JPS6118935A - Generating method of visible light - Google Patents

Generating method of visible light

Info

Publication number
JPS6118935A
JPS6118935A JP59138939A JP13893984A JPS6118935A JP S6118935 A JPS6118935 A JP S6118935A JP 59138939 A JP59138939 A JP 59138939A JP 13893984 A JP13893984 A JP 13893984A JP S6118935 A JPS6118935 A JP S6118935A
Authority
JP
Japan
Prior art keywords
optical fiber
light
visible light
generated
birefringent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59138939A
Other languages
Japanese (ja)
Inventor
Takashi Nakajima
隆 中島
Masataka Nakazawa
正隆 中沢
Yoshiyuki Aomi
青海 恵之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59138939A priority Critical patent/JPS6118935A/en
Publication of JPS6118935A publication Critical patent/JPS6118935A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To easily generate visible light of 0.3-1mum by making light pulses of a 1mum wavelength band incident on the fast axis of an optical fiber having birefringence and causing induced Raman scattering and 4 photon mixture and generating a sum frequency in the fiber. CONSTITUTION:Light pulses of high output from an exciting light source 1 are generated at intervals of, for example, 1-10ns as light pulses which have 200psec pulse width and 6kW peak power. The fast axis of polarization of the light pulses is made coincident with the fast axis of the birefringent optical fiber 4 by a polarizer 2 and the output of the polarizer 2 is made incident on the birefringent optical fiber 4 through a lens 3. Nonlinear optical effect, i.e. inductive Raman scattering and 4 photon mixing are caused in the optical fiber 4 to emit visible light (purple of 492nm, green of 514nm, and yellow of 538nm) from a lens 3'. Consequently, the visible light is generated with high efficiency.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、光ファイバを用いた可視光発生方法、特に複
屈折光ファイバの早軸に高出力光パルスを入射して誘導
ラマン散乱、誘導4光子混合および和周波数を発生させ
ることによシ披長0.3〜1μmの光を高効率に得る方
法に関するものでおる。
Detailed Description of the Invention [Technical Field] The present invention relates to a visible light generation method using an optical fiber, and in particular, to a method for generating visible light using an optical fiber, in particular, a method for producing stimulated Raman scattering and stimulated four-photon mixing by injecting a high-power optical pulse into the fast axis of a birefringent optical fiber. The present invention also relates to a method of highly efficiently obtaining light having a beam length of 0.3 to 1 μm by generating a sum frequency.

〔従来技術〕[Prior art]

近年、光の応用は通信の分野のみで力〈測定の分野にも
広がシつつあシ、それによって距離、速度1回転数等の
測定が可能となっている。また、通信用の光ファイバの
緒特性の測定においても光を用いることが一般的である
。このような状況のもとで、測定対象をよシ広げ、かつ
精度の高い測定を実現していくためには、種々の波長の
光を効率よく発生させることのできる光源を実現するこ
とが重要である0特に、現在は、可視から紫外にかけて
の高効率な発光法がなく、この領域での高効率な光源が
望まれている。
In recent years, the application of light has expanded beyond the field of communications to the field of force measurement, making it possible to measure distances, speeds, and the number of revolutions per rotation. Furthermore, it is common to use light to measure the characteristics of optical fibers for communication. Under these circumstances, in order to expand the range of measurement targets and achieve highly accurate measurements, it is important to create a light source that can efficiently generate light of various wavelengths. In particular, there is currently no highly efficient light emitting method in the visible to ultraviolet range, and a highly efficient light source in this range is desired.

ところで、新しい光源として、近年、光ファイバ中の非
線形光学効果を用いて励起光とは違う波長の光を発生さ
せることが検討され始めている。
Incidentally, as a new light source, in recent years, studies have begun to consider generating light of a wavelength different from that of excitation light using nonlinear optical effects in optical fibers.

このように光ファイバを用いた光源は、特に光ファイバ
の特性測定に用いる場合には、測定対象の光ファイバと
効率よく結合できるという利点をもち、注目を浴びてき
ている0 かかる光ファイバを用いた光源の一例においては、これ
までに、真円コアファイバを用い、このファイバを波長
1.06μmで50kwのQスイッチNd : YAG
レーザによシ励起して、波長0.7〜2.111mの光
を得ている0さらにまた、1100kのモードロックQ
スイッチNd : YAGレーザで光ファイバを励起し
て、波長0.3〜2.1μmの光を得ることも報告され
ている。
In this way, light sources using optical fibers have been attracting attention because they have the advantage of being able to efficiently couple with the optical fiber to be measured, especially when used to measure the characteristics of optical fibers. In one example of a light source, a true circular core fiber was used, and this fiber was connected to a 50 kW Q-switch Nd: YAG with a wavelength of 1.06 μm.
Furthermore, a mode-locked Q of 1100k is obtained by excitation with a laser to obtain light with a wavelength of 0.7 to 2.111m.
Switch Nd: It has also been reported that light with a wavelength of 0.3 to 2.1 μm can be obtained by exciting an optical fiber with a YAG laser.

