JPS6118866B2 - - Google Patents

Info

Publication number
JPS6118866B2
JPS6118866B2 JP50087398A JP8739875A JPS6118866B2 JP S6118866 B2 JPS6118866 B2 JP S6118866B2 JP 50087398 A JP50087398 A JP 50087398A JP 8739875 A JP8739875 A JP 8739875A JP S6118866 B2 JPS6118866 B2 JP S6118866B2
Authority
JP
Japan
Prior art keywords
current
mos
semiconductor substrate
contact hole
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50087398A
Other languages
Japanese (ja)
Other versions
JPS5211873A (en
Inventor
Kazuo Sato
Mitsuhiko Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP50087398A priority Critical patent/JPS5211873A/en
Priority to GB2928176A priority patent/GB1559581A/en
Priority to DE19762632420 priority patent/DE2632420C2/en
Priority to CH923776A priority patent/CH611740A5/en
Priority to FR7621992A priority patent/FR2318502A1/en
Publication of JPS5211873A publication Critical patent/JPS5211873A/en
Priority to US05/851,955 priority patent/US4149176A/en
Publication of JPS6118866B2 publication Critical patent/JPS6118866B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0921Means for preventing a bipolar, e.g. thyristor, action between the different transistor regions, e.g. Latchup prevention

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は相補型電界効果トランジスタ(以後
C/MOSと略称する)に寄生するバイポーラTr
による難点を排除した半導体装置に関する。 従来からC/MOSで構成した回路は種々知ら
れているが、その代表例を第1図及び第2図によ
り説明する。このインバータ回路はpチヤンネル
のMOS TrθとNチヤンネルMOS Trθとで
構成され、θのソース電極は正電源VDDに接続
する外、θのドレイン電極はθのドレイン電
極と共通接続して出力端に、θのソース電極は
負電源VSSに結ぶ。又θ及びθのゲート電極
は共に入力端に結んでインバータを構成する。 第2図はこの回路を半導体ウエハに作成した断
側面図である。この例では1×1015atoms/cm3位の
濃度を持つN導電形基板1に2×1016atoms/cm3
度の濃度を有するP導電型不純物よりなるいわゆ
るP−Well層2を形成し、このP−Well層2外
のN導電型基板にPチヤンネルMOS TrとなるP
領域3,4を(例えば1019atoms/cm3)拡散する。
一方前記P−Well層2内にもNチヤンネルMOS
TrとなるN領域5,6をN導電形不純物を1020at
oms/cm3程度拡散する。更にP−Well領域2及び
これ以外の半導体基板1には電源接続するP及び
N形の拡散領域7,8を形成する。 これに続いてMOS Trのゲートとなる位置に約
1500Åの薄い珪素酸化物を被着し、必要部分を開
孔してAl等の導電体で回路接続する。必要なら
ば基板上に保護膜を設けてC/MOS半導体素子
が得られる。 この工程は概略であり一例を示したものであ
る。このような構造を有するC/MOS回路はP
チヤンネルMOS TrとNチヤンネルMOS Trのし
きい値電圧Vthが逆極性を持つため入力電圧に対
して夫々全く逆の動作を行ないその動作パワは非
常に小さい。例えばVDDに+5V、VSSを接地
(GND)とした際入力Inに+5Vが供給されればθ
は導通(ON)し、θは非導通(OFF)とな
り、VDD−VSS間に直流電流が全く流れない。逆
に入力にOVが供給されればθはOFFしθ
ONとなり同様にVDD−VSS間に直流電流が流れ
ないことになる。 そのためC/MOS回路は一般に動作消費電力
が殆んどなく入力情報のパルス過渡領域でθθ
が共にONし、瞬時の過渡電流が流れること
と、PN接合に起るリーク電流及び出力にある負
荷容量を充放電するための電流が流れるに過ぎな
い。従つて一般にC/MOS回路のPowerは極小
と言える。 しかしこのようなC/MOS回路系にあつては
出力或は入力にimpulse的にノイズが加わつた時
DD−VSS間にDCの大電流(数十mA〜数百m
A)が流れ、そのノイズを取り除いても定常的に
その電流を保持し続ける現象が起つた。この
impulseの極性には正負があり、この現象を解除
するにはVDDを或る一定電圧以下に下げるか回路
