JPS61186836A - Liquid sensor - Google Patents

Liquid sensor

Info

Publication number
JPS61186836A
JPS61186836A JP60025256A JP2525685A JPS61186836A JP S61186836 A JPS61186836 A JP S61186836A JP 60025256 A JP60025256 A JP 60025256A JP 2525685 A JP2525685 A JP 2525685A JP S61186836 A JPS61186836 A JP S61186836A
Authority
JP
Japan
Prior art keywords
coating layer
refractive index
light guide
liquid
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60025256A
Other languages
Japanese (ja)
Other versions
JPH0260260B2 (en
Inventor
Hiroshi Wada
弘 和田
Tetsuya Yamazaki
哲也 山崎
Eiji Okuda
奥田 栄次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60025256A priority Critical patent/JPS61186836A/en
Publication of JPS61186836A publication Critical patent/JPS61186836A/en
Publication of JPH0260260B2 publication Critical patent/JPH0260260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/7703Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To detect the sticking of liquid to be detected to a coating layer with high reliability by providing a single-mode light guide on a light- transmissive substrate and providing the coating layer that the object liquid immerse thereupon, and thus constituting a sensor. CONSTITUTION:The single-mode light guide 3 is provided on the substrate 2 made of quartz glass, etc., and the coating layer 4 is provided thereupon. The coating layer is formed of the material, such as silicone resin and a porous material, that the liquid to be detected immerses. The refractive index of the light guide 3 is made larger than that of the substrate 2 and the refractive index of the coating layer 3 is made smaller than that of the light guide 3. Further, optical fibers 5A and 5B are connected to both sides of the light guide 3 of this detector 1. When oil which is large in refractive index sticks on the coating layer 4, the oil oozes to the light guide 3 and the ratio of an evanescent wave 7 increases, so that projection light from the optical fiber guide, so an oil leak in a plant, etc., is detected with high reliability.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、油等の液体を光学的に感知する液体感知器に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a liquid sensor that optically senses liquid such as oil.

〔従来技術の説明〕[Description of prior art]

最近、石油備蓄基地や石油化学プラント等で油漏れ事故
が多発しており、この様な事故を早期に発見する為の法
的規制等によって、信頼度の高い感知器が必要とされて
いる。また感知器は安全性が高いものでなければならな
い。
Recently, oil leak accidents have been occurring frequently at oil storage bases, petrochemical plants, etc., and highly reliable detectors are required in accordance with legal regulations for early detection of such accidents. The sensor must also be highly safe.

従来、光学的な液体感知器としてはポリマクラクトファ
イバが知られている。このポリマクラツド光ファイバは
、石英から成るコアと屈折率が石英端からこの光フアイ
バ内へ入射した光は、コアとクラッドとの界面で全反射
を繰り返しながら、低損失で他端まで伝播する。
Conventionally, polymer lactate fibers have been known as optical liquid sensors. This polymer clad optical fiber has a core made of quartz and a refractive index. Light entering the optical fiber from the quartz end is repeatedly totally reflected at the interface between the core and the cladding, and propagates to the other end with low loss.

ところが、屈折率の大きな油が光ファイバに付着してク
ラッド内へ浸潤すると、クラッドの屈折率が高くなる。
However, when oil with a high refractive index adheres to the optical fiber and infiltrates into the cladding, the refractive index of the cladding increases.

この結果、光フアイバ内へ入射した光の中には、コアと
クラッドとの界面で全反射せずに屈折しコア外へ出て行
く光が生じる。
As a result, some light that enters the optical fiber is refracted and exits the core without being totally reflected at the interface between the core and the cladding.

この為に、光7アイパ中を全反射しながら伝播する光の
量が、油の浸潤前に比べて減少する。
For this reason, the amount of light that propagates through the light 7 eyelid while being totally reflected is reduced compared to before oil infiltration.

従って、光ファイバの一端には光源を、また他端には受
光器を夫々配置して、伝播光量の変化を監視すれば、油
漏れを感知することができる。
Therefore, oil leakage can be detected by placing a light source at one end of the optical fiber and a light receiver at the other end and monitoring changes in the amount of propagated light.

〔従来技術の問題点〕[Problems with conventional technology]

上記従来のポリマクラッドファイバでは、ファイバの径
は非常に小さいので、油漏れが発生した場所に光ファイ
バが正確に位置していなければこめ油漏れを感知するこ
とができない。
In the conventional polymer clad fiber described above, the diameter of the fiber is very small, so oil leakage cannot be detected unless the optical fiber is precisely positioned at the location where oil leakage occurs.

