JPS61188128A - Bonding of synthetic resin materials - Google Patents

Bonding of synthetic resin materials

Info

Publication number
JPS61188128A
JPS61188128A JP60029508A JP2950885A JPS61188128A JP S61188128 A JPS61188128 A JP S61188128A JP 60029508 A JP60029508 A JP 60029508A JP 2950885 A JP2950885 A JP 2950885A JP S61188128 A JPS61188128 A JP S61188128A
Authority
JP
Japan
Prior art keywords
synthetic resin
plate member
laser beams
resin materials
resin material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60029508A
Other languages
Japanese (ja)
Inventor
Hideo Nakamata
中俣 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60029508A priority Critical patent/JPS61188128A/en
Publication of JPS61188128A publication Critical patent/JPS61188128A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/341Measures for intermixing the material of the joint interlayer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/21Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being formed by a single dot or dash or by several dots or dashes, i.e. spot joining or spot welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3034Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/56Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits
    • B29C65/562Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using mechanical means or mechanical connections, e.g. form-fits using extra joining elements, i.e. which are not integral with the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/303Particular design of joint configurations the joint involving an anchoring effect
    • B29C66/3034Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes
    • B29C66/30341Particular design of joint configurations the joint involving an anchoring effect making use of additional elements, e.g. meshes non-integral with the parts to be joined, e.g. making use of extra elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To enable to bond synthetic resin materials easily and strongly by a method wherein one of synthetic resin material is made of a material, which transmits laser beams and the other is made of a material, which does not transmit laser beams, and, in addition, synthetic resin material with heat resistance is arranged between said materials and laser beams are irradiated from the direction of the laser beam transmitting material without decreasing the intensity. CONSTITUTION:A plate member 21 does not transmit laser beams having wavelengths of 1.06mum or less, because the color of raw material of the plate member 21 is due to carbon black mixed therein. A polypropylene resin plate member 23, which transmits laser beams having wavelengths of 1.06mum or less, is arranged onto a thin plate 22. In order to join both the members 21 and 22, the tip of the irradiation nozzle 5 of YAG:Nd<3+> laser is abutted against the top face of the polypropylene resin plate member 23 so as to apply load in the direction indicated with the arrow B and at the same time to irradiate YAG laser beams. [See Fig. (c).] Under the state as mentioned above, the polypropylene resin plate member 23 transmits YAG laser beams in the relation between the wavelengths of the beams and the absorption spectra of the synthetic resin material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、合成樹脂材料を重ね合わせ、その一方からレ
ーザ光を照射して、両者を接合させる方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of overlapping synthetic resin materials and irradiating laser light from one of them to join them together.

〔従来の技術〕[Conventional technology]

従来、合成樹脂材料と合成樹脂材料とを接合する際には
、熱を加えて溶着する物理的接合方法と接着剤を用いて
接着する化学的接合方法が広く利用されている。
Conventionally, when joining synthetic resin materials, a physical joining method in which heat is applied to weld them, and a chemical joining method in which they are joined together using an adhesive have been widely used.

すなわち、前者の物理的接合方法は、接合しようとする
合成樹脂材料が同種の場合には再合成樹脂材料に超音波
や振動を付与して溶着して接合する方法があり、異種の
場合には接合しようとする合成樹脂材料の接合面でメタ
ルメツシュ等の発熱体を発熱させて両者の合成樹脂材料
の接合面を溶融させつつ加圧・冷却し、再合成樹脂材料
を接合する方法である。また、後者の化学的接合方法は
、接合しようとする合成樹脂材料の一合面にホットメル
ト等の接着剤を介在させ、一方の合成樹脂材料の表面か
ら高周波ま桝は超音波を付与させて接着剤を加熱・溶融
させた後、両者9合成樹脂材料を加圧しつつ冷却し、再
合成樹脂材料を接合する方法である。
In other words, in the former physical joining method, when the synthetic resin materials to be joined are of the same type, there is a method of applying ultrasonic waves or vibrations to the resynthetic resin material and welding it. This is a method of joining re-synthetic resin materials by generating heat with a heating element such as a metal mesh on the joining surfaces of the synthetic resin materials to be joined, melting the joining surfaces of both synthetic resin materials, and pressurizing and cooling them. The latter chemical bonding method involves interposing an adhesive such as hot melt on one surface of the synthetic resin materials to be bonded, and applying ultrasonic waves to the surface of the other synthetic resin material. After heating and melting the adhesive, both synthetic resin materials are cooled while being pressurized, and the resynthetic resin materials are joined together.