系の電源を切らねばならなかつた。 本発明は上記の欠点を除去した新規な半導体装
置を提供するものである。 即ちC/MOS構造を有する半導体装置にあつ
ては特定のサイリスタ回路が構成されることを見
出した事実を基に完成したものである。 第3図はこのサイリスタ回路がC/MOS回路
内に作成された状態を示した断側面図、第4図は
その等価回路図である。これは複数のバイポーラ
Trから成りサイリスタ動作が一旦生じるとパワ
ーが膨大となることが多い。このサイリスタ回路
を第3図により説明するとN形半導体基板10に
形成されたP−Well領域11には半導体基板の
厚さ方向に沿つて寄生バイポーラTr2,Tr4が、
又P−Well領域11外の半導体基板10には半
導体基板の厚さ方向に交又する方向に寄生Tr1
Tr3が形成される外、P−Well領域11及びN形
半導体基板10の保有する抵抗とで前記サイリス
タ回路が構成される。又、C/MOSに必要なソ
ース、ドレインを構成するN+領域12,13、
P+領域14,15とコンタクト領域となるP+
域16、N+領域17が形成され更にガードリン
グ層18が形成される。 以下の説明でαはバイポーラトランジスタ用語
として一般に定義される電流増巾率、βはα/1−α で定義される電流増巾率、Iは電流、Iに付属し
た信号でeはエミツタ、bはベース、Cはコレク
タ、又数字は各Tr及び抵抗を意味する。 第4図の実線矢印に示すように出力に正のイン
パルスノイズが加わるとα×Iinの電流がRP−
Well領域をバイパスして流れその電圧降下が
Vbe2になつた時Tr2のベースに電流Ib2が流れ
る。 Ib2α3Iin(RP−Well≫rbe2) (1) Tr2のコレクタ電流をIc2とすると、 Ic2=β2Ib2=βα3Iin (2) 同様にIc2がドライブ電流となつてRNSub間で
の電圧降下がVbe1になつた時Tr1のベース電流
Ib1が流れてTr1はON状態となる。 Ib1=Ic2(RNSub〓rbe1) (3) Ic1=β1Ib1=ββα3Iin (4) 次に外部からのノイズが取除かれてもVDD
GND間即ちTr1,Tr2間で電流が保持されるため
には: Ib2≦Ic1 (5) の条件が満足されていれば良い。即ち、 α3Iinββα3Iin ∴1≦ββ (6) 又1<ββの条件が成立した時1サイクルの
ベース電流Ib2′より次の1サイクルのベース電流
Ib2″が大となるので、サイリスタを繰り返すこと
によつて系を流れる電流が増加するとβmaxを境
にしてβが減少し始めるので無限に発散する訳で
ない。即ち定常状態で前述のような異常電流とし
ては次の2条件を同時に満たすところで落着くと
考えられる。 Ib2(n−1) =Ib2(n)、β(n)・β(n)≧1 又先のTrの寸法の大小が前記異常電流が流れ
る現象の起り易さについての主要因でないが、上
式を基に考察する。Trの寸法(正確にはドレイ
ン面積)の大小をパラメータとした電流増巾率を
測定したところ異常電流が収歛した時の電流値と
Tr寸法の大小とは相関があり大きなドレイン面
積を持つたTr程異常電流が大となり逆に小さい
Trはその値が小さくなる。又出力に負のノイズ
が加わつても正のノイズと同時に、 Ib1α4Iin(RNSub〓rbe1) (7) Ic1=β1Ib1=βα4Iin Ib2=Ic1(RP−Well≫rbe2) Ic2=β2Ib2=ββα4Iin 系の電流が保持するための条件としては、 Ib1≦Ic2 1≦ββ (8) となる。 これまでの記載からサイリスタ回路の動作によ
る異常電流はlateral Trとvertical Trのβ積を1
より小さくすれば良いことが判つた。しかしこの
条件であるβ積が1以上であつても前記異常電流
が防止しうることを本発明者は見出した。この現
象を追跡した結果コンタクトホールの取り方と前
記異常現象に相関があることを見出した。 ところでC/MOSインバータを構成する回路
では電源であるVDD,VSSはVDDをN形半導体基
板と同電位にし、VSSをP−Well領域と同電位
にしている。N形半導体基板又はP−Well領域
を同電位にするためにN+P+の領域を夫々に形成
してPチヤンネルTr、NチヤンネルTrのソース
と電源を接続している。したがつて今のC/
MOS回路で第4図に示したサイリスタ回路に外
部ノイズのトリガ信号が加わつた時はサイリスタ
回路の一部を構成するバイポーラTrを形成する
前に必ず前記電源回路を通して電流が流れる事に
なる。したがつてその電流を基にしてN形半導体
基板とP−Well領域の抵抗とこの電流の積はバ
イポーラTrとして動作するために必要なベース
−エミツタ間のスレツシオルド電圧Vthになつた
時始めてバイポーラTrとして動作しサイリスタ
回路を構成することになる。若しlateral Trの
Vthにならなければ瞬間的にある程度電流は流れ
ても保持して流れ続ける現象は起らない。 このことから電流が一定の時Vthをより小さく
するには半導体基板とP−Well領域の抵抗をど
れだけ小さくできるかが問題となる。 このためには電源と同電位とするためのP+N+
拡散層に電源ラインを通じるためのコンタクトホ
ールを夫々N形半導体基板及びP−Well領域ま
での経路を短くすることが重要になる。 こゝでコンタクトホールのとり方を色々変えた
場合異常電流を起す場合のlateral TrとVertical
Trのβ積がどのようになるかを調査した結果を
表−1に示す。
The present invention relates to a bipolar transistor parasitic to a complementary field effect transistor (hereinafter abbreviated as C/MOS).
