JPS61186474A - Multi-source vapor deposition device - Google Patents

Multi-source vapor deposition device

Info

Publication number
JPS61186474A
JPS61186474A JP2569785A JP2569785A JPS61186474A JP S61186474 A JPS61186474 A JP S61186474A JP 2569785 A JP2569785 A JP 2569785A JP 2569785 A JP2569785 A JP 2569785A JP S61186474 A JPS61186474 A JP S61186474A
Authority
JP
Japan
Prior art keywords
source
evaporation
heater
film thickness
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2569785A
Other languages
Japanese (ja)
Inventor
Tetsuro Endo
遠藤 鉄郎
Takuya Yoshimi
琢也 吉見
Masayuki Wakitani
雅行 脇谷
Kiyotake Sato
佐藤 精威
Terunobu Miura
三浦 照信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2569785A priority Critical patent/JPS61186474A/en
Publication of JPS61186474A publication Critical patent/JPS61186474A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect an evaporation rate without the invasion from the other vapor source by shielding the sides of the prescribed vapor source out of the plural vapor sources and a film thickness detector for said source and providing a heater between a shielding member for the same and a material to be deposited by evaporation. CONSTITUTION:The sides of one vapor deposition source 2 and film thickness detector 4 are covered by the cylindrical shielding member 9 in a 2-source vapor deposition device for ZnS and Mn, etc. A heater 10 in a meshed state, etc. is provided to the top end of the member 9. The direct invasion of the ZnS, etc. evaporated from the source 1 to the detector 4 is thus obviated in the stage of vapor deposition. The material reflected from the substrate is reevaporated by the heater 10. The detector 4 is therefore capable of detecting exactly the evaporating material of Mn, etc. from the vapor source 2 without being affected by the source 1. The heater temp. is preferably kept at >=300 deg.C.

Description

【発明の詳細な説明】 〔概 要〕 多源蒸着装置において、特に昇華性物質の蒸発源を含む
場合、該蒸発源からの蒸発物質が他の蒸発源及びそれに
対応する膜厚検出器へ回シ込むのを防止するもので、そ
のため、所定の蒸発源と該蒸発源に対応する膜厚検出器
の側方を覆うしや蔽部材を設けて直接の回シ込みを防止
するとともに、該しゃ蔽部材と被蒸着部材との間にヒー
タを設けて該部材からの反射物質を再蒸発させるように
している。
[Detailed Description of the Invention] [Summary] In a multi-source evaporation apparatus, especially when it includes an evaporation source of a sublimable substance, the evaporation material from the evaporation source is routed to other evaporation sources and the corresponding film thickness detector. Therefore, a shield member is provided to cover the sides of a predetermined evaporation source and the film thickness detector corresponding to the evaporation source to prevent direct evaporation. A heater is provided between the shielding member and the member to be deposited to reevaporate the reflective material from the member.

〔産業上の利用分野〕[Industrial application field]

本発明は多源蒸着装置に関するものである。 The present invention relates to a multi-source vapor deposition apparatus.

基板等の被蒸着部材の表面に多源蒸着法により多源蒸着
を行う場合、複数の蒸発源を所定の配置で設け、各蒸発
源の蒸発物質をそれぞれ蒸発させてこれを被蒸着部材の
表面に蒸着させている。
When performing multi-source evaporation on the surface of a member to be evaporated such as a substrate by a multi-source evaporation method, a plurality of evaporation sources are provided in a predetermined arrangement, and the evaporated substance of each evaporation source is evaporated and transferred to the surface of the member to be evaporated. It is vapor-deposited.

〔従来の技術〕[Conventional technology]