しかし、これら光源では、励起光から発生する光へのパ
ワーの変換効率が小さいという欠点があったOさらに加
えて、パワーの変換効率が低いので、出力パワーを増大
させるためには、入力パワーを上ける必要があるが、入
力パワーが強すぎると、光ファイバの端面が焼損してし
まうという欠点もあった0〔目  的 〕 そこで、本発明の目的は、光ファイノ(を用いて可視光
を発生させるにあたって、上述の欠点を除去し、容易に
、しかも高効率で可視光を発生させることのできる可視
光発生方法を提供することにある0 〔発明の構成〕 かかる目的を達成するために、本発明では、波長1 μ
m帯の高出力光パルスを複屈折光ファイノ(を用い、そ
の2つの主軸のうち早軸の方に励起光を入射させること
によシ、その光ファイノく中に誘導ラマン散乱、4光子
混合および和周波数を発生させて、波長0.3〜1μm
の可視光を高効率で発生させる。
However, these light sources have the disadvantage that the power conversion efficiency from the pumping light to the generated light is low.In addition, the power conversion efficiency is low, so in order to increase the output power, it is necessary to increase the input power. However, if the input power is too strong, the end face of the optical fiber will be burnt out. [Purpose] Therefore, the purpose of the present invention is to emit visible light using an optical fiber. An object of the present invention is to provide a visible light generation method that eliminates the above-mentioned drawbacks and can generate visible light easily and with high efficiency. In the present invention, the wavelength 1 μ
By using an m-band high-output light pulse using a birefringent optical fin and injecting the excitation light into the fast axis of its two principal axes, stimulated Raman scattering and four-photon mixing can occur in the optical fin. and the sum frequency is generated, and the wavelength is 0.3 to 1 μm.
of visible light with high efficiency.

ここで、複数本の複屈折光ファイバに光)(ルスを入射
させることによって、複数の可視波長光を同時に発生さ
せることもできる。
Here, a plurality of visible wavelength lights can be generated simultaneously by inputting light into a plurality of birefringent optical fibers.

〔実施例〕〔Example〕

以下に図面を参照して本発明の詳細な説明する0本発明
の1実施例を第1図に示すOことで、1は高出力の光パ
ルスを発生する励起光源、2は偏波を早軸にあわせるだ
めの偏光子、3はレンズ、4は複屈折光ファイバである
。例えば、励起光源1から10 n5ecの間隔でパル
ス幅200 psec 、ビークパワー6 kwの光パ
ルスを発生させ、偏光子2によって、その光パルスの偏
波の主軸を複屈折光ファイバ4の早軸にあわせてから、
その偏光子出力をレンズ3を介して複屈折光ファイバ4
に入射させる。この複屈折光ファイバ4の内部で非線形
光学効果が発生し、その出射端からはレンズ3′を介し
て可視の光が取シ出される。
The present invention will be described in detail below with reference to the drawings. One embodiment of the present invention is shown in FIG. 3 is a lens, and 4 is a birefringent optical fiber. For example, an optical pulse with a pulse width of 200 psec and a peak power of 6 kW is generated from the excitation light source 1 at an interval of 10 n5 ec, and the main axis of polarization of the optical pulse is aligned with the fast axis of the birefringent optical fiber 4 using the polarizer 2. After combining,
The polarizer output is passed through a lens 3 to a birefringent optical fiber 4.
Inject it into the A nonlinear optical effect occurs inside this birefringent optical fiber 4, and visible light is extracted from its output end via a lens 3'.

ここで、光ファイバ4の出射端から出てくる可視光のス
ペクトルの例を第2図に示す。この場合には、第2図か
られかるように、紫(波長430nm)。
Here, an example of the spectrum of visible light coming out from the output end of the optical fiber 4 is shown in FIG. In this case, as shown in FIG. 2, the color is violet (wavelength: 430 nm).

青(492nm )l緑(5t4nm)を黄(538n
m )の可視光が発生してくる。
Blue (492nm), green (5t4nm), yellow (538nm)
m) visible light is generated.