The present invention relates to a semiconductor device that eliminates the drawbacks caused by. Various C/MOS circuits have been known in the past, and typical examples thereof will be explained with reference to FIGS. 1 and 2. This inverter circuit is composed of a p-channel MOS Trθ 1 and an N-channel MOS Trθ 2. The source electrode of θ 1 is connected to the positive power supply V DD , and the drain electrode of θ 1 is commonly connected to the drain electrode of θ 2 . At the output end, the source electrode of θ 2 is connected to the negative power supply V SS . Further, the gate electrodes of θ 1 and θ 2 are both connected to the input terminal to form an inverter. FIG. 2 is a cross-sectional side view of this circuit formed on a semiconductor wafer. In this example, a so-called P-well layer 2 made of P-conductivity type impurities with a concentration of about 2× 10 16 atoms /cm 3 is formed on an N-conductivity type substrate 1 with a concentration of about 1×10 15 atoms/cm 3 . , a P channel MOS Tr is formed on the N conductivity type substrate outside this P-well layer 2.
Diffuse regions 3 and 4 (eg, 10 19 atoms/cm 3 ).
On the other hand, there is also an N-channel MOS in the P-well layer 2.
N conductivity type impurities are added to the N regions 5 and 6 which become Tr at 10 20 at
Diffuses about oms/ cm3 . Furthermore, P- and N-type diffusion regions 7 and 8 are formed in the P-well region 2 and the rest of the semiconductor substrate 1 to be connected to a power source. Following this, approximately
A thin layer of silicon oxide with a thickness of 1500 Å is deposited, holes are opened in the necessary areas, and a circuit is connected using a conductor such as Al. If necessary, a C/MOS semiconductor element can be obtained by providing a protective film on the substrate. This process is schematic and is provided as an example. A C/MOS circuit with such a structure has P
Since the threshold voltages Vth of the channel MOS Tr and the N-channel MOS Tr have opposite polarities, they operate completely opposite to the input voltage, and their operating power is very small. For example, when VDD is +5V and VSS is grounded (GND), if +5V is supplied to the input In, θ
2 is conductive (ON), θ1 is non-conductive (OFF), and no direct current flows between V DD and V SS . Conversely, if OV is supplied to the input, θ 2 will turn OFF and θ 1 will turn OFF.
It becomes ON, and similarly, no DC current flows between V DD and V SS . Therefore, C/MOS circuits generally consume almost no operating power, and in the pulse transient region of input information, θ 1 θ
2 are both turned on, and only an instantaneous transient current flows, a leakage current that occurs in the PN junction, and a current to charge and discharge the load capacity at the output. Therefore, it can be said that the power of a C/MOS circuit is generally extremely small. However, in such a C/MOS circuit system, when noise is added to the output or input by impulse, a large DC current (several tens of mA to several hundred mA) flows between V DD and V SS .
A) flows, and even after the noise is removed, a phenomenon has occurred in which the current continues to be maintained steadily. this
The polarity of the impulse can be positive or negative, and to eliminate this phenomenon, it is necessary to lower V DD below a certain voltage or turn off the power to the circuit system. The present invention provides a novel semiconductor device that eliminates the above-mentioned drawbacks. That is, it was completed based on the fact that it was discovered that a specific thyristor circuit is constructed in a semiconductor device having a C/MOS structure. FIG. 3 is a cross-sectional side view showing this thyristor circuit formed in a C/MOS circuit, and FIG. 4 is an equivalent circuit diagram thereof. This is multiple bipolar
It is made up of transistors, and once thyristor operation occurs, the power is often enormous. To explain this thyristor circuit with reference to FIG. 3, in the P-well region 11 formed in the N-type semiconductor substrate 10, parasitic bipolar transistors Tr 2 and Tr 4 are formed along the thickness direction of the semiconductor substrate.
In addition, in the semiconductor substrate 10 outside the P-well region 11, there are parasitic transistors Tr 1 and Tr 1 in the direction perpendicular to the thickness direction of the semiconductor substrate.
In addition to forming Tr 3 , the thyristor circuit is constituted by the P-well region 11 and the resistor held by the N-type semiconductor substrate 10. In addition, N + regions 12, 13, which constitute the source and drain necessary for C/MOS,
P + regions 14 and 15, a P + region 16 and an N + region 17 which serve as contact regions are formed, and a guard ring layer 18 is further formed. In the following explanation, α is the current amplification rate generally defined as a bipolar transistor term, β is the current amplification rate defined as α/1-α, I is the current, e is the signal attached to I, and b is the emitter. is the base, C is the collector, and the numbers mean each transistor and resistor. As shown by the solid arrow in Figure 4, when positive impulse noise is added to the output, the current α 3 × Iin changes to RP−
The flow bypasses the well area and its voltage drop is
When Vbe reaches 2 , current Ib 2 flows through the base of Tr 2 . Ib 2 α 3 Iin (RP−Well≫rbe 2 ) (1) If the collector current of Tr 2 is Ic 2 , then Ic 2 = β 2 Ib 2 = β 2 α 3 Iin (2) Similarly, Ic 2 is the drive current So when the voltage drop across RNSub becomes Vbe 1 , the base current of Tr 1
Ib 1 flows and Tr 1 becomes ON state. Ib 1 = Ic 2 (R NSub 〓rbe 1 ) (3) Ic 1 = β 1 Ib 1 = β 1 β 2 α 3 Iin (4) Next, even if external noise is removed, V DD
In order for the current to be maintained between GND, that is, between Tr 1 and Tr 2 , the following condition should be satisfied: Ib 2 ≦Ic 1 (5). That is, α 3 Iinβ 1 β 2 α 3 Iin ∴1≦β 1 β 2 (6) Also, when the condition 1<β 1 β 2 is satisfied, the base current in the next cycle is calculated from the base current Ib 2 ' in one cycle.