しかし、前者の物理的接合方法においては、同種の合成
樹脂材料を接合する際には接合しようとする両者の合成
樹脂材料の熔融温度が同一であるとともに、相溶性を有
するので、再合成樹脂材料の接合には通しているが、異
種の合成樹脂材料を接合する際には両者の合成樹脂材料
の熔融温度が異なるとともに、相溶性が悪いことから、
再合成樹脂材料の接合は困難である。また、後者の化学
的接合方法においては、同種の合成樹脂材、料を接合す
る際には前者の物理的接合方法と同様に適しているが、
異種の合成樹脂材料を接合する際には合成樹脂材料の材
質によって接着剤の接着力が低下し、再合成樹脂材料を
強固に接合することは困難である。
However, in the former physical joining method, when joining the same type of synthetic resin materials, the melting temperature of the two synthetic resin materials to be joined is the same and they are compatible, so the re-synthetic resin material However, when joining different types of synthetic resin materials, since the melting temperatures of the two synthetic resin materials are different and their compatibility is poor,
It is difficult to join resynthetic resin materials. The latter chemical bonding method is equally suitable as the former physical bonding method when bonding the same type of synthetic resin materials.
When joining different types of synthetic resin materials, the adhesive force of the adhesive decreases depending on the material of the synthetic resin material, making it difficult to firmly join resynthetic resin materials.

上述のようなことから、異種の場合はいうまでもなく、
同種の場合においても合成樹脂材料を接合する際には、
機械的接合方法が多く利用されている。その代表例を第
7図に示すポリプロピレン樹脂とポリエチレン樹脂の接
合方法によって説明する。
From the above, it goes without saying that in cases of different species,
When joining synthetic resin materials even if they are of the same type,
Many mechanical joining methods are used. A typical example thereof will be explained using a method of joining polypropylene resin and polyethylene resin as shown in FIG.

第7図においては、51はポリプロピレン樹脂からなる
板部材であって、この板部材51の下部にはポリエチレ
ン樹脂からなる板部材52が配役されており、このポリ
エチレン樹脂の板部材52とポリプロピレン樹脂の板部
材51とは互いに対向する部位に貫通孔53a、53b
が形成されている。そして、両板部材51.52の貫通
孔53a、53bには上方からパツキン54を介在して
甥子55が螺合され、両板部材51.52が接合されて
いる。
In FIG. 7, reference numeral 51 is a plate member made of polypropylene resin, and a plate member 52 made of polyethylene resin is placed at the bottom of this plate member 51. Through-holes 53a and 53b are provided at portions opposite to the plate member 51.
is formed. A screw 55 is screwed into the through holes 53a, 53b of both plate members 51, 52 from above with a gasket 54 interposed therebetween, and both plate members 51, 52 are joined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このような機械的接合方法においては、
両板部材51.52に貫通孔53a、53bを形成し、
螺子55を蝮合しなければならず、前記の物理的接合方
法および化学的接合方法に比較して接合作業が煩雑とな
ることはもとより、両板部材51.52に貫通孔53a
、53bを形成する必要があることから、両板部材51
.52の強度が低下する不具合がある。
However, in such mechanical joining methods,
Through holes 53a and 53b are formed in both plate members 51 and 52,
The screws 55 must be screwed together, which makes the joining work more complicated than the above-mentioned physical joining method and chemical joining method.
, 53b, both plate members 51
.. There is a problem that the strength of 52 is reduced.

従って、この発明は、上記の不具合を解消するためにな
されたもので、接合する合成樹脂材料のうち、少なくと
も一方をレーザ光に対して透過性とし、もう一方の合成
樹脂材料との間に、レーザ光に対して非透過性であり、
かつ耐熱性を有する強化繊維が混入されたシート状の合
成樹脂材料を配設し、透過性の合成樹脂材料の方向から
レーザ光を照射することにより、・再合成樹脂材料の強
度を低下させることなく、容易に、しかも強固に接合さ
せることにある。    ′。
Therefore, this invention was made to solve the above-mentioned problems, and at least one of the synthetic resin materials to be joined is made transparent to laser light, and between it and the other synthetic resin material, Non-transparent to laser light,
By disposing a sheet-like synthetic resin material mixed with heat-resistant reinforcing fibers and irradiating laser light from the direction of the transparent synthetic resin material, the strength of the re-synthetic resin material can be reduced. The purpose is to easily and firmly join the parts without any problems. '.

