JPS61186813A - Range finder - Google Patents

Range finder

Info

Publication number
JPS61186813A
JPS61186813A JP2693385A JP2693385A JPS61186813A JP S61186813 A JPS61186813 A JP S61186813A JP 2693385 A JP2693385 A JP 2693385A JP 2693385 A JP2693385 A JP 2693385A JP S61186813 A JPS61186813 A JP S61186813A
Authority
JP
Japan
Prior art keywords
light
point
light emitting
distance
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2693385A
Other languages
Japanese (ja)
Inventor
Mikio Maeda
幹夫 前田
Masahiro Kosaka
小坂 雅博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2693385A priority Critical patent/JPS61186813A/en
Publication of JPS61186813A publication Critical patent/JPS61186813A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To measure distance in two dimensions with simple constitution by performing arithmetic by using an output obtained by turning on light emitting elements on time-series basis. CONSTITUTION:Light emitted from a point at distance Dy from the center of a light emitting element 1 reaches a body P through a projection lens 3 and part of reflected light from the body P passes through a photodetection lens 4 to form an image at a point which is Sy away from the center of the photodetecting element 2. At this time, a reference length (d) and focal lengths f1 and f2 of the lenses 3 and 4 are constants which are already known and positions X0 and Y0 of the body can be calculated from equations I and II when the position Dy of the light emission point and position Sy of the photodetection point are measured. for the purpose, the position Dy of the light emission point is varied by using a proper means to calculate the position of the body P on an X-Y plane. Namely, the element 1 is turned on successively to measure not only the distance to one point P on the body, but also distances to many bodies.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は2次元の距離測定の装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a two-dimensional distance measurement device.

従来の技術 第4図に示すようにある物体Pまでの距離りを測定する
には三角測定の原理から一般に求められる。すなわち第
4図において発光素子11よジ発射された光は投射レン
ズ12を通り物体Pにあたる。物体Pよジ反射した光は
受光レンズ13を通り受光素子14に像を結ぶ。受光素
子14はイメージセンサとか、ポジジョンセンステイブ
ディバイス(P、S、D )とかG、C0Dとかといっ
た素子が用いられる。このような受光素子14上の像の
位置と、発光素子11と受光素子14との基線長間隔d
がわかると、幾何学的関係から物体Pまでの距離を求め
ることができる。
BACKGROUND OF THE INVENTION As shown in FIG. 4, the distance to an object P is generally determined based on the principle of triangulation. That is, in FIG. 4, light emitted from the light emitting element 11 passes through the projection lens 12 and hits the object P. The light reflected from the object P passes through the light receiving lens 13 and forms an image on the light receiving element 14. As the light receiving element 14, an element such as an image sensor, a position sensing stable device (P, S, D), G, C0D, etc. is used. The position of such an image on the light receiving element 14 and the baseline length interval d between the light emitting element 11 and the light receiving element 14
Once this is known, the distance to the object P can be determined from the geometric relationship.

発明が解決しようとする問題点 第3図に示すような距離測定システムでは物体Pまでの
距離L、すなわち1次元距離情報りしか得ることができ
ない。
Problems to be Solved by the Invention In the distance measuring system as shown in FIG. 3, only the distance L to the object P, that is, one-dimensional distance information, can be obtained.

本発明はかかる点に鑑みてなされたもので、簡単な構成
で2次元距離情報が得られるようにした析らたなシステ
ムを欅供することを目的としている。
The present invention has been made in view of these points, and an object of the present invention is to provide an analytical system that can obtain two-dimensional distance information with a simple configuration.

問題点を解決するための手段 本発明は上記の問題点を解決するために、発光素子とし
て、一点だけ光るものではなく、順次ある設定されたタ
イミングによって発光するもの(たとえばLEDアレイ
)を用いて発光素子の発光点と、受光素子の受光点の位
置を知るような構成にしたものである。
Means for Solving the Problems In order to solve the above problems, the present invention uses a light emitting element that does not emit light at just one point, but emit light sequentially at a certain set timing (for example, an LED array). The structure is such that the positions of the light emitting point of the light emitting element and the light receiving point of the light receiving element are known.