これらの光パワーの励起光パワー依存性を第3図に示す
。この第3図かられかるように、特に波長λ” 514
 nmの光は、励起光パワーが数kw であっても大き
なパワーが得られ、光源として十分使用できる。このと
きの励起光から可視光へのパワーの変換効率は、0.5
〜1チでアシ、従来の0.1チ程度に比較し、5〜10
倍の高変換効率を実現できた。
The dependence of these optical powers on the pumping light power is shown in FIG. As can be seen from this Figure 3, especially the wavelength λ" 514
Even if the excitation light power is several kilowatts, the nanometer light can provide a large power and can be sufficiently used as a light source. The power conversion efficiency from excitation light to visible light at this time is 0.5
~ 1 inch reed, compared to the conventional 0.1 inch, 5 to 10 inches
We were able to achieve double the conversion efficiency.

第1図の実施例において、励起光の偏波の主軸を複屈折
光ファイバの早軸に入射した場合と連軸に入射した場合
の発生可視光のスペクトルをそれぞれ第4図(A)およ
び(B)に示す0縞4図(ト)において実線は早軸から
の出力、破線は連軸からの出力である。第4図(B)で
は、実線は連軸からの出力、破線は早軸からの出力であ
る。励起光から可視光への高効率な変換を実現するため
には、励起光の偏波の主軸を複屈折光ファイバの早軸に
一致させて入射させることが非常に重要である0 発生する光の波長は、複屈折光ファイバの種類によって
変わるから、異種の複屈折光ファイバをたとえば2本接
続すると、発生する光の波長の種類も増加する。その−
例を第5図に示す0第5図において、光ファイバ4は、
第2図に示したようなスペクトルの光を発生する光ファ
イバでhl)、光ファイバ5は、第6図に示すようなス
ペクトルの光を発生するファイバである。これら2本の
複屈折光ファイバ4および5をファイバ接続部5の位置
で、それぞれの半軸が一致するように縦続接続する。こ
のように接続したファイバに第1図の場合と同様の方法
で励起光を入射した時に、光ファイバ5の出射端から出
てくる可視光のスペクトルL第7図のようになる。この
場合、紫、青、緑。
In the example shown in FIG. 1, the spectra of visible light generated when the main axis of polarization of the excitation light is incident on the fast axis of the birefringent optical fiber and when it is incident on the coupled axis are shown in FIGS. 4 (A) and (2), respectively. In the 0-stripe diagram 4 (g) shown in B), the solid line is the output from the fast axis, and the broken line is the output from the linked axis. In FIG. 4(B), the solid line is the output from the linked shaft, and the broken line is the output from the fast shaft. In order to achieve highly efficient conversion from excitation light to visible light, it is very important that the main axis of polarization of the excitation light coincides with the fast axis of the birefringent optical fiber. The wavelength of light changes depending on the type of birefringent optical fiber, so if two different types of birefringent optical fibers are connected, the types of wavelengths of light generated will also increase. That-
An example is shown in FIG. 5. In FIG. 5, the optical fiber 4 is
The optical fiber 5 is an optical fiber that generates light with a spectrum as shown in FIG. 2 (hl), and the optical fiber 5 is a fiber that generates light with a spectrum as shown in FIG. These two birefringent optical fibers 4 and 5 are cascade-connected at the fiber connection portion 5 so that their half axes coincide. When excitation light is incident on the fibers connected in this manner in the same manner as in FIG. 1, the visible light spectrum L emerging from the output end of the optical fiber 5 is as shown in FIG. 7. In this case, purple, blue, and green.

黄および橙(s64nm)の光が発生した0したがって
、光ファイバ5から拡、2種類のファイバ4および5か
らそれぞれ発生する各種波長の光の重畳された和出力が
得られる0これにより、数種類の複屈折光ファイバを接
続することによシ、必要とする複数の波長の光を同時に
得ることができる〇@8図は本発明の第3実施例を示し
、この実施例では、第1図の実施例においてレンズの入
射側およびし/ズ3の出射側に特定の波長λ、の光のみ
を反射する鏡(レーザミラー)7および7′をそれぞれ
配置し、それにより波長λ、の光を発振させることによ
り出力を高めるようにする〇〔効果〕 以上説明したように、本発明によれば、高出力光パルス
をその偏波面が半軸に一致するように複屈折光ファイバ
に入射させることによシ、真円ファイバを用いた場合よ
シも高効率に可視光を発生させることができる利点があ
る。
Yellow and orange (s64 nm) light is generated. Therefore, a sum output is obtained in which light of various wavelengths is spread from the optical fiber 5 and is generated from the two types of fibers 4 and 5, respectively. By connecting birefringent optical fibers, it is possible to obtain light of multiple required wavelengths at the same time.〇@8 Figure 8 shows a third embodiment of the present invention. In the embodiment, mirrors (laser mirrors) 7 and 7' that reflect only light with a specific wavelength λ are placed on the incident side of the lens and the output side of the lens 3, respectively, thereby oscillating light with a wavelength λ. [Effect] As explained above, according to the present invention, a high-output optical pulse is made to enter a birefringent optical fiber so that its plane of polarization coincides with the semi-axis. However, the use of a true circular fiber also has the advantage of being able to generate visible light with high efficiency.