つまり、光ファイバでは油漏れを言わば線状にしか感知
することができないために、油漏れを見逃!確率が高く
て信頼度の高い感知器とは成り得なQ、1% (j)0 ぷ来の問題点を解決する手段〕 □′石英、ガラス等の透光性基板に単一モード光導波路
を設け、この導波路を覆うように、検知液体が浸潤し得
る物質、例えばシリコン樹脂、連続気泡を有する無機あ
るいは有機の多孔体からなる被覆層を設ける。
In other words, with optical fibers, oil leaks can only be detected in a linear manner, so oil leaks can be overlooked! A highly reliable sensor with a high probability is a means to solve the problem of Q, 1% (j)0. A coating layer made of a substance into which the sensing liquid can permeate, such as silicone resin, or an inorganic or organic porous material having open cells, is provided to cover this waveguide.

基板として多成分系ガラスなど比較的屈折率の高い材質
を使用した場合は、被覆層に検知液体が浸潤した際導波
路から被覆層へのエバ不ツセント波浸出をより多くする
ために、被覆層と導波路との間に、屈折率が導波路より
も小さく被覆層よりも大な薄い中間層を設けてもよい。
When using a material with a relatively high refractive index such as multi-component glass as a substrate, the coating layer should be removed in order to increase the leakage of evaporative waves from the waveguide to the coating layer when the detection liquid infiltrates the coating layer. A thin intermediate layer having a refractive index smaller than that of the waveguide and larger than that of the coating layer may be provided between the waveguide and the waveguide.

このような中間層は被覆層と導波路とのエバ不ノセント
波結合を妨げない厚みであることが必要であり、一般的
には単一モード光導波路厚みの約3分の/以下とするの
が望ましい。
Such an intermediate layer needs to have a thickness that does not interfere with evanescent wave coupling between the coating layer and the waveguide, and is generally about 3/3 of the thickness of a single mode optical waveguide or less. is desirable.

〔作 用〕[For production]

もし感知器の被覆層にこの被覆層よりも屈折率の)!!
:の結果、単一モード光導波路中を伝搬する光のうち、
被覆層に浸み出すエバネッセント波の割合が増加し、被
覆層で吸収される光量が増加して受光量が減少する。
If the sensor coating layer has a refractive index higher than this coating layer)! !
: As a result, of the light propagating in the single mode optical waveguide,
The proportion of evanescent waves that seep into the coating layer increases, the amount of light absorbed by the coating layer increases, and the amount of light received decreases.

上記の受光量変化によって感知器設置箇所における検知
液体の存在、例えば油洩れを高感度で検出することがで
きる。
The presence of a detection liquid, such as an oil leak, at the location where the sensor is installed can be detected with high sensitivity by the above-mentioned change in the amount of received light.

〔実 施 例〕〔Example〕

以下本発明を図面に示した実施例について詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to embodiments shown in the drawings.

第1図において/は感知器であり、感知器lは透光性材
料例えば石英ガラス(屈折例n1−八≠jざ)からなる
基板の面に、この基板2よりも屈折率の大きい、例えば
屈折率n2−へ≠乙の透光性薄膜から成る単一モード光
導波路3を設ける。この単一モード光導波路3の厚みは
例えば5μmである。
In FIG. 1, / is a sensor, and the sensor l is made of a transparent material such as quartz glass (refraction example n1-8≠j) on the surface of a substrate having a larger refractive index than the substrate 2, e.g. A single mode optical waveguide 3 made of a transparent thin film with a refractive index n2-≠B is provided. The thickness of this single mode optical waveguide 3 is, for example, 5 μm.

さらにこの単一モード光導波路3の上表面を覆って被覆
N弘が設けられている。この被覆層グは、付着した油等
の被検知液体が厚み方向に容易に浸潤し得る材質および
厚みで構成され、その屈折率n3は単一モード光導波路
3の屈折率n2よりも小さいことが必要である。
Further, a coating layer is provided to cover the upper surface of this single mode optical waveguide 3. This coating layer is made of a material and has a thickness that allows the attached liquid to be detected, such as oil, to easily infiltrate in the thickness direction, and its refractive index n3 is smaller than the refractive index n2 of the single mode optical waveguide 3. is necessary.