Since Ib2 '' becomes large, when the current flowing through the system increases by repeating the thyristor, β starts to decrease after reaching βmax, so it does not diverge infinitely.In other words, in a steady state, the above-mentioned abnormality does not occur. It is thought that the current will settle down when the following two conditions are met at the same time: Ib 2 (n-1) = Ib 2 (n), β 1 (n)・β(n) ≧ 1 Also, the dimensions of the previous Tr Although the size is not the main factor in the likelihood of the abnormal current flowing, we will consider it based on the above equation.The current amplification rate was measured using the size of the transistor size (more precisely, the drain area) as a parameter. However, the current value when the abnormal current subsides is
There is a correlation with the size of the transistor, and the larger the drain area of the transistor, the larger the abnormal current, and the smaller the abnormal current.
The value of Tr becomes smaller. Also, even if negative noise is added to the output, at the same time as positive noise, Ib 1 α 4 Iin (R NSub 〓rbe 1 ) (7) Ic 1 = β 1 Ib 1 = β 1 α 4 Iin Ib 2 = Ic 1 ( RP−Well≫rbe 2 ) Ic 2 = β 2 Ib 2 = β 1 β 2 α 4 The conditions for maintaining the Iin system current are Ib 1 ≦Ic 2 1≦β 1 β 2 (8) . From the description so far, the abnormal current due to the operation of the thyristor circuit is calculated by dividing the β product of the lateral Tr and vertical Tr by 1.
I found that it would be better to make it smaller. However, the inventors have found that the abnormal current can be prevented even if the β product, which is this condition, is 1 or more. As a result of tracking this phenomenon, we found that there is a correlation between the way the contact hole is formed and the abnormal phenomenon described above. By the way, in the circuit constituting the C/MOS inverter, the power supplies V DD and V SS are set so that V DD is at the same potential as the N-type semiconductor substrate, and V SS is at the same potential as the P-well region. In order to bring the N-type semiconductor substrate or the P-well region to the same potential, N + P + regions are formed to connect the sources of the P-channel Tr and the N-channel Tr to the power source. Therefore, the current C/
When an external noise trigger signal is applied to the thyristor circuit shown in FIG. 4 in the MOS circuit, a current will necessarily flow through the power supply circuit before forming the bipolar transistor that forms part of the thyristor circuit. Therefore, based on this current, the product of the resistance of the N-type semiconductor substrate and the P-well region and this current becomes a bipolar transistor only when the base-emitter threshold voltage Vth required for operating as a bipolar transistor is reached. It operates as a thyristor circuit. If lateral Tr
If the current does not reach Vth, even if a certain amount of current flows instantaneously, the phenomenon of holding and continuing to flow will not occur. Therefore, in order to further reduce Vth when the current is constant, the problem is how much the resistance between the semiconductor substrate and the P-well region can be reduced. For this purpose, P + N + to make it the same potential as the power supply.
It is important to shorten the paths of the contact holes for connecting the power supply lines to the diffusion layer to the N-type semiconductor substrate and the P-well region, respectively. Here, if you change the way the contact holes are made, the lateral Tr and vertical Tr will cause abnormal current.
Table 1 shows the results of investigating the β product of Tr.