また、異種の複屈折光ファイバをその半軸が一致するよ
うに接続して用いた場合、それぞれの光ファイバにより
発生できる光の波長の重畳された光が発生するから、必
要とする波長の光を発生することのできる複数種類の複
屈折光ファイバを接続することによシ、それらの光を同
時に得られる利点がある。
Furthermore, when different types of birefringent optical fibers are connected so that their half axes coincide, light with the wavelengths of light that can be generated by each optical fiber is superimposed is generated. By connecting multiple types of birefringent optical fibers that can generate birefringent light, there is an advantage that the light can be obtained at the same time.

さらにまた、複屈折光ファイバの両端に特定の波長のみ
を反射させる鏡を配置することによシ、その波長の光を
強く発振させることもでき、これにより、十分に光源と
して使用しつる出力が得られる利点がある。
Furthermore, by placing mirrors at both ends of a birefringent optical fiber that reflect only a specific wavelength, it is possible to strongly oscillate light at that wavelength, which allows for sufficient output to be used as a light source. There are benefits to be gained.

しかもまた、本発明の方法によυ発生した光は、ファイ
バのコア径に近いスポットサイズをもつので、伝送用の
光ファイバの特性測定に用いる場合には、被測定7アイ
バと直接に接続したシ、レンズで集光することによ)、
被測定ファイバに対して高効率に結合させることが可能
である。
Furthermore, since the light generated by the method of the present invention has a spot size close to the core diameter of the fiber, when used to measure the characteristics of an optical fiber for transmission, it is possible to By concentrating the light with a lens),
It is possible to couple the fiber under test with high efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す線図、第2図は複屈折
光ファイバから発生する可視光のスペクトルを示すスペ
クトル図、 第3図は第1図の実施例において発生する光のパワーの
入射励起光パワーへの依存性を示す説明図、 第4図(6)および俤)は、それぞれ、励起光の偏波の
主軸を複屈折光ファイバの半軸および運輸に入射した場
合の発生可視□光のスペクトルを示すスペクトル図、 第5図線異種の複屈折光ファイバを接続した本発明の他
の実施例を示す線図、 第6回状第5図の例における複屈折光ファイバから発生
する可視光のスペクトルを示すスペクトル図、 第7図は第5図の実施例で得られる可視光のスペクトル
を示すスペクトル図、 第8図はレーザミラーを付加することによシ特定の波長
の光の出力を高めて取り出すようにした本発明のさらに
他の実施例を示す線図である01・・−高出力励起光源
、 2・・・偏光子、 3.3・・・レンズ、 4・・・複屈折光ファイバ、 5・・・複屈折光ファイバ1
Figure 1 is a diagram showing one embodiment of the present invention, Figure 2 is a spectrum diagram showing the spectrum of visible light generated from a birefringent optical fiber, and Figure 3 is a diagram showing the spectrum of visible light generated in the embodiment of Figure 1. Explanatory diagrams showing the dependence of power on the incident pumping light power, Figure 4 (6) and 忤) show the case where the main axis of polarization of the pumping light is incident on the semi-axis and transport of the birefringent optical fiber, respectively. A spectral diagram showing the spectrum of generated visible□ light, Fig. 5 Diagram showing another embodiment of the present invention in which different types of birefringent optical fibers are connected, Birefringent optical fiber in the example of Fig. 5 of the sixth circular Figure 7 is a spectrum diagram showing the spectrum of visible light obtained in the embodiment shown in Figure 5. Figure 8 is a spectrum diagram showing the spectrum of visible light generated by the embodiment shown in Figure 5. 01...-High power excitation light source, 2...Polarizer, 3.3...Lens, 4. ... Birefringent optical fiber, 5... Birefringent optical fiber 1

Claims (1)

