shows the experimental conditions in which the roller contact load was 27 kgf, the ring roller rotation speed was 200 rpm, and lubricating oil ATF D-II was supplied at a rate of 10 drops/min using the apparatus shown in Figure 1. ,
This is the relationship between the slip rate and traction coefficient when the surface roughness changes. The surface roughness is expressed as the average size of 10 points. The slip rate is
It is expressed as However, this is a case where the gear ratio is assumed to be 1. The traction coefficient is expressed as: The larger the traction coefficient, the higher the transmitted force. From Figure 4, from about 5 μm to 25
Looking at the data for surface roughness in the micrometer range, it is clear that the traction coefficient can be significantly improved compared to the conventional surface roughness of 1 micrometer.

第3図に示すように粗化されたローラー00表面は表面
の異常突起を除去し、部分的に平坦化するのが好ましい
。これは、ローラ間の異常摩耗を防止するためである。
As shown in FIG. 3, it is preferable that the roughened surface of the roller 00 be partially flattened by removing abnormal protrusions on the surface. This is to prevent abnormal wear between the rollers.

表面の平坦化の度合を平面率、 z、 +j!、+・・・+A!7 平面率=            X 100X  ・
・・(3)! で代表することができる。ここにlはある任意の長さで
あり、17は各平坦部分の長さである。平面率の測定の
ために最近開発された粗さ解析装置付万能表面形状測定
器と称する機器による相対負荷曲線を利用することがで
きる。この機器による表面測定の原理を説明すると、第
5図において(イ)は測定すべき表面の凹凸形状を模式
的に示している。基準点Pから有る深さCVmを想定し
、その深さのところでの試料の実体部分の長さが2.、
Il、。
The degree of flattening of the surface is the flatness ratio, z, +j! ,+...+A! 7 Plane ratio = X 100X ・
...(3)! can be represented by Here l is a certain arbitrary length, and 17 is the length of each flat portion. For measuring flatness, it is possible to use a relative load curve produced by a recently developed instrument called a universal surface profilometer with roughness analyzer. To explain the principle of surface measurement using this device, in FIG. 5 (a) schematically shows the uneven shape of the surface to be measured. Assuming a certain depth CVm from the reference point P, the length of the actual part of the sample at that depth is 2. ,
Il.

・・・17のように測定され、試料の全長りに対する百
分比tpmが得られる。このような測定が各深さにわた
って実行され、(o)に示すような曲線が得られる。こ
れを相対負荷曲線と称し、試料の粗さ状態を評価するこ
とができる。平坦状態の評価にも採用できる。すなわち
、第6図(イ)のように一定の切り込みによって表面の
突起(破線)を除去する処理をすると相対負荷曲線は同
図(0)のように零%のところからtpa+%のところ
まで平坦化され、第(3)式の平面率としてtpmを採
用することができる。
...17, and the percentage tpm relative to the total length of the sample is obtained. Such measurements are performed over each depth, resulting in a curve as shown in (o). This is called a relative load curve, and the roughness state of the sample can be evaluated. It can also be used to evaluate flat conditions. In other words, if the surface protrusions (broken line) are removed by making a certain cut as shown in Figure 6 (a), the relative load curve will be flat from 0% to tpa+% as shown in Figure 6 (0). , and tpm can be adopted as the planarity ratio in equation (3).

第7図はこのように相対負荷曲線によって計測された平
面率とトラクション係数との関係を示す。
FIG. 7 shows the relationship between the flatness ratio and the traction coefficient measured by the relative load curve in this manner.

平面率を上げることによりトラクション係数が下がるか
ら、異常摩耗を防止できる範囲でかつ所望のトラクショ
ン係数を得ることができる適当な平面率を決める必要が
ある。
Since increasing the flatness ratio lowers the traction coefficient, it is necessary to determine an appropriate flatness ratio within a range that can prevent abnormal wear and that can obtain the desired traction coefficient.