【表】 この表においてEからAにいくに従つて
RNsub、RPWell(P−Well)域抵抗)が大きく
なる傾向になつているので異常電流の起り難さは
A→Eの順となりEが一番起り難いことになる。
このコンタクトホールのとり方を第5図に示し
た。ここでAは8μ口だけでコンタクトを取つた
場合、Bは第5図のパターンのトランジスタθ
であれば下側面、トランジスタθであれば上側
面でコンタクトを取つた場合、CはBでの上、下
側面と左右側面の1/2までコンタクトを取つた場
合、Eは上、下側面と左右側面でMOSトランジ
スタを囲むようにコンタクトを取つた。またコン
タクトホールA〜Eと異常電流開始電圧VDDMin
の関係を調べた実験の結果では第6図に示すよう
にコンタクトホールの位置A〜Eによつて異常電
流開始電圧VDDMiNが変化している。即ち、異常
電流の起り難さはA<B<C<D<Eとなり、こ
れはコンタクトホールのとり方によつて異常電流
の発生が制御されることを示しており、又表−1
のコンタクトホールの抵抗にNsub抵抗を加えた
順にVDDMINが大きくなることが第6図から判
る。 更にP−Well領域のxjを深くして電流増巾率β
を小さくしてもコンタクトホールのとり方がA,
B,Cでは効果的でなくD,Eに対しては効果が
出る。但しこのD,Eのとり方の際両Trのβ積
≧1となつていることが判つた。 次にコンタクトホールのとり方をDとした場合
の特性を第7図により説明する。これは横軸は寄
生lateral Trのベース巾(WL)、縦軸に異常電流
値と異常電流開始電圧VDDMiNをスランピング時
間(xjを下げるための熱工程の時間)をパラメー
タして取つた図である。ここでlateral Trのベー
ス巾とはP+領域14,15とP−Well領域間1
1の距離を意味する。又、Vertical Trのベース
巾は半導体基板10とN+領域12,13が相当
し、P−Well領域の深さxj(半導体基板の厚さ方
向)から各拡散領域の深さを差引いた値となる。 第7図において実線はP−Well領域を20時間
スランピングした時、一点鎖線は40時間スランピ
ングした時、破線は60時間スランピングをした時
を示した。第7図によつて判るようにWL=50μ
では異常電流があるが、WL=70μでは全然異常
電流が起つていない。これは何れもLateral Trと
Vertical Trのβ積が>1であるがコンタクトホ
ールの取り方Dに対するcriticalな条件としてベ
ース巾50μを考えればよいことを意味する。と言
うのはWL=50μ以上の時、第7図よりわかるよ
うに全てのWvに対してβ積>1となつている
が、異常電流は起つていない。つまりWL=50μ
でP−Wellのスランピング時間は20時間(Wv
52.4μ)が必要条件と考えられる。ここで
Vertical Trのベース巾Wvとβの関係を示した第
8図と、Lateral Trのベース巾WLとβの関係を
示した第9図より、それぞれベース巾Wv=52.4
μ、WL=50μのβを求めると、βv=2.0×102
βL=2.4×10-2となりβ積は2.0×102×2.4×10-2
=4.8となり1より大となる。 これらLateral Trのベース巾WLとVertical Tr
のベース巾(PWellの拡散深さxj)との関係を示
すと第10図のようになる。つまり、コンタクト
ホールを考慮しなければ、β積は1以下でないと
ラツチラツプは起こるがコンタクトホールの位置
を第5図に示すようにD、あるいはEのように取
れば、Dの取り方であればβ積が4.8となつても
またEのとり方であればβ積が8.1となつてもラ
ツチアツプ現象を防ぐことができる。この事は前
記条件の不等式1≦ββの左辺1の値がコン
タクトホールのとり方によつて変りうることを示
している。こゝで実験式として、 電流増巾率β=Kexp(−aW) (10) を得更にコンタクトホールのとり方としてδを採
り入れて異常電流が発生しない条件を表わす
Lateral Trのベース巾とVertical Trのベース巾
の関係を示す実験式を得た。尚(10)式のk、aは系
数Wは寄生バイポーラTrのベース巾を意味す
る。 WL>1/mInkkv/δ−n/mWv (11) こゝでWL及びWvはLateral TrとVvrtical Tr
のベース巾、KLKvは(10)式のLateral Trと
Vertical Trのk(係数)、nとmは(10)式の
Lateral TrとVertical Trのa(係数)を示す。 上記実験式を満足するようにコンタクトホール
を決めれば寄生バイポーラTrのβ積を1より大
であつてもこの動作を封じ込めてサイリスタ回路
による異常電流が防止出来る。 このようにLateral Tr1及びVertical Tr2のβ
積が1以上であつてもコンタクトホールの取り方
を上記実験式のδを満足するようにとれば良いこ
とになる。 言いかえれば、Lateral Tr1とVertical Tr2
β積が1以上であつてもPチヤンネルMOS Trと
NチヤンネルMOS Trの夫々のソースと半導体基
板を同電位にすれば両積Trの動作を封じ込める
ことが出来る。 即ち、コンタクトホールのとり方は両種Trの
コレクタ迄の距離即ちLateral Tr1にあつてはP
−Well領域迄、又Vertical Tr2では半導体基板迄
の距離即ち、P−Well領域のxjからこの領域中に
作成されるドレイン、ソース拡散層のxjを差引い
た値を小さくし、且つこの寄生バイポーラTrの
ベース・エミツタ間のスレツシヨルド電圧を
0.5V程度になるように配慮すれば良いことにな
る。 ところでコンタクトホールはVDDとGND即
ち、電源からの電荷を両MOS形Trに伝達する役
目を有するのは勿論であるが、これと前記寄生バ
イポーラTrのコレクタとなる前記P−Well領域
と前記半導体基板迄のPathを制御し且つ寄生バ
イポーラTrのベース・エミツタ間のスレツシヨ
ルド電圧を制限することによつて寄生バイポーラ
Trの動作を封じることが可能となる。寄生バイ
ポーラTrはLateral TrとVertical Trの両種があ
り、この中サイリスタ回路の動作によつて発生す
る異常電流はTr1及びTr2によつてサイクルが繰
り返されるのは前述の通りであり、この観点から
すれば前記Tr1,Tr2の何れか一方を制御すれば
良いとの考え方も出る。しかしTr1,Tr2の両方
又は何れか一方の動作を封じるために前記した手
段を併用しても何等差支えないことを附記してお
く。 第11図〜第26図には具体的なパターンレイ
アウトを示したが図中一点鎖線がコンタクトホー
ルを示した。 第11〜第26図において、第11,12,1
7,18,21図はコンタクト領域16,17が
それぞれのMOS Trθ,θのソース領域全域
で隣接した場合を示しており、他はMOS Trθ
,θのソース領域の一部領域で隣接する場合
を示している。又、第11,17,21図は、コ
ンタクト領域16,17とそれぞれのMOS Trθ
,θのソース領域とが同一コンタクト領域で
配線接続されている場合を示している。さらに第
11,12,17,18,21図は、コンタクト
領域がMOSTrを取り囲むように形成された場合
を示している。また第11図〜第26図は第1の
コンタクト領域と第2のコンタクト領域との少な
くとも一部が隣接して形成された場合を示してい
る。 このように本発明は両種の寄生バイポーラTr
のβ積が1以上であつても、実験式(11)のαを満足
するようにコンタクトホールを設置すればこの寄
生バイポーラTrの動作を封じることが可能とな
るので、サイリスタ回路によつて起る異常電流が
防止できる。 このように本発明は実用上の効果が極めて大き
い。
[Table] In this table, going from E to A
Since RNsub and RPWell (P-Well region resistance) tend to increase, the likelihood of abnormal currents occurring is in the order of A→E, with E being the least likely to occur.