る。上記構造の感知器の対向する両側端面にそれぞれ単
一モード光ファイバjA、jBを結合し、一方の光ファ
イバjAを通して単一モード光を導波路3に入射させ、
また導波路3からの出射光をファイバjBに受光させた
後図外の受光器へ導き受光f変化を測定する。
Ru. Single mode optical fibers jA and jB are respectively coupled to opposite end surfaces of the sensor having the above structure, and the single mode light is made to enter the waveguide 3 through one optical fiber jA,
Further, after the light emitted from the waveguide 3 is received by the fiber jB, it is guided to a light receiver (not shown) and the change in the received light f is measured.

上記装置において、被検知液体乙が被WIt層弘表面に
付着するとこの液体6は速やかに被覆層q中に浸潤し、
この結果被覆層弘の屈折率n3が増加する。
In the above device, when the liquid 6 to be detected adheres to the surface of the WIt layer 6 to be detected, this liquid 6 quickly infiltrates into the coating layer q,
As a result, the refractive index n3 of the coating layer increases.

例えば被検知液体6が屈折率/、4Z5gの油で被覆層
ψが屈折率へグOりのシリコン樹脂の場合、被覆層グの
屈折率n3は約へtI3/  に増加する。
For example, if the liquid to be detected 6 is oil with a refractive index of /4Z5g and the coating layer ψ is made of silicone resin with a refractive index of 0, the refractive index n3 of the coating layer increases to about tI3/.

この結果、導波路3を通る単一モード光から被覆層4中
へしみ出るエバネソセント波7の割合が増加して、被覆
層グで吸収される光の割合が増加し、導波路3出口から
の出射光量が減少するので被検、知液体の出現、例えば
油漏れを検出することができる。
As a result, the proportion of evanescent waves 7 that seep into the coating layer 4 from the single mode light passing through the waveguide 3 increases, the proportion of light absorbed by the coating layer increases, and Since the amount of emitted light is reduced, it is possible to detect the appearance of a liquid to be detected, such as an oil leak.

第2図は本発明の他の実施例を示す。FIG. 2 shows another embodiment of the invention.

率差が相対的に大きくなり、被検知液体の浸潤で被覆層
グの屈折率が増加したとしても被覆層グへのエバネッセ
ント波洩出が充分でなく高い検出感度が得られなくなる
。そこで本例構造では、単一モード光導波路3と被y層
tとの間に、屈折率n4が両者の中間にある材質の中間
層ざを設ける。
Even if the index difference becomes relatively large and the refractive index of the coating layer increases due to infiltration of the liquid to be detected, the leakage of evanescent waves to the coating layer is insufficient, making it impossible to obtain high detection sensitivity. Therefore, in the structure of this example, an intermediate layer made of a material having a refractive index n4 between the two is provided between the single mode optical waveguide 3 and the y-layer t.

この中間層ざの厚みはあまり大であると、導波路3から
被覆層グへのエバ不ツセント波しみ出しが阻止されてし
まうので一般的には中間層lの厚みは導波路厚みの約3
分のl以下とするのが望ましい。−例として基板λに屈
折率が八5jの多成分系ガラスを使用し、この基板上に
屈折率へj!5で厚みが約tμmの単一モード光導波路
3を設け、この導波路3上に中間層gとして屈折率が八
j5で厚みが約/μmのガラス薄膜を積層する。そして
、この中間層ざ上に例えばシリコン樹脂の被覆層弘を設
ける。
If the thickness of this intermediate layer is too large, the seepage of evanescent waves from the waveguide 3 to the covering layer will be blocked.
It is desirable to set it to less than 1/min. - As an example, a multi-component glass with a refractive index of 85j is used for the substrate λ, and the refractive index j! A single mode optical waveguide 3 having a thickness of approximately tμm and a refractive index of 8j5 is laminated on the waveguide 3 as an intermediate layer g. Then, a coating layer made of, for example, silicone resin is provided on this intermediate layer.

知液体の出現を検出することができる。The appearance of a known liquid can be detected.