c問題点を解決するためめ手段〕 すなわち、本発明に係る合成樹脂材料の接合方法におい
ては、同種、一種に力ζかわらず釡成樹脂材料を重ね合
わせて両者を接合するにあたり、前記合成樹脂材料のう
ち、少なくとも一方をレーザ光に対して透過性とし、も
う一方の樹脂材料との間に、レーザ光に対して非透it
iであり、かつ耐熱性を有する強化繊維が混入されたシ
ート状の合成樹脂材料を配設し、この生者め合成樹脂材
料を重ね合わせた後、前記レーザ光に対して透過性の合
成樹脂材料の方向からレーザ光を照射するようにしたも
のである。    □ そして、レーザ光に対して透過性を有する合成樹脂材料
としては、ポリプロピレン樹脂を挙げ為ことができ、レ
ーザ光に対して非透過性を有する合成樹脂材料としては
、カーボンブラックを0.05ないし2.0重量%の範
囲で添加したポリプロピレン樹脂、1.0重量%ないし
30重量%のガラス繊維で強化され、かつカーボンブラ
ックが0.05ないし2.0重量%の範囲で添加された
スチレン−アクリロニトリル共重合体等を挙げることが
できる。また、レーザ光に対して非透過性を有するシー
ト状の合成樹脂材料としては、前述のレーザ光に対して
非透過性を有する合成樹脂材料をシート状に形成したも
のを挙げることができる。そして、これら′の合成樹脂
材料はレーザ光に対して透過性を有するものと、非透過
性を有するものおよびシート状のものとの組み合わせま
たは両面が透過性のもので、その中間が非透過性のもの
を配設した組み合せにおいて自由に選択して接合するこ
とができる。
Means for Solving Problem c] That is, in the method for joining synthetic resin materials according to the present invention, when joining the same kind of molded resin materials to each other regardless of the force ζ, the synthetic resin At least one of the materials is transparent to laser light, and there is a material between it and the other resin material that is non-transparent to laser light.
A sheet-shaped synthetic resin material mixed with heat-resistant reinforcing fibers is placed, and after the living synthetic resin material is overlaid, a synthetic resin transparent to the laser beam is formed. The laser beam is irradiated from the direction of the material. □ An example of a synthetic resin material that is transparent to laser light is polypropylene resin, and an example of a synthetic resin material that is non-transparent to laser light is carbon black of 0.05 to 50%. Polypropylene resin added in the range of 2.0% by weight, styrene reinforced with glass fibers in the range of 1.0% to 30% by weight, and carbon black added in the range of 0.05 to 2.0% by weight. Examples include acrylonitrile copolymers. Furthermore, examples of the sheet-shaped synthetic resin material that is non-transmissive to laser light include the aforementioned synthetic resin material that is non-transparent to laser light and formed into a sheet shape. These 'synthetic resin materials are a combination of one that is transparent to laser light, one that is non-transparent, and a sheet-like material, or one that is transparent on both sides and a non-transparent material in the middle. It is possible to freely select and join any combination of arranged materials.

また、耐熱性を有する強化繊維としては、基材となる再
合成樹脂材料の溶融温度よりも、高い溶融温度を有する
ものであればよく、例えばガラス繊維、金属繊維、カー
ボン繊維等を挙げることができる。
In addition, the reinforcing fibers having heat resistance may be those having a melting temperature higher than the melting temperature of the resynthesized resin material used as the base material, such as glass fibers, metal fibers, carbon fibers, etc. can.

また、合成樹脂材料の接合時に使用されるレーザとして
は、ガラス:ネオジウム゛レーザ・YAG=ネオジウム
3+レーザ、ルビーレーザ、ヘリウム−ネオンレーザ、
クリプトンレーザ、アルゴンレーザ、N2レーザ、N2
レーザ等を挙げることができる。
Lasers used for joining synthetic resin materials include glass: neodymium laser, YAG = neodymium 3+ laser, ruby laser, helium-neon laser,
Krypton laser, argon laser, N2 laser, N2
Laser etc. can be mentioned.

また、合成樹脂材料の接合時に用いられるレーザの波長
としては、接合する合成樹脂材料に適合した波長が必要
であり、これは、合成樹脂材料のもつ吸収スペクトル特
性によって決る。すなわち、接合する合成樹脂材料の組
み合わせに対して、一方はレーザ光に対して透過性をも
ち、耐熱性を有す強化繊維を混入したシート状の合成樹
脂材料においてはレーザ光に対して非透過性をもつポリ
プロピレン樹脂と、後者の性質をもつスチレン−アクリ
ロニトリ・ル共重合体、着色材として、カーボンブラッ
クや顔料を加えた一般の樹脂の組み合せにおいては、Y
AG:ネオジウム1+レーザの発振波長である。1.0
6μmが通している。
Furthermore, the wavelength of the laser used when bonding synthetic resin materials needs to be compatible with the synthetic resin materials to be bonded, and this is determined by the absorption spectrum characteristics of the synthetic resin materials. In other words, for the combination of synthetic resin materials to be joined, one is transparent to laser light, and the sheet-shaped synthetic resin material mixed with heat-resistant reinforcing fibers is non-transparent to laser light. In the combination of a polypropylene resin with the same properties, a styrene-acrylonitrile copolymer with the latter properties, and a general resin with carbon black or pigment added as a colorant, Y
AG: oscillation wavelength of neodymium 1+ laser. 1.0
6 μm passes through.