FIG. 5 shows how to make this contact hole. Here, if A is contacted only through the 8μ port, B is the transistor θ 1 with the pattern shown in Figure 5.
If contact is made on the bottom side, and if the transistor θ is 2 , contact is made on the top side, C is made on the top and bottom sides of B and 1/2 of the left and right sides, E is on the top and bottom side. Contacts were made surrounding the MOS transistors on the left and right sides. Also, contact holes A to E and abnormal current starting voltage V DD Min
As shown in FIG. 6, the results of an experiment investigating the relationship between the abnormal current starting voltage V DD MiN vary depending on the contact hole positions A to E. In other words, the probability of abnormal current occurring is A<B<C<D<E, which indicates that the occurrence of abnormal current is controlled by the way the contact hole is formed.
It can be seen from FIG. 6 that V DD MIN increases as the Nsub resistance is added to the contact hole resistance. Furthermore, by deepening xj in the P-well region, the current amplification rate β
Even if the contact hole is made smaller, the contact hole is A,
It is not effective for B and C, but it is effective for D and E. However, it was found that when determining D and E, the β product of both Tr was ≧1. Next, the characteristics when the contact hole is formed as D is explained with reference to FIG. This is taken with the horizontal axis as the base width (W L ) of the parasitic lateral Tr, the vertical axis as the abnormal current value and abnormal current starting voltage V DD MiN, and the slumping time (time of thermal process to lower xj) as a parameter. It is a diagram. Here, the base width of the lateral Tr is the width between the P + regions 14 and 15 and the P-well region 1.
It means a distance of 1. Also, the base width of the Vertical Tr corresponds to the semiconductor substrate 10 and the N + regions 12 and 13, and is equal to the value obtained by subtracting the depth of each diffusion region from the depth xj of the P-well region (in the thickness direction of the semiconductor substrate). Become. In FIG. 7, the solid line indicates when the P-well region was slumped for 20 hours, the dashed line indicates when slumped for 40 hours, and the broken line indicates when slumped for 60 hours. As seen in Figure 7, W L = 50μ
In this case, there is an abnormal current, but when W L = 70μ, no abnormal current occurs at all. Both of these are Lateral Tr.
Although the β product of the Vertical Tr is >1, this means that the base width of 50 μm can be considered as a critical condition for the contact hole formation method D. This is because when W L =50μ or more, as can be seen from FIG. 7, the β product is >1 for all W v , but no abnormal current occurs. In other words, W L = 50μ
The slumping time of P-Well is 20 hours (W v ~
52.4μ) is considered to be a necessary condition. here
From Figure 8, which shows the relationship between the base width W v of the Vertical Tr and β, and Figure 9, which shows the relationship between the base width W L of the Lateral Tr, and β, the base width W v = 52.4.
Determining β of μ, W L = 50 μ, β v = 2.0×10 2 ,
β L = 2.4×10 -2 and β product is 2.0×10 2 ×2.4×10 -2
= 4.8, which is greater than 1. Base width W L of these Lateral Tr and Vertical Tr
The relationship with the base width (PWell diffusion depth xj) is shown in Figure 10. In other words, if the contact hole is not taken into consideration, latch-lap will occur if the β product is not less than 1, but if the contact hole is located at D or E as shown in Figure 5, Even if the β product is 4.8, the latch-up phenomenon can be prevented even if the β product is 8.1 if E is taken properly. This shows that the value of the left side 1 of the above-mentioned inequality 1≦β 1 β 2 can change depending on how the contact hole is formed. Here, as an experimental formula, we obtain the current amplification rate β = Kexp (-aW) (10) and also adopt δ as the method of forming the contact hole to express the conditions under which abnormal current does not occur.