平坦化の手段としては、粗化したローラの表面状態の極
度に小さいローラを圧接させ、任意の荷重を与えて擦り
合わせ回転される方法がある。
As a means for flattening, there is a method in which a roller with a roughened surface whose surface condition is extremely small is brought into pressure contact with the roller, and the roller is rubbed and rotated by applying an arbitrary load.

〔例〕〔example〕

第1.2図に図示したような摩擦遊星ローラ機構におい
てその遊星ローラ12の表面にショットブラスト処理を
施しその表面の粗化を行った。得られた粗化された面は
粗さ解析装置付万能形状測定器のチャート上において第
8図の(イ)の如くであった。この場合の測定条件は次
の通りであった。
In the friction planetary roller mechanism shown in FIG. 1.2, shot blasting was applied to the surface of the planetary roller 12 to roughen the surface. The obtained roughened surface looked as shown in FIG. 8(a) on the chart of a universal shape measuring device with a roughness analyzer. The measurement conditions in this case were as follows.

試料長さL   :2.5mm 縦倍率V    :1000 横倍率H:20 カット長さC:0.8m+w 測定結果は次の通りであった。Sample length L: 2.5mm Vertical magnification V: 1000 Horizontal magnification H: 20 Cut length C: 0.8m+w The measurement results were as follows.

平均粗さRa    : 3.1μm 最大粗さRmax    :21.2μm10点平均粗
さRz:16.5#m 得られた相対負荷曲線を第8図(o)に示す。
Average roughness Ra: 3.1 μm Maximum roughness Rmax: 21.2 μm 10-point average roughness Rz: 16.5 #m The obtained relative load curve is shown in FIG. 8(o).

次に、このようにして粗化されたローラの表面に極度に
平坦化された小ローラを押しつけ粗化したローラの表面
の部分的な平坦化を行った。平坦化後の表面の状態はチ
ャート上で第9図(イ)の通りであった。測定条件は同
一であった。
Next, an extremely flattened small roller was pressed against the thus roughened surface of the roller to partially flatten the roughened surface of the roller. The state of the surface after planarization was as shown in FIG. 9(a) on the chart. The measurement conditions were the same.

測定結果はつぎの通りであった。The measurement results were as follows.

平均粗さRa    :2.1μm 最大粗さRt    :18.5μm 10点平均粗さRZ:14.5.czm得られた相対負
荷曲線を第9図(ロ)に示す。このように部分的平坦化
された遊星ローラ12を第1゜2図の装置に組込み運転
したところ、太陽ローラlO及びリングローラ14に異
常摩耗を与えることなく長時間の運転が可能となった。
Average roughness Ra: 2.1 μm Maximum roughness Rt: 18.5 μm 10-point average roughness RZ: 14.5. The relative load curve obtained is shown in FIG. 9 (b). When the planetary roller 12 thus partially flattened was incorporated into the apparatus shown in FIGS. 1-2 and operated, it became possible to operate for a long time without causing abnormal wear to the sun roller 10 and the ring roller 14.