また、レーデの出力においては、合成樹脂材料を溶融す
るに十分な出力が必要で、YAG :ネオジウム1“レ
ーザによる際の目安としては、5ないし100W程度が
適している。この時、出力が大きすぎると合成樹脂材料
が蒸発して接合が不可能となるので考慮する必要がある
In addition, the output of the lede must be sufficient to melt the synthetic resin material, and when using a YAG: neodymium 1" laser, a suitable value is approximately 5 to 100 W. If it is too high, the synthetic resin material will evaporate and bonding will become impossible, so this must be taken into consideration.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて詳細に説明す
る。
Hereinafter, one embodiment of the present invention will be described in detail based on the drawings.

第1図は本発明に係る合成樹脂材料の接合方法を説明す
る概略断面図、第2図は第1図(d)のA部楕円内を拡
大した断面図、第5図は本発明の接合方法に利用される
レーザ光照射装置の断面図を示すものである。
FIG. 1 is a schematic cross-sectional view explaining the method of joining synthetic resin materials according to the present invention, FIG. 2 is an enlarged cross-sectional view of the ellipse of section A in FIG. 1(d), and FIG. 1 shows a cross-sectional view of a laser beam irradiation device used in the method.

まず、この実施例で利用されるYAG :ネオジウム1
′″レーザ光照射装置を第5図に示して説明する。
First, YAG used in this example: neodymium 1
''The laser beam irradiation device will be explained with reference to FIG.

第5図において、1は金属材料から円筒伏に形成されて
いる筒状本体であって、この筒状本体1は上部ケースl
aと下部ケース1bの二つに分割−没され、両ケース1
a、1bは^径が同一とされている。また、この筒状原
体lを構成している上部ケニス1aの上端部にはYAG
 :ネオジウムレレーザ発振器(′図示せず)゛に接続
されている光ファイバ2が接続゛されており□、YAG
:ネオジウム3+レーザ発振器から伝送ぎれたYAGレ
ーザ光Mが光ファイバ2の芯杆3内゛で反射しながら筒
状本体l内に入射されるようになっている。
In FIG. 5, reference numeral 1 denotes a cylindrical body formed from a metal material, and this cylindrical body 1 is attached to an upper case l.
It is divided into two parts, a and lower case 1b, and both cases 1
It is assumed that a and 1b have the same diameter. In addition, YAG
:An optical fiber 2 connected to a neodymium laser oscillator (not shown) is connected □, YAG
: The YAG laser beam M transmitted from the neodymium 3+ laser oscillator is reflected within the core rod 3 of the optical fiber 2 and is incident on the cylindrical body l.

また、筒状本体lの内部めは亘つの光学レンズ4a、4
b、4cが間隔を存して配設されている。
Moreover, the inner part of the cylindrical body l has two optical lenses 4a, 4.
b and 4c are arranged with an interval between them.

すなわち、第1の光学レンズ4 a 1.1凸レンズで
あって、上部ケース1aの下端皓傍註配設されており、
第2の光学レンズ4bは凸レンズであって、下部ケース
1bの略中央部に一没されている。またJ第5の光学レ
ンズ4cは第1の光学レンズ4aと同様に617女であ
って、゛置部ケース1bの下端近傍に配設されている。
That is, the first optical lens 4a is a 1.1 convex lens and is disposed near the lower end of the upper case 1a,
The second optical lens 4b is a convex lens, and is sunk completely into the substantially central portion of the lower case 1b. Similarly to the first optical lens 4a, the J-th optical lens 4c has a diameter of 617 mm, and is disposed near the lower end of the housing case 1b.

そして、光フアイバ2力化入射したYAGレーザ光Mは
上部ケース1aの入射部から広がり角θの角度を有した
YAGレーザ光Maとなり、第1の光学レンズ4aに入
射する。また、第1の光学レンズ4aに入射したYAG
レーザ光Maは平行なYAGレーザ光Mbとなって第2
の光学レンズ4bに入射し、再びある焦点に集光する球
面のYAGレーザ光Meとなって第3の光学レンズ4c
に入射する。さらに、第3の光学レンズ4cに入射した
球面のYAGレーザ光Mcは再び平行なYAGレーザ光
Mdとなって出射される。そして、第2の光学レンズ4
bと第3の光学レンズ4cとの組み合わせにより、出射
するYAGレーザ光Mdの径を任意に変更することがで
きる。
Then, the YAG laser beam M inputted into the optical fiber in a dual-power manner becomes a YAG laser beam Ma having a spread angle θ from the incident part of the upper case 1a, and enters the first optical lens 4a. Furthermore, YAG incident on the first optical lens 4a
The laser beam Ma becomes a parallel YAG laser beam Mb and the second
The YAG laser beam Me enters the third optical lens 4b, becomes a spherical YAG laser beam Me that is condensed again at a certain focal point, and then passes through the third optical lens 4c.
incident on . Further, the spherical YAG laser beam Mc that has entered the third optical lens 4c is emitted again as a parallel YAG laser beam Md. And the second optical lens 4
b and the third optical lens 4c, the diameter of the emitted YAG laser beam Md can be changed arbitrarily.