An empirical formula showing the relationship between the base width of the lateral Tr and the base width of the vertical Tr was obtained. Note that in equation (10), k and a are the corollary W, which means the base width of the parasitic bipolar Tr. W L > 1/mInk L kv/δ-n/mW v (11) Here, W L and W v are Lateral Tr and Vvrtical Tr
The base width of K L Kv is the Lateral Tr in equation (10) and
The k (coefficient), n and m of the Vertical Tr are expressed in equation (10).
It shows a (coefficient) of Lateral Tr and Vertical Tr. If the contact hole is determined to satisfy the above experimental formula, even if the β product of the parasitic bipolar transistor is greater than 1, this operation can be contained and abnormal current caused by the thyristor circuit can be prevented. In this way, β of Lateral Tr 1 and Vertical Tr 2
Even if the product is 1 or more, the contact hole may be formed so as to satisfy δ in the above experimental formula. In other words, even if the β product of Lateral Tr 1 and Vertical Tr 2 is 1 or more, the operation of both Trs can be contained by making the sources of the P-channel MOS Tr and N-channel MOS Tr and the semiconductor substrate the same potential. I can do it. In other words, the contact hole should be formed depending on the distance to the collector of both types of Tr, that is, P for Lateral Tr 1 .
-The distance to the Well region, and in Vertical Tr 2 to the semiconductor substrate, that is, the value obtained by subtracting the xj of the drain and source diffusion layers created in this region from the xj of the P-well region, is reduced, and this parasitic bipolar The threshold voltage between the base and emitter of the Tr is
All you have to do is take care to keep it at around 0.5V. Incidentally, the contact hole naturally has the role of transmitting charges from V DD and GND, that is, the power source, to both MOS type transistors, but it also has the role of transmitting the charge from the power supply to both MOS type transistors, and the contact hole also has the role of transmitting the charge from the power supply to both MOS type transistors, and the contact hole also has the role of transmitting the charge from the power source to both MOS type transistors, but also the contact hole has the role of transmitting the charge from the power source By controlling the path to the substrate and limiting the threshold voltage between the base and emitter of the parasitic bipolar transistor,
It becomes possible to block the operation of the Tr. There are two types of parasitic bipolar transistors: lateral transistors and vertical transistors, and as mentioned above, the abnormal current generated by the operation of the thyristor circuit is cycled repeatedly by transistors 1 and 2 . From this point of view, there is an idea that it is sufficient to control either one of the Tr 1 and Tr 2 . However, it should be noted that there is no problem in using the above-mentioned means in combination to block the operation of both or one of Tr 1 and Tr 2 . Specific pattern layouts are shown in FIGS. 11 to 26, and the dashed lines in the figures indicate contact holes. In Figures 11 to 26, 11th, 12th, 1st
Figures 7, 18, and 21 show the case where the contact regions 16 and 17 are adjacent to each other throughout the source regions of MOS Trθ 1 and θ 2 , and the others are MOS Trθ
1 and θ 2 are adjacent to each other in part of the source region. Further, FIGS. 11, 17, and 21 show the contact regions 16 and 17 and their respective MOS Trθ
1 and θ 2 are interconnected through the same contact region. Furthermore, FIGS. 11, 12, 17, 18, and 21 show cases in which the contact region is formed to surround the MOSTr. Further, FIGS. 11 to 26 show a case where at least a portion of the first contact region and the second contact region are formed adjacent to each other. In this way, the present invention can solve both types of parasitic bipolar transistors.
Even if the β product of This can prevent abnormal currents. As described above, the present invention has extremely great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のC/MOS回路図、第2図は第
1図回路を半導体基板に作成した断測面図、第3
図は本発明に係る半導体基板の断側面図、第4図
はC/MOS回路素子に形成されるサイリスタ回
路の等価回路図、第5図はコンタクトホールの位
置を示した半導体装置の平面図、第6図は第5図
のコンタクトホール位置を横軸に縦軸に異常電流
発生電圧及びVthを採つて異常電流の発生し易さ
とコンタクトホール位置の関係を示した図、第7
図は横軸にラテラルTrのベース巾縦軸に異常電
流開始電流を採つて両者の関係を示した図、第8
図はVertical Trのベース巾と電流増巾率の関係
を示した図、第9図はLateral Trのベース巾と電
流増巾率の関係を示した図、第10図はP−
Well領域のxjと寄生Trのベース巾の関係を示し
た図、第11図〜第26図は本願に適用されるパ
ターンレイアウトを示した平面図である。 10……半導体基板、11……拡散領域、Tr1
〜Tr4……寄生バイポーラTr。
Figure 1 is a conventional C/MOS circuit diagram, Figure 2 is a cross-sectional view of the circuit in Figure 1 created on a semiconductor substrate, and Figure 3 is a cross-sectional view of the circuit in Figure 1 created on a semiconductor substrate.
4 is an equivalent circuit diagram of a thyristor circuit formed in a C/MOS circuit element, and FIG. 5 is a plan view of a semiconductor device showing the positions of contact holes. Figure 6 is a diagram showing the relationship between the ease of occurrence of abnormal current and the position of the contact hole, with the contact hole position in Figure 5 taken as the horizontal axis and the abnormal current generation voltage and Vth as the vertical axis.
The figure shows the relationship between the base width of the lateral transistor on the horizontal axis and the abnormal current starting current on the vertical axis.