〔発明の効果〕〔Effect of the invention〕

この発明によればローラの表面を粗化し、かつ適当な平
坦率を持たせることによって、異常摩耗を生ずることが
なくかつ高いトラクション率の摩擦真速装置を構成する
ことができる。トラクション係数が高いことにより、伝
達能力が向上され、従来と同一の動力を伝達するとすれ
ばその分回転数を押さえることができる。そのため、遠
心力が軽減され、軸受の適温を維持できる、耐久性が向
上し、冷却手段を簡素化することができる効果が奏され
る。
According to this invention, by roughening the surface of the roller and giving it an appropriate flatness rate, it is possible to construct a friction true speed device that does not cause abnormal wear and has a high traction rate. The high traction coefficient improves the transmission ability, and if the same power is transmitted as before, the rotational speed can be reduced accordingly. Therefore, centrifugal force is reduced, the bearing can maintain an appropriate temperature, durability is improved, and the cooling means can be simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の変速装置の一実施例である遊星ロー
ラ装置の軸断面図、 第2図は第1図のn−n線に沿う横断面図、第3図はロ
ーラの接触部分を拡大して示す模式第4図はすべり率と
トラクション係数との関係を表面粗さを色々と変化させ
て示す図、第5図、第6図は粗さ解析装置付万能形状測
定器による相対負荷曲線の測定の仕方を説明する図、第
7図は平面率とトラクション係数との関係線図、 第8図、第9図は粗化後及び部分が平坦化後の夫々につ
いて粗さ解析装置付万能形状測定器によって実際に得ら
れた表面形状チャート(イ)及び相対負荷曲線を示す図
。 10・・・太陽ローラ、12・・・遊星ローラ、14・
・・リングローラ、15・・・キャリア。〜14−−一
νングローラ 18.20−一一回転軸第3図 1z 第4図 すべり率  al。 第5図 (イ)                      
       (ロ)平面率=^ρm 第7図 平面率o1゜ 第8図 (イ)                      
  (ロ)及び相対負荷曲線(ロ) 第9図 (イ)                      
       (ロ)及び相対負荷曲線(ロ)
Fig. 1 is an axial sectional view of a planetary roller device which is an embodiment of the transmission device of the present invention, Fig. 2 is a transverse sectional view taken along line nn in Fig. 1, and Fig. 3 shows the contact portion of the rollers. Figure 4 is an enlarged schematic diagram showing the relationship between slip rate and traction coefficient with various surface roughness changes, and Figures 5 and 6 are relative loads measured by a universal shape measuring device with a roughness analyzer. A diagram explaining how to measure a curve, Figure 7 is a relationship diagram between flatness ratio and traction coefficient, Figures 8 and 9 are after roughening and after the part is flattened, respectively, with a roughness analyzer attached. A diagram showing a surface shape chart (A) and a relative load curve actually obtained by a universal shape measuring device. 10... Sun roller, 12... Planetary roller, 14.
...Ring roller, 15...Carrier. ~14--1ν Ning roller 18.20-11 Rotating shaft Fig. 3 1z Fig. 4 Slip rate al. Figure 5 (a)
(B) Plane ratio = ^ρm Figure 7 Plane ratio o1゜ Figure 8 (A)
(b) and relative load curve (b) Figure 9 (a)
(b) and relative load curve (b)

Claims (1)

【特許請求の範囲】 1、少なくとも一対の接触するローラを備え、接触面に
はローラの摩擦回転を引き起こすように予圧がかけられ
ており、ローラの接触表面は平面として形成され、接触
面間に潤滑油を介在させてローラ間の動力伝達を行うこ
ろがり摩擦変速装置において、ローラのうち少なくとも
一つのローラの接触表面は粗化されていることを特徴と
するころがり摩擦装置。 2、前記粗化された面の表面粗さは10点平均粗さで5
μm以上であることを特徴とする特許請求の範囲第1項
記載のころがり摩擦装置。 3、前記粗化された表面は異常突起を除去するために部
分的に平坦化されていることを特徴とする特許請求の範
囲第1項記載のころがり摩擦装置。
[Claims] 1. At least a pair of contacting rollers are provided, the contact surfaces are preloaded to cause frictional rotation of the rollers, the contact surfaces of the rollers are formed as flat surfaces, and there is a gap between the contact surfaces. A rolling friction transmission device that transmits power between rollers using lubricating oil, wherein the contact surface of at least one of the rollers is roughened. 2. The surface roughness of the roughened surface is 5 as a 10-point average roughness.
The rolling friction device according to claim 1, wherein the rolling friction device has a diameter of μm or more. 3. The rolling friction device according to claim 1, wherein the roughened surface is partially flattened to remove abnormal protrusions.
JP2928585A 1985-02-19 1985-02-19 Rolling friction transmission Pending JPS61189363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2928585A JPS61189363A (en) 1985-02-19 1985-02-19 Rolling friction transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2928585A JPS61189363A (en) 1985-02-19 1985-02-19 Rolling friction transmission

Publications (1)

Publication Number Publication Date
JPS61189363A true JPS61189363A (en) 1986-08-23

Family

ID=12271976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2928585A Pending JPS61189363A (en) 1985-02-19 1985-02-19 Rolling friction transmission