なお、基板2の材質として多成分系ガラス、石英系ガラ
ス、或いはプラスチックを夫々用いた場合は、二段階電
界イオン交換法、光7アイパ等のた 製作に利用されている火炎加水分解法、或いは光重合法
等の周知の技術を夫々利用することによって、光導波路
を形成することができる。この光導波路の垂直な断面に
おける屈折率分布は、均一であってもよいし勾配を有し
ていてもよい。また光導波路の形成は上記以外に蒸着、
スパッタリング、イオン注入、熱拡散などの方法によっ
て形成されても何らさしつかえない。
In addition, when multi-component glass, quartz glass, or plastic is used as the material of the substrate 2, the two-stage electric field ion exchange method, the flame hydrolysis method used in the production of Hikari 7 Aiper, etc., or the Optical waveguides can be formed by using well-known techniques such as photopolymerization. The refractive index distribution in the vertical cross section of this optical waveguide may be uniform or may have a slope. In addition to the above, the optical waveguide can be formed by vapor deposition,
There is no problem even if it is formed by a method such as sputtering, ion implantation, or thermal diffusion.

以上のような感知器を多成分系あるいは石英系のガラス
で構成して、しかも導波路30入射端及び出射端の近傍
には被覆層ψを設けないようにすれば光7アイバ5A、
tBとして伝送損失の少ないガラス光ファイバを使用し
ても、この光7アイノくと基板とを融着等によって容易
に接続することができる。また図示例の単一モード光導
波路3は二、?効果を得ることができる。また光7アイ
ノ<!;A。
If the above-mentioned sensor is constructed of multi-component glass or quartz glass, and no coating layer ψ is provided near the input end and output end of the waveguide 30, the optical fiber 5A,
Even if a glass optical fiber with low transmission loss is used as tB, the optical 7-inode and the substrate can be easily connected by fusion bonding or the like. Moreover, the single mode optical waveguide 3 in the illustrated example is 2,? effect can be obtained. Also Hikari 7 Aino<! ;A.

i′Bを使用せずに、プリズム結合器や・ンズ等で先箱
3図は感知器lを適用して実際に油漏れを感知する為の
装置を示している。まず、油タンク10の油漏れが発生
しそうな箇所に感知器lを配置し、これらの感知器/を
光7アイバl/によって直列もしくは並列に接続してお
く。最側端の光7アイパ/lへは光源/2からの光を入
射させ、また他側端の光ファイバ//から射出される光
を光検出器13で検出する。そして、光検出器/3から
の電気信号を、増巾器l≠及び比較93/jを介して警
報器/6へ導く。
Figure 3 in the box above shows a device for actually detecting oil leakage using a prism coupler, lenses, etc. without using i'B. First, sensors 1 are placed at locations in the oil tank 10 where oil leakage is likely to occur, and these sensors are connected in series or in parallel using optical fibers 1. The light from the light source /2 is input to the light 7 Aiper/l at the farthest end, and the light emitted from the optical fiber // at the other end is detected by the photodetector 13. Then, the electrical signal from the photodetector /3 is guided to the alarm /6 via the amplifier l≠ and the comparator 93/j.

なお、光フアイバコネクタの接続損失や光ファイバの伝
送損失の測定に利用されている後方散乱法を併用すれば
、単に油漏れを感知するのみではなく、油漏れの箇所を
も知ることができる。
Note that by using the backscattering method, which is used to measure the connection loss of optical fiber connectors and the transmission loss of optical fibers, it is possible not only to simply detect oil leaks, but also to know the location of oil leaks.

以上の説明では油の感知について述べたが、被覆層lに
浸潤してこの被覆層弘の屈折率を増大させる液体であれ
ば油に限られることなく感知する二とができる。
In the above description, the sensing of oil has been described, but any liquid that infiltrates the coating layer 1 and increases the refractive index of the coating layer 1 can be sensed without being limited to oil.

〔発明の効果〕〔Effect of the invention〕

本発明による液体感知器では平板導波路を用いているの
で、従来のポリマクラッドファイバ型感ごニー 検知液体が浸潤する被覆層グを光導波路3よりも広い幅
範囲にわたって設けることができ、この点からも検知面
積を光分に大きくすることができる。
Since the liquid sensor according to the present invention uses a flat plate waveguide, the coating layer in which the liquid is permeated can be provided over a wider range than the optical waveguide 3 in the conventional polymer clad fiber type sensor. Also, the detection area can be increased to the extent of light.

さらに、連続したファイバで構成される従来のものに比
べて、取り替えを容易に行なうことができる。
Furthermore, it is easier to replace than conventional fibers constructed of continuous fibers.