【特許請求の範囲】 1)波長1μm帯の光パルスを複屈折性を有する複屈折
光ファイバの早軸に入射させ、該光ファイバ中に誘導ラ
マン散乱、4光子混合および和周波数を発生させて、当
該光ファイバから波長0.3〜1μmの光を得ることを
特徴とする可視光発生方法。 2)特許請求の範囲第1項記載の可視光発生方法におい
て、前記複屈折光ファイバは、異なる波長の可視光を発
生する複数の複屈折光ファイバを縦続接続してなり、そ
の出力端の複屈折光ファイバから複数の波長の可視光出
力を同時に得ることを特徴とする可視光発生方法。
[Claims] 1) A light pulse with a wavelength of 1 μm is incident on the fast axis of a birefringent optical fiber having birefringence to generate stimulated Raman scattering, four-photon mixing, and a sum frequency in the optical fiber. A visible light generation method characterized by obtaining light with a wavelength of 0.3 to 1 μm from the optical fiber. 2) In the method for generating visible light according to claim 1, the birefringent optical fiber is formed by cascading a plurality of birefringent optical fibers that generate visible light of different wavelengths, and A visible light generation method characterized by simultaneously obtaining visible light outputs of multiple wavelengths from a refractive optical fiber.
JP59138939A 1984-07-06 1984-07-06 Generating method of visible light Pending JPS6118935A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59138939A JPS6118935A (en) 1984-07-06 1984-07-06 Generating method of visible light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59138939A JPS6118935A (en) 1984-07-06 1984-07-06 Generating method of visible light

Publications (1)

Publication Number Publication Date
JPS6118935A true JPS6118935A (en) 1986-01-27

Family

ID=15233675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59138939A Pending JPS6118935A (en) 1984-07-06 1984-07-06 Generating method of visible light

Country Status (1)

Country Link
JP (1) JPS6118935A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194697A (en) * 1992-12-14 1994-07-15 Nec Corp Wavelength multiplex reference light source
US5386314A (en) * 1993-09-10 1995-01-31 At&T Corp. Polarization-insensitive optical four-photon mixer with orthogonally-polarized pump signals
US11291926B2 (en) 2017-05-29 2022-04-05 Hanayama International Trading Ltd Polyhedral toy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194697A (en) * 1992-12-14 1994-07-15 Nec Corp Wavelength multiplex reference light source
US5386314A (en) * 1993-09-10 1995-01-31 At&T Corp. Polarization-insensitive optical four-photon mixer with orthogonally-polarized pump signals
US11291926B2 (en) 2017-05-29 2022-04-05 Hanayama International Trading Ltd Polyhedral toy

Similar Documents

Publication Publication Date Title
US4913520A (en) Optical fiber for pulse compression
CN203103748U (en) Fiber laser outputting laser light with dual wavelengths of 659.5nm and 1319nm
EP3195501B1 (en) Broadband red light generator for rgb display
CN111490446A (en) Dissipative soliton resonance fiber laser
CN103474868B (en) Output high-power 2 micro wire polarization laser mix thulium full-optical-fiber laser
JP5196459B2 (en) Broadband tunable laser beam generator
He et al. Simultaneous cw red, yellow, and green light generation,“traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO 3
US8194310B1 (en) All fiber pulse generator for pumping a non-linear converter
JPS6118935A (en) Generating method of visible light
US9588399B2 (en) All-fiber laser frequency mixer and frequency-mixing fiber laser thereof
Li et al. 93.7 W 1112 nm diode-side-pumped CW Nd: YAG laser
JPS6249997B2 (en)
CN103928839A (en) U-waveband high-power picosecond pulse laser generating method
CN109888603A (en) The flat multi-wavelength noise like light-pulse generator of three annular resonant cavities
CN209056761U (en) A kind of laser exporting multiwavelength laser
CN210120321U (en) Red and green dual-wavelength fiber laser
CN202042794U (en) Full-optical fiber high-efficiency narrow pulse optical fiber laser
CN214280414U (en) Device for generating ultraviolet laser by frequency doubling in cavity of visible light waveband fiber laser
CN209056760U (en) Multi-wavelength optical fiber laser based on chirp grating and multimode fibre
CN206893994U (en) A kind of laser based on monolithic KDP Cascaded crystals optical frequency variables
CN2711952Y (en) Three-mirror resonant cavity laser for sum-frequency in semiconductor laser pump cavity
Boulanger et al. Mamyshev Oscillator Gain-Managed Amplifier
Lu et al. Mode-locked laser with high-order mode generation based on grating combiner
JPH0231489A (en) Soliton laser oscillation and apparatus
Babin et al. Random Lasing in Multicore and Multimode Fibers