The figure shows the relationship between the base width of the Vertical Tr and the current amplification rate, Figure 9 shows the relationship between the base width of the Lateral Tr and the current amplification rate, and Figure 10 shows the relationship between the base width of the Lateral Tr and the current amplification rate.
11 to 26 are plan views showing the pattern layout applied to the present application. 10... Semiconductor substrate, 11... Diffusion region, Tr 1
~Tr 4 ... Parasitic bipolar Tr.

Claims (1)

【特許請求の範囲】 1 第1導電型の半導体基板に第2導電型の不純
物領域を形成し、前記不純物領域外の前記半導体
基板にこの半導体基板と第1の電源を接続する第
1のコンタクト領域と第2導電型のチヤンネルを
有する第1のMOS型トランジスタを形成し、前
記不純物領域にこの不純物領域と第2の電源を接
続する第2のコンタクト領域と第1導電型のチヤ
ンネルを有する第2のMOS型トランジスタを形
成する半導体装置において、前記第1のコンタク
ト領域と前記第2のコンタクト領域との少なくと
も一部を隣接して形成したことを特徴とする半導
体装置。 2 前記第1のコンタクト領域が前記第1MOSト
ランジスタを取り囲むように形成されたことを特
徴とする前記特許請求の範囲第1項記載の半導体
装置。 3 前記第2のコンタクト領域が前記第2MOSト
ランジスタを取り囲むように形成されたことを特
徴とする前記特許請求の範囲第1項記載の半導体
装置。
[Scope of Claims] 1. An impurity region of a second conductivity type is formed in a semiconductor substrate of a first conductivity type, and a first contact connects the semiconductor substrate and a first power source to the semiconductor substrate outside the impurity region. a first MOS type transistor having a channel of a second conductivity type and a second contact region connecting the impurity region and a second power source to the impurity region; 2. A semiconductor device forming a second MOS transistor, wherein at least a portion of the first contact region and the second contact region are formed adjacent to each other. 2. The semiconductor device according to claim 1, wherein the first contact region is formed to surround the first MOS transistor. 3. The semiconductor device according to claim 1, wherein the second contact region is formed to surround the second MOS transistor.
JP50087398A 1975-07-18 1975-07-18 Semiconductor device Granted JPS5211873A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP50087398A JPS5211873A (en) 1975-07-18 1975-07-18 Semiconductor device
GB2928176A GB1559581A (en) 1975-07-18 1976-07-14 Complementary mosfet device
DE19762632420 DE2632420C2 (en) 1975-07-18 1976-07-19 Semiconductor device
CH923776A CH611740A5 (en) 1975-07-18 1976-07-19 Semiconductor circuit
FR7621992A FR2318502A1 (en) 1975-07-18 1976-07-19 PERFECTED DEVICE WITH METAL-OXIDE-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS
US05/851,955 US4149176A (en) 1975-07-18 1977-11-16 Complementary MOSFET device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50087398A JPS5211873A (en) 1975-07-18 1975-07-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5211873A JPS5211873A (en) 1977-01-29
JPS6118866B2 true JPS6118866B2 (en) 1986-05-14

Family

ID=13913759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50087398A Granted JPS5211873A (en) 1975-07-18 1975-07-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5211873A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830189A (en) * 1971-08-19 1973-04-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4830189A (en) * 1971-08-19 1973-04-20

Also Published As

Publication number Publication date
JPS5211873A (en) 1977-01-29

Similar Documents

Publication Publication Date Title
US4100561A (en) Protective circuit for MOS devices
KR890004472B1 (en) Cmos ic circuit
US5751042A (en) Internal ESD protection circuit for semiconductor devices
GB2073490A (en) Complementary field-effect transistor integrated circuit device
US4035826A (en) Reduction of parasitic bipolar effects in integrated circuits employing insulated gate field effect transistors via the use of low resistance substrate contacts extending through source region
US3305708A (en) Insulated-gate field-effect semiconductor device
JPH051621B2 (en)
US20020033504A1 (en) Si-MOS high-frequency semiconductor device and the manufacturing method of the same
JP2710113B2 (en) Integrated circuits using complementary circuit technology
US20230009740A1 (en) ESD Clamp Circuit For Low Leakage Applications
JPH06132538A (en) Semiconductor electronic device provided with dynamic insulation circuit
JP3174043B2 (en) Integrated circuit having latch protection circuit
KR19980071441A (en) Electrostatic Discharge Protection Circuit
US7816212B2 (en) Method of high voltage operation of a field effect transistor
KR0136595B1 (en) Integrated circuit with anti-latch-up circuit in complementary mos circuit technology
JPS626347B2 (en)
JPS6118866B2 (en)
JPS6118865B2 (en)
US3745370A (en) Charge circuit for field effect transistor logic gate
US11959960B2 (en) Voltage tracking circuit and method of operating the same
JPH0313754B2 (en)
US4243895A (en) Integrated injection circuit
JPH0219979B2 (en)
KR0165384B1 (en) Electrostatic protection structure for semiconductor device
KR890004426B1 (en) Cmos input protection circuit