作用 本発明は上記した構成により、−列に配置された発光素
子において何番目の発光素子が発光したかという情報と
、その光が物体Pによって反射され受光素子のどこの点
に受光したかという情報を測定することにより、物体P
の位置を2次元の位置で測定できるようにしたものであ
る。
Function: With the above-described configuration, the present invention provides information on which light-emitting element among the light-emitting elements arranged in the - column emitted light, and information on which point on the light-receiving element the light was reflected by the object P and received. By measuring information, the object P
This allows the position of the object to be measured in two dimensions.

実施例 第1図に本発明の原理図を示す。第1図を用いて本発明
の原理について説明する。
Embodiment FIG. 1 shows a diagram of the principle of the present invention. The principle of the present invention will be explained using FIG.

第1図において1は一列に配列された発光素子でX、Y
座標の原点に置くものとする。また発光素子1は焦点距
離f1なる投射レンズ3の焦点距離f1に配置されてい
る。また、受光素子2はX、Y座標のX軸よりdだけY
軸方向に離れた位置に、しかも発光素子1と平行に配置
されている。また受光素子2は受光レンズ4の焦点距離
f2の位置に配置されている。物体はPで表わしその座
標をP(xo、Yo)とする。
In Figure 1, 1 is a light emitting element arranged in a row, X, Y.
It shall be placed at the origin of the coordinates. Further, the light emitting element 1 is arranged at a focal length f1 of the projection lens 3. In addition, the light receiving element 2 is
It is arranged at a position apart in the axial direction and parallel to the light emitting element 1. Further, the light receiving element 2 is arranged at a position of the focal length f2 of the light receiving lens 4. The object is represented by P and its coordinates are P(xo, Yo).

上記の様な構成において、発光素子1の中心からDyだ
け離れた点より発光した光は投射レンズ3を通って物体
Pに到達する。物体Pでは拡散反射するものとしてその
反射光の一部は受光レンズ4を通り受光素子2の中心か
らSyだけ離れた点に像を結ぶものとする。
In the above configuration, light emitted from a point Dy apart from the center of the light emitting element 1 passes through the projection lens 3 and reaches the object P. It is assumed that the object P diffusely reflects the light, and a part of the reflected light passes through the light-receiving lens 4 and forms an image at a point separated by Sy from the center of the light-receiving element 2.

この場合、幾何学的関係から次の2式が成立する。In this case, the following two equations hold true from the geometrical relationships.

(1)、(2)より (3) 、 (4)式より、基線長d、投射レンズ3お
よび受光レンズ4の焦点距離f1.f2は既知の定数で
あり、発光点の位置数と受光点の位置S7が測定できれ
ば、物体Pの位置xO+ xOを求めることができる。
From (1) and (2), from equations (3) and (4), the baseline length d, the focal length f1 of the projection lens 3 and the light receiving lens 4. f2 is a known constant, and if the number of positions of the light emitting points and the position S7 of the light receiving points can be measured, the position xO+xO of the object P can be determined.

従って発光点の位置Dyを適当な手段を用いて変えるこ
とにより、X、Y平面上の物体Pの位置を求めることが
できる。この様子を第2図に示す。
Therefore, by changing the position Dy of the light emitting point using appropriate means, the position of the object P on the X, Y plane can be determined. This situation is shown in FIG.