Country Status (1)

Country Link
JP (1) JPS61189363A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278048A (en) * 1989-04-19 1990-11-14 Takashi Takahashi Continuously variable trnsmission
JPH03121338A (en) * 1989-10-05 1991-05-23 Takashi Takahashi High speed star type traction speed change device
JPH03121337A (en) * 1989-10-05 1991-05-23 Takashi Takahashi High speed epicyclic traction speed change device
JPH03153947A (en) * 1989-11-13 1991-07-01 Takashi Takahashi Planetary traction type transmission for high speed rotation
JPH03209041A (en) * 1990-01-12 1991-09-12 Takashi Takahashi Planetary type traction transmission device and associate structure with roller set and its manufacturing method
JPH0439449A (en) * 1990-06-01 1992-02-10 Takashi Takahashi Reduction gear connected in line with prime mover
JP2003014067A (en) * 2001-06-29 2003-01-15 Nissan Motor Co Ltd Rolling element for traction drive, rolling surface machining method for it, and continuously variable transmission for automobile

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113357A (en) * 1982-12-17 1984-06-30 Toyota Central Res & Dev Lab Inc Rolling friction transmission gear

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113357A (en) * 1982-12-17 1984-06-30 Toyota Central Res & Dev Lab Inc Rolling friction transmission gear

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02278048A (en) * 1989-04-19 1990-11-14 Takashi Takahashi Continuously variable trnsmission
JPH03121338A (en) * 1989-10-05 1991-05-23 Takashi Takahashi High speed star type traction speed change device
JPH03121337A (en) * 1989-10-05 1991-05-23 Takashi Takahashi High speed epicyclic traction speed change device
JPH03153947A (en) * 1989-11-13 1991-07-01 Takashi Takahashi Planetary traction type transmission for high speed rotation
JPH03209041A (en) * 1990-01-12 1991-09-12 Takashi Takahashi Planetary type traction transmission device and associate structure with roller set and its manufacturing method
JPH0439449A (en) * 1990-06-01 1992-02-10 Takashi Takahashi Reduction gear connected in line with prime mover
JP2003014067A (en) * 2001-06-29 2003-01-15 Nissan Motor Co Ltd Rolling element for traction drive, rolling surface machining method for it, and continuously variable transmission for automobile

Similar Documents

Publication Publication Date Title
JP3630297B2 (en) Toroidal continuously variable transmission for automobiles
Bell et al. The effects of rolling and sliding speeds on the scuffing of lubricated steel discs
JP2686973B2 (en) Manufacturing method of disk for belt drive type continuously variable transmission
JPS61189363A (en) Rolling friction transmission
McKee Effect of abrassive in lubricant
JP3459484B2 (en) Ball for ball bearing
JP2021127834A (en) Tapered roller bearing
US3823599A (en) Test apparatus for the evaluation of rolling lubricants
US6893372B2 (en) Roller bearing, transmission using the same and differential gear
JPH0260906B2 (en)
Almen Dimensional value of lubricants in gear design
JP2008232410A (en) Continuously variable transmission and its manufacturing method
Matsuyama et al. Analysis of frictional torque in raceway contacts of tapered roller bearings
JP2760626B2 (en) Constant velocity universal joint
Isaksson Measurement of the influence of sliding velocity on oil film thickness in an elastohydrodynamic point contact
Tica et al. Permissible temperatures and thermal stability of worm gears
JPH08296709A (en) High bearing rolling body
Busse et al. Water-lubricated soft-rubber bearings
Yousif et al. The frictional traction characteristics of greases in heavily loaded contacts
JPH07103244A (en) Rolling or sliding machine parts
Braddock et al. Designing Planetary Gears to Operate with Low Viscosity Synthetic Lubricants
JPH09210162A (en) Epicyclic roller power transmission
Yousif et al. The frictional losses in involute gears as predicted from the traction-slip characteristics of lubricating oils
Brown et al. The lubrication of the roller-rib contacts of a radial cylindrical roller bearing carrying thrust load
JPH07103246A (en) Rolling or sliding machine parts