また−筒状本体1を構成している下部ケース1bには金
属材料からなる照射ノズル5が設けられている。この照
射ノズル5は上端部にフランジ5aが形成されており、
そのフランジ53部が下部ケース1bの下端部に当接さ
れ、固定金具6の螺設によって保持されている。さらに
、照射ノズル5の下端部近傍には第4の光学レンズ4d
が配設されており、この第4の光学レンズ4dは第2の
光学レンズ4bと同様に凸レンズであって、第3の光学
レンズ4Cから出射された平行なYAGレーザ光Mdが
照射ノズル5にガイドされて第4の光学レンズ4dに達
し、再度ある焦点に集光する球面のYA’Gレーザ光M
eとなって出射するようになっている。
Furthermore, the lower case 1b constituting the cylindrical main body 1 is provided with an irradiation nozzle 5 made of a metal material. This irradiation nozzle 5 has a flange 5a formed at its upper end.
The flange 53 portion is brought into contact with the lower end portion of the lower case 1b and is held by the screwing of the fixing fitting 6. Further, a fourth optical lens 4d is provided near the lower end of the irradiation nozzle 5.
This fourth optical lens 4d is a convex lens like the second optical lens 4b, and the parallel YAG laser beam Md emitted from the third optical lens 4C is directed to the irradiation nozzle 5. The spherical YA'G laser beam M is guided and reaches the fourth optical lens 4d, and is focused again on a certain focal point.
e and is emitted.

次に、異種合成樹脂材料の接合方法を第1図ないし第5
図に従って説明する。
Next, the method for joining different types of synthetic resin materials is shown in Figures 1 to 5.
This will be explained according to the diagram.

第1図の(a)ないしくd)において、21はガラス繊
維が20重量%、カーボンブラックが0゜1重量%添加
されたスチレン−アクリロニトリル共重合体(A S 
G)からなる板部材であって、この板部材21の原材料
色はカーボンブラックが混入されて黒色となっており、
第3図に示すように1.06μm以下のレーザ光に対し
ては非透過性(レーザ光の透過率が低い)・の性質を有
している。
In (a) to d) of FIG. 1, 21 is a styrene-acrylonitrile copolymer (A S
G), the raw material color of this plate member 21 is black due to the mixing of carbon black,
As shown in FIG. 3, it has the property of being non-transmissive (low transmittance of laser light) for laser light of 1.06 μm or less.

また、板部材21の上部には耐熱性を有する強化繊維と
して長さが0.5 m mないし3mmのガラス繊維が
20重量%添加され、かつカーボンブラックが0.1重
量%添加された厚さQ、5mmのシート状としたスチレ
ン−アクリビニトリル共重合体(A S G)からなる
薄板22が配設されている。
Further, the upper part of the plate member 21 has a thickness in which 20% by weight of glass fibers having a length of 0.5 mm to 3 mm are added as reinforcing fibers having heat resistance, and 0.1% by weight of carbon black is added. Q. A thin plate 22 made of styrene-acrybinitrile copolymer (ASG) in the form of a 5 mm sheet is provided.

そして、この薄板22は第3図に示すように1.06μ
m以下のレーザ光に対して非透過性(レーザ光の透過率
が低い)の性質を有しており、その原材料色はカーボン
ブラックが添加されて黒色となっている。
This thin plate 22 has a diameter of 1.06μ as shown in FIG.
It has the property of being non-transparent (low transmittance of laser light) to laser light of m or less, and its raw material color is black due to the addition of carbon black.

また、薄板22の上部にはポリプロピレン樹脂(P P
)からなる板部材23が配設されている。
Moreover, the upper part of the thin plate 22 is made of polypropylene resin (P P
) is provided.

そして、この板部材23の原材料色は乳白色をしており
、1.06μm以下のレーザ光に対しては第4図に示す
ように透過性(レーザ光の透過率が高い)の性質を有し
ている。
The raw material color of this plate member 23 is milky white, and it has a property of being transparent (high transmittance of laser light) for laser light of 1.06 μm or less, as shown in FIG. ing.