第2図において第1図と同じものは同じ記号で示す。物
体Pと別な物体〆に対して、発光素子1の中心からD3
.′だけ離れた点の光が反射するものとすれば、その光
は受光素子2の中心よりqの点に受光したものとすれば
、(3) 、 (4)式にDy−=Dy’、 Sy−S
y’の値を代入すれば物体P′の座標xo/ 、 Yo
’が求まる。
In FIG. 2, the same parts as in FIG. 1 are indicated by the same symbols. D3 from the center of the light emitting element 1 with respect to the object P and another object
.. If it is assumed that the light from a point distant by ' is reflected, and if the light is received at a point q from the center of the light receiving element 2, then in equations (3) and (4), Dy-=Dy', Sy-S
By substituting the value of y', the coordinates of the object P' are xo/, Yo
' is found.

このように受光素子10発光点の距離Dyを次々に変え
ることにより、それぞれに対応した物体Pの位置を求め
ることができる。
By successively changing the distance Dy of the light emitting point of the light receiving element 10 in this way, the position of the object P corresponding to each can be determined.

第3図に本発明の原理を用いた一実施例を示す。FIG. 3 shows an embodiment using the principle of the present invention.

第3図において第1図と同じものは同じ記号で示す。第
3図において発光素子1は一列に配列された素子でよく
、LEDアレイ、レーザーアレイ等が考えられる。また
発光素子10波長としては、背景光の影響を少なくする
ために近赤外線、赤外線の波長のものがよい。受光素子
2としては固体撮像素子、イメージ・スキャナー、ポジ
ション・センサ(P、S、D )等が考えられる。第3
図において5は受光素子2からの出力をマイクロプロセ
ッサアに送るためのA/D変換回路、6は物体PのXY
座標を表示する表示装置、8はマイクロプロセンサ7の
命令で発光素子1を順次発光させるためのスキャナー及
び駆動回路である。第3図の実施例の動作について簡単
に説明する。
In FIG. 3, the same parts as in FIG. 1 are indicated by the same symbols. In FIG. 3, the light emitting elements 1 may be elements arranged in a line, such as an LED array or a laser array. Further, the wavelength of the light emitting element 10 is preferably a wavelength of near infrared rays or infrared rays in order to reduce the influence of background light. As the light receiving element 2, a solid-state image sensor, an image scanner, a position sensor (P, S, D), etc. can be considered. Third
In the figure, 5 is an A/D conversion circuit for sending the output from the light receiving element 2 to the microprocessor, and 6 is the XY of the object P.
A display device 8 for displaying coordinates is a scanner and a drive circuit for sequentially causing the light emitting elements 1 to emit light according to instructions from the microprocessor sensor 7. The operation of the embodiment shown in FIG. 3 will be briefly explained.

マイクロプロセッサ7の命令によって発光素子1の中心
から〜離れた点が発光する。その光は物体Pで反射され
受光素子2の中心から〜離れた点で受光する。マイクロ
プロセッサ7fdこのDy、syの測定値を用いて(3
) 、 (4)式から計算し物体PのXY座標xo、Y
oを表示装置6に表示する。
In response to instructions from the microprocessor 7, points away from the center of the light emitting element 1 emit light. The light is reflected by the object P and received at a point ~ away from the center of the light receiving element 2. The microprocessor 7fd uses the measured values of Dy and sy (3
), calculated from equation (4), the XY coordinates of the object P xo, Y
o is displayed on the display device 6.