また、単一モード光導波路からのエバ不ノセント波しみ
出し量変化により検出するため、多モード光導波路を用
いた場合のように導波路への光入射角度を一定角度範囲
に制御するための加工が不要で製作が容易である。
In addition, in order to detect changes in the amount of evanescent waves seeping out from a single mode optical waveguide, processing is required to control the incident angle of light into the waveguide within a fixed angle range, as in the case of using a multimode optical waveguide. It is easy to manufacture as there is no need for it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第一図は本発
明の他の実施例を示す断面図、第3図は本発明の感知器
を油洩れ検出に適用した例を示す概略図である。
FIG. 1 is a cross-sectional view showing one embodiment of the present invention, FIG. 1 is a cross-sectional view showing another embodiment of the present invention, and FIG. 3 is a cross-sectional view showing an example in which the sensor of the present invention is applied to oil leak detection. It is a schematic diagram.

Claims (1)

【特許請求の範囲】[Claims] 透光性の基板と、この基板に形成された単一モード光導
波路と、中間薄膜を介して、または介さずに前記光導波
路上に積層配置した検知液体が浸潤し得る物質から成る
被覆層とを備えたことを特徴とする液体感知器。
A transparent substrate, a single mode optical waveguide formed on the substrate, and a coating layer made of a substance that can be infiltrated by a sensing liquid and laminated on the optical waveguide with or without an intermediate thin film. A liquid sensor characterized by being equipped with.
JP60025256A 1985-02-14 1985-02-14 Liquid sensor Granted JPS61186836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025256A JPS61186836A (en) 1985-02-14 1985-02-14 Liquid sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025256A JPS61186836A (en) 1985-02-14 1985-02-14 Liquid sensor

Publications (2)

Publication Number Publication Date
JPS61186836A true JPS61186836A (en) 1986-08-20
JPH0260260B2 JPH0260260B2 (en) 1990-12-14

Family

ID=12160931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025256A Granted JPS61186836A (en) 1985-02-14 1985-02-14 Liquid sensor

Country Status (1)

Country Link
JP (1) JPS61186836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299440A (en) * 1988-05-27 1989-12-04 Hitachi Cable Ltd Optical detecting sensor of amount of adhered salt
JPH03197846A (en) * 1989-12-26 1991-08-29 Sanyo Electric Co Ltd Infrared gas sensor
US11105973B2 (en) 2019-01-11 2021-08-31 Schott Corporation Optically enhanced high resolution image guides

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01299440A (en) * 1988-05-27 1989-12-04 Hitachi Cable Ltd Optical detecting sensor of amount of adhered salt
JPH03197846A (en) * 1989-12-26 1991-08-29 Sanyo Electric Co Ltd Infrared gas sensor
US11105973B2 (en) 2019-01-11 2021-08-31 Schott Corporation Optically enhanced high resolution image guides

Also Published As

Publication number Publication date
JPH0260260B2 (en) 1990-12-14

Similar Documents

Publication Publication Date Title
CA2233305C (en) Integrated optic interferometric sensor
Lomer et al. Lateral polishing of bends in plastic optical fibres applied to a multipoint liquid-level measurement sensor
US5082629A (en) Thin-film spectroscopic sensor
EP3551963B9 (en) Waveguide interferometer
EP0939897B1 (en) Chemical sensor
US20070098323A1 (en) Reflection-mode fiber sensing devices
CN108414448A (en) One kind being based on the cascade optical sensor of dual resonant cavity
Heideman et al. Fabrication and packaging of integrated chemo-optical sensors
JPS61186836A (en) Liquid sensor
JPS61221629A (en) Pressure sensitive element
Fuentes et al. Simultaneous Measurement of Refractive Index and Temperature using LMR on planar waveguide
Ribeiro et al. An evanescent-coupling plastic optical fibre refractometer and absorptionmeter based on surface light scattering
Slavik et al. Novel surface plasmon resonance sensor based on single-mode optical fiber
JPH02181707A (en) Optical fiber for detecting liquid, gas or the like
JP2513470B2 (en) Optical fiber sensor for oil leak detection and method of using the same
JPH0345783B2 (en)
JPS63234115A (en) Liquid level detector
CN110864762A (en) Input type optical fiber liquid level instrument without installation
JPS60209143A (en) Liquid sensor
US6748129B2 (en) Method and apparatus of monitoring optical power level in waveguiding structures
JPS6228641A (en) Liquid sensor
JPS6066137A (en) Liquid refractive index sensor head
JPS62170838A (en) Optical sensor for reflection type hydrogen detection
JPH0260259B2 (en)
JPH08219983A (en) Optical fiber and fiber-optic sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term