そしそ、第1図の(a)のようにセットされた合成樹脂
材料からなる両板部材21.22を接合する際には、第
1図の(b)および(C)に示すようにポリプロピレン
樹脂の板部材23の上面にYAG:ネオジウム3+レー
ザの照射ノズル5の先端を当接して矢印B方向に荷重を
加えるとともに、その照射ノズル5から波長が1.06
μm、出力が5ないし100WとなるYAGレーザ光M
eを照射する。
Therefore, when joining the two plate members 21 and 22 made of synthetic resin material set as shown in (a) of Fig. 1, polypropylene is used as shown in (b) and (C) of Fig. 1. The tip of the YAG:Neodymium 3+ laser irradiation nozzle 5 is brought into contact with the upper surface of the resin plate member 23 to apply a load in the direction of arrow B, and the wavelength of 1.06 is emitted from the irradiation nozzle 5.
μm, YAG laser beam M with output of 5 to 100W
irradiate e.

ここで、照射ノズル5は板部材23に対して当接させて
も、離しておいても効果には変わりはなく、レーザ加工
の特徴である非接触加工性を活用するならば離しておぐ
のがよい。但し、この場合には両板部材21と23およ
びその中間に配設された耐熱性を有するガラス繊維とカ
ーボンブラックが添加され、かつレーザ光に対して鼻透
過性を有するスチレン−アクリロニトリル共重合体によ
ってシート化された薄板22とを密着しておくように、
例えば機械的なりランプ機構を用いるなどの手段を講じ
ることが必要である。
Here, the effect remains the same whether the irradiation nozzle 5 is brought into contact with the plate member 23 or separated from it, and if the non-contact processing characteristic of laser processing is to be utilized, it is better to keep it separated. It is better. However, in this case, heat-resistant glass fibers and carbon black are added to both plate members 21 and 23 and between them, and a styrene-acrylonitrile copolymer that is nasally permeable to laser light is used. so as to keep the thin plate 22 formed into a sheet in close contact with the
For example, it is necessary to take measures such as using a mechanical ramp mechanism.

また、出力の5ないしIQOWの設定に当たっては、レ
ーザ光活用の一般的知識であるパワー密度を考慮して、
板部材21.23を熔融させるも蒸発させないことが重
要である−0 この状態にて、YAGレーザ光Meは、その波長と合成
樹脂材料の吸収スペクトルとの関連によ透過する。
In addition, when setting the output 5 or IQOW, take into account the power density, which is common knowledge in laser light utilization.
It is important that the plate members 21 and 23 are melted but not evaporated. In this state, the YAG laser beam Me is transmitted due to the relationship between its wavelength and the absorption spectrum of the synthetic resin material.

この結果、第1図の(C)に示すようにYAGレーザ光
Meのもつエネルギがガラス繊維を含むスチレン−アク
リロニトリル共重合体の薄板22に蓄積され、これを加
熱・熔融する。この結果、薄板22の中のガラス繊維が
板部材21の上面と板部材23の下面とに絡まり合うこ
とになり、板部材21と23とは薄板22のガラス繊維
を介した接合を生じる。
As a result, as shown in FIG. 1C, the energy of the YAG laser beam Me is accumulated in the thin plate 22 of the styrene-acrylonitrile copolymer containing glass fibers, heating and melting it. As a result, the glass fibers in the thin plate 22 become entangled with the upper surface of the plate member 21 and the lower surface of the plate member 23, and the plate members 21 and 23 are joined via the glass fibers of the thin plate 22.

その後、第1図の(呼)に示すように照射ノズル5から
YAGレーザ光Meの照射を停止するとともに、照射ノ
ズル5をポリプロピレン樹脂の板部材23から離反させ
、両板部材211.23への荷重を取り除く。これによ
り、第2図に示すように両板部材21.23;溶融物に
薄板22のガラス繊維24が入り込んで絡まった状態で
硬化し、ポリプロピレン樹脂からなる板部材23とスチ
レン−アクリロニトリル共重合体からなる板部材21と
が強固に接合される。
Thereafter, as shown in FIG. Remove the load. As a result, as shown in FIG. 2, both plate members 21 and 23; the glass fibers 24 of the thin plate 22 enter the melt and harden in an entangled state, and the plate member 23 made of polypropylene resin and the styrene-acrylonitrile copolymer The plate member 21 consisting of the above is firmly joined.

また、YAGレーザ光Meを照射しながら連続的に板部
材23の面に沿って移動せしめるならば、その移動方向
に対して接合面積は大きくなり、より一層強固な接合を
得ることができる。
Further, if the plate member 23 is continuously moved along the surface of the plate member 23 while being irradiated with the YAG laser beam Me, the bonding area becomes larger in the direction of movement, and an even stronger bond can be obtained.