発明の効果 本発明は発光素子1を順次発光させることにより、物体
の一点Pまでの距離だけでなく、多くの物体までの距離
を測定することができる。また発光素子1は電子的にス
キャンするので高速に測定でき、しかも、装置全体の小
型、軽量化を図ることができる。
Effects of the Invention According to the present invention, by sequentially causing the light emitting elements 1 to emit light, it is possible to measure not only the distance to one point P of an object but also the distances to many objects. Furthermore, since the light emitting element 1 is scanned electronically, measurement can be performed at high speed, and the entire device can be made smaller and lighter.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明一実施例による測距装置の原理図、第2
図は本発明を補足する原理図、第3図は本発明の一実施
例の構成図、第4図は従来の装置の構成図である。 1・・・・・・発光素子、2・・・・・・受光素子、3
・・・・・・投射レンズ、4・・・・・受光レンズ、5
・・・・・・VD変換回路、6 ・・・・表示装置、7
・・・・・・マイクロプロセッサ、8・・・・・スキャ
ナー及び駆動回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1、
f−一−ぐたt、) 第  l  図                  
           J・−一社身γしンス゛4−i
jr*Lンズ γ 第  2rI!J
FIG. 1 is a principle diagram of a distance measuring device according to an embodiment of the present invention, and FIG.
The drawings are principle diagrams supplementing the present invention, FIG. 3 is a block diagram of an embodiment of the present invention, and FIG. 4 is a block diagram of a conventional device. 1... Light emitting element, 2... Light receiving element, 3
...Projection lens, 4...Receiving lens, 5
...VD conversion circuit, 6 ...Display device, 7
...Microprocessor, 8...Scanner and drive circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person1,
Figure l
J・-Ichisha body gamma Shinsu 4-i
jr*L's γ 2nd rI! J

Claims (1)

【特許請求の範囲】[Claims] 所定の基線間隔を隔てて発光手段と受光手段とを設け、
上記発光手段として上記基線に平行な一連に配列された
発光素子と、上記受光手段として受光位置の検出できる
受光素子とを備え、発光素子を時系列的に順次発光する
ことによりこの時得られた時系列的出力を用いて演算す
ることにより物体距離の検出を行なうことを特徴とする
測距装置。
A light emitting means and a light receiving means are provided at a predetermined baseline interval,
The light-emitting means includes light-emitting elements arranged in a series parallel to the base line, and the light-receiving means includes a light-receiving element whose light-receiving position can be detected, and the light-emitting elements sequentially emit light in a time series. A distance measuring device characterized by detecting an object distance by calculating using time-series output.
JP2693385A 1985-02-14 1985-02-14 Range finder Pending JPS61186813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2693385A JPS61186813A (en) 1985-02-14 1985-02-14 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2693385A JPS61186813A (en) 1985-02-14 1985-02-14 Range finder

Publications (1)

Publication Number Publication Date
JPS61186813A true JPS61186813A (en) 1986-08-20

Family

ID=12206955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2693385A Pending JPS61186813A (en) 1985-02-14 1985-02-14 Range finder

Country Status (1)

Country Link
JP (1) JPS61186813A (en)

Similar Documents

Publication Publication Date Title
TWI251769B (en) Position-detecting device
US4209254A (en) System for monitoring the movements of one or more point sources of luminous radiation
NO164946C (en) OPTO-ELECTRONIC SYSTEM FOR EXACTLY MEASURING A FLAT GEOMETRY.
US20070132742A1 (en) Method and apparatus employing optical angle detectors adjacent an optical input area
JP3072779B2 (en) Tilt angle detector
US6907672B2 (en) System and method for measuring three-dimensional objects using displacements of elongate measuring members
CN107782354B (en) Motion sensor detection system and method
GB1513380A (en) Position indicating system
JPS6262908U (en)
JPS61186813A (en) Range finder
JPS61104202A (en) Optical displacement meter
JPS6132401Y2 (en)
JPH05333152A (en) Inclination measuring device
JPS61165643A (en) Gas measurement and alarm device
JPS6281514A (en) Radius of curvature gauge
JPH07128013A (en) Optical position detector
IT8948505A1 (en) OPTICAL SENSOR.
JPH04145306A (en) Photosensor
JP2001331264A (en) Optical position detecting device and optical position detecting method
JPH01124019A (en) Three-dimensional coordinate specifying device
JPS61286709A (en) Apparatus for measuring outer diameter
JPH0372208A (en) Angle measuring apparatus
JPS62179605A (en) Normal direction detecting sensor
JPS5619456A (en) Ball speed detector
RU43358U1 (en) THREE-ORDER OPTICAL MOVEMENT SENSOR