ち癌み、に、本実施例に従って、薄#i22に添加され
るガラス繊維の混入量を変えて、引張り強さを試験した
。そき結果を第6図に示すようにYACレーザ光Meの
照射ビート長さにおいてガラス繊維の混入を無くした投
錨効果によるものの引張り接合強度は9.9 k g 
fを得ており、もう一つのガラス繊維の混入比率20重
量%においては20kgfを得た。
Finally, according to this example, the tensile strength was tested by changing the amount of glass fiber added to thin #i22. As shown in Figure 6, the tensile bonding strength due to the anchoring effect, which eliminates the inclusion of glass fibers, was 9.9 kg at the irradiation beat length of the YAC laser beam Me.
f, and when the other glass fiber was mixed at a ratio of 20% by weight, 20 kgf was obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る合成樹脂材料の接合
方法においては、少なくとも一方の合成樹脂材料をレー
ザ光に対□して透過性とするとともに、もう一方の釡成
樹脂材料との間に耐熱性を有する強化繊維を混入し、か
つレーザ光に対して非透過性を有するシート状の合成樹
脂材料を配設し、透過性の合成樹脂材料の方向からレー
ザ光を照射するようにしたから、二つの接合する合成樹
脂材料の接合面から加熱・溶融され、しかも、前記の強
化繊維がこれらの溶融物に入り絡まって接合されるので
、再合成樹脂材料を、より強力にすることができる効果
がある。
As explained above, in the method for joining synthetic resin materials according to the present invention, at least one synthetic resin material is made transparent to laser light, and there is a gap between the synthetic resin material and the other molded resin material. A sheet-like synthetic resin material containing heat-resistant reinforcing fibers and non-transparent to laser light is provided, and the laser light is irradiated from the direction of the transparent synthetic resin material. , the joining surfaces of the two synthetic resin materials to be joined are heated and melted, and the reinforcing fibers enter these melts and are entangled and joined together, making the re-synthetic resin material even stronger. effective.

また、本発明において、接合する合成樹脂材料の一方は
レーザ光に対して透過性となるものが必要であるが、中
間に、レーザ光に対して非透過性をもつ合成樹脂材料に
耐熱性を有する強化機−を混入したも゛のを用いたから
、もう一方の合成樹脂材料は、どのような合成樹脂材料
であってもよく、接合する合成樹脂材料の種類の規約を
なくすることができる。。
In addition, in the present invention, one of the synthetic resin materials to be bonded must be transparent to laser light, but the intermediate synthetic resin material that is non-transparent to laser light must be heat resistant. Since the other synthetic resin material mixed with the reinforcing machine is used, the other synthetic resin material may be any synthetic resin material, and there can be no restrictions on the type of synthetic resin material to be joined. .

また、本発明においては、合成樹脂材料の一方からレー
ザ光を照射することによって、再合成樹脂材料が接合さ
れるので、従来の機械的接合方法に比較して、再合成樹
脂材料の接合を容易に行うことができる効果があ慝。
In addition, in the present invention, since the resynthetic resin materials are joined by irradiating laser light from one side of the synthetic resin materials, it is easier to join the resynthetic resin materials compared to conventional mechanical joining methods. There are effects that can be done.

また、本発明においては、合成樹脂材料を接合した際に
、再合成樹脂材料の接合部にはねじ等の固定手段がない
ので、意匠効果を向上させることができる効果がある。
Further, in the present invention, when the synthetic resin materials are joined, there is no fixing means such as screws at the joint of the resynthetic resin material, so there is an effect that the design effect can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る合成樹脂材料の接合方法を説明す
る概略断面図である。 第2図は第1図(d)のA部楕円内を拡大した断面図で
ある。 第3図はスチレン−アクリロニトリル共重合体のスペク
トル分析結果である。 第4図はポリエチレン樹脂のスペクトル分析績゛果であ
る。 第5図は本発明の接合方法に使用されるレーザ光照射装
置の断面図である。 第6図はスチレン−アクリロニトリル共重合体の薄板へ
のガラス繊維の添加量による引張り強さを示す図である
。 第7図は従来の合成樹脂材料の接合方法を説明する概略
断面図である。 5−−−−−一照射ノズル 4d−・−第4の光学レンズ Md、Me−−−−−−YAGレーザ光21・−・−・
スチレン−アクリロニトリル共重合体からなる板部材 22・・−−−−ガラス繊維を含むスチレン−アクリロ
ニトリル共重合体の薄板 23−−−−−−ポリプロピレン樹脂からなる板部材2
4−・−−−−ガラス繊維 出願人  トヨタ自動車株式会社 23−7;1でυブO口し″A!1月旨力゛すTj七q
々しぎトイ1′y+d、Me−−−YA a シーブ尤
(a )              (t))(0)
  第1図 (d) 第2図 第7図 第50 乃・ラス7t51L入篭に鰐1り(41引gt・)ヴ敷
で第6図
FIG. 1 is a schematic cross-sectional view illustrating a method of joining synthetic resin materials according to the present invention. FIG. 2 is an enlarged cross-sectional view of the ellipse of section A in FIG. 1(d). FIG. 3 shows the results of spectrum analysis of a styrene-acrylonitrile copolymer. Figure 4 shows the results of spectrum analysis of polyethylene resin. FIG. 5 is a sectional view of a laser beam irradiation device used in the bonding method of the present invention. FIG. 6 is a diagram showing the tensile strength depending on the amount of glass fiber added to a thin plate of styrene-acrylonitrile copolymer. FIG. 7 is a schematic cross-sectional view illustrating a conventional method of joining synthetic resin materials. 5------One irradiation nozzle 4d---Fourth optical lens Md, Me---YAG laser beam 21------
Plate member 22 made of styrene-acrylonitrile copolymer...---Thin plate 23 of styrene-acrylonitrile copolymer containing glass fiber---Plate member 2 made of polypropylene resin
4-・----Glass fiber applicant Toyota Motor Corporation 23-7;
Tashigi Toy 1'y+d, Me---YA a Seeb Yu (a) (t)) (0)
Figure 1 (d) Figure 2 Figure 7 Figure 6 One crocodile (41 pull gt) in the cage (50)

Claims (1)

【特許請求の範囲】[Claims] 合成樹脂材料を重ね合わせて両者を接合するにあたり、
前記合成樹脂材料の少なくとも一方をレーザ光に対して
透過性とし、この両者の合成樹脂材料の間に、レーザ光
に対して非透過性であり、かつ耐熱性を有する強化繊維
が混入されたシート状の合成樹脂材料を配設し、この三
者の合成樹脂材料を重ね合わせた後、前記レーザ光に対
して透過性の合成樹脂材料の方向からレーザ光を照射す
ることを特徴とする合成樹脂材料の接合方法。
When overlapping synthetic resin materials and joining them together,
A sheet in which at least one of the synthetic resin materials is transparent to laser light, and reinforcing fibers that are non-transparent to laser light and have heat resistance are mixed between the two synthetic resin materials. A synthetic resin characterized in that a synthetic resin material of a shape is arranged, and after these three synthetic resin materials are superimposed, a laser beam is irradiated from the direction of the synthetic resin material that is transparent to the laser beam. How to join materials.
JP60029508A 1985-02-18 1985-02-18 Bonding of synthetic resin materials Pending JPS61188128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60029508A JPS61188128A (en) 1985-02-18 1985-02-18 Bonding of synthetic resin materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60029508A JPS61188128A (en) 1985-02-18 1985-02-18 Bonding of synthetic resin materials

Publications (1)

Publication Number Publication Date
JPS61188128A true JPS61188128A (en) 1986-08-21

Family

ID=12278032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60029508A Pending JPS61188128A (en) 1985-02-18 1985-02-18 Bonding of synthetic resin materials

Country Status (1)

Country Link
JP (1) JPS61188128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067164A (en) * 2000-08-28 2002-03-05 Japan Science & Technology Corp Method for bonding resin film by laser
JP2007196675A (en) * 2005-12-27 2007-08-09 Canon Inc Resin molded composite, manufacturing method of resin molded composite, cartridge and manufacturing method of cartridge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002067164A (en) * 2000-08-28 2002-03-05 Japan Science & Technology Corp Method for bonding resin film by laser
JP2007196675A (en) * 2005-12-27 2007-08-09 Canon Inc Resin molded composite, manufacturing method of resin molded composite, cartridge and manufacturing method of cartridge

Similar Documents

Publication Publication Date Title
JPS60214931A (en) Bonding of different synthetic resin materials
JP2000218698A (en) Method and apparatus for bonding resins by laser
JP2001071384A (en) Laser welding method for resin members
JPS60214929A (en) Bonding of different synthetic resin materials
JP4731040B2 (en) Laser welding method
CN102950766B (en) Laser transmission welding method for thermoplastic plastics
JP2007523763A (en) Joint design for laser welding of thermoplastics
JPS6264528A (en) Joining of synthetic resin material and different material
JP2002337236A (en) Method for welding resin member
JPS60228131A (en) Mechanical jointing of heterogeneous synthetic resin materials
JPS61188128A (en) Bonding of synthetic resin materials
JPS6250125A (en) Method for connecting synthetic resin material with different kind of material
JPH01143783A (en) Coaxial multi-focal point type laser beam converging device
JP2001105499A (en) Laser welding method for resin material
JPS6244429A (en) Joining method of synthetic resin material
JPS6274631A (en) Joining of synthetic resin material
JPS6271626A (en) Jointing of synthetic resin material and different kind material
JPS61182930A (en) Joining method of different kind of synthetic resin materials
JP4185405B2 (en) Bonding method between resin materials
JPS61182929A (en) Joining method of different kind of synthetic resin material
JPS6274630A (en) Joining of synthetic resin material
JPS62135346A (en) Method for connecting different synthetic resin material
JPS6246621A (en) Joint of synthetic resin material
JPS60212329A (en) Joining of heterogeneous synthetic resin materials
JPS6255121A (en) Jointing synthetic resin materials