この場合、従来は、各蒸発源にそれぞれ対応する水晶振
動子式等の膜厚検出器を設け、該各膜厚検邑器により対
応する蒸発源の蒸発速度の制御を行っている。
In this case, conventionally, a film thickness detector such as a crystal oscillator type is provided for each evaporation source, and the evaporation rate of the corresponding evaporation source is controlled by each film thickness detector.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、この従来の構造では、ある蒸発源からの蒸発
物質が他の蒸発源の膜厚検出器に回シ込み正確な検知が
できなかった。またこの回シ込みは、特にZnS等の昇
華で蒸発する物質の場合直接の回シ込みの他に被蒸着部
材からの反射や他の蒸発源からの熱による再蒸発が多い
ため特に問題となる。また膜厚検出器として外部から検
出する方式の環子吸光式を用いることも考えられるが、
これは精度の点で水晶振動子式等よシや\劣シ、シかも
金属元素のみしか検知できない欠点があシ、得策でない
However, with this conventional structure, the evaporated material from one evaporation source flows into the film thickness detector of another evaporation source, making accurate detection impossible. In addition, this double bleed is particularly problematic for substances that evaporate by sublimation, such as ZnS, because in addition to the direct double bleed, there are many reflections from the member to be evaporated and re-evaporation due to heat from other evaporation sources. . It is also possible to use a ring absorption method that detects externally as a film thickness detector.
This is not a good idea as it has the disadvantage that it is inferior to the crystal oscillator type in terms of accuracy and can only detect metal elements.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述の問題点を解決することのできる多源蒸着
装置を提供するもので、図面に示すように、しやへい部
材9とヒータ10とを備えている。
The present invention provides a multi-source vapor deposition apparatus capable of solving the above-mentioned problems, and is equipped with a shielding member 9 and a heater 10, as shown in the drawings.

しや蔽部材9は所定の蒸発源2と該蒸発源2に対応する
膜厚検出器4の側方を覆い、ヒータ10はしや蔽部材9
と被蒸着部材7の間に設けられている。
The shield member 9 covers the sides of a predetermined evaporation source 2 and the film thickness detector 4 corresponding to the evaporation source 2, and the heater 10
and the member 7 to be vapor-deposited.

〔作 用〕[For production]

しや蔽部材9が蒸発源2と膜厚検出器4の側方を覆って
いるので、蒸発源1から蒸発する物質が膜厚検出器4に
直接回シ込むことはない。また、しや蔽部材9と被蒸着
部材70間にヒータ10が設けられているため、蒸発源
1からの蒸発物質が被蒸着部材7で反シしたシしてもこ
れはヒータ1?により再蒸発せしめられて膜厚検出器4
に回シ込むことはない。
Since the shielding member 9 covers the sides of the evaporation source 2 and the film thickness detector 4, the substance evaporated from the evaporation source 1 does not directly flow into the film thickness detector 4. Further, since the heater 10 is provided between the shielding member 9 and the member to be evaporated 70, even if the evaporated substance from the evaporation source 1 is evaporated on the member to be evaporated 7, it is not the heater 1? The film thickness detector 4
It never gets stuck.

〔実施例〕〔Example〕

以下、図面に関連して本発明の詳細な説明する。 The invention will now be described in detail in conjunction with the drawings.

図面は基板表面にZnSとMnの2原酒着を行ってKL
発光層を形成する多源蒸着装置の、正面概要図でわる。
The drawing shows KL with ZnS and Mn deposited on the surface of the substrate.
This is a schematic front view of a multi-source vapor deposition apparatus that forms a light-emitting layer.

図中、1はZnSの蒸発源、2はMnの蒸発源、3は蒸
発源1に対応する膜厚検出器、4は蒸発源2に対応する
膜厚検出器で、これらはチャンバ5内に設けられている
。6はチャンバ5の排気口である。被蒸着部材である基
板7は、チャンバ5同に図示のようにセットされ、基板
加熱源8により加熱される。
In the figure, 1 is a ZnS evaporation source, 2 is a Mn evaporation source, 3 is a film thickness detector corresponding to evaporation source 1, and 4 is a film thickness detector corresponding to evaporation source 2, which are installed in chamber 5. It is provided. 6 is an exhaust port of the chamber 5. A substrate 7, which is a member to be evaporated, is set in the chamber 5 as shown in the figure, and heated by a substrate heating source 8.

本発明では、蒸発源2及び膜厚検出器4の側方を覆う円
筒状のしゃ蔽部材9を設けるとともに、該しゃ蔽部材9
の上端部(一般的にはしや蔽部材9と基板7の間)にヒ
ータ10を設けている。ヒータ10は、メツシュ状をな
しておシ、リード線11によりミ源と接続されている このように、蒸発源2と該蒸発源2に対応する膜厚検出
器4はしや蔽部材9により側方を覆われているため、蒸
着時に蒸発源1から蒸発して周囲に飛び出す物質(Zn
S )が直接膜厚検出器に回シ込むことはない。また、
この周囲に飛び出すZnSは昇華性物質であるため、基
板7が基板加熱源8により加熱されている場合、該昇華
性物質には基板7からの反射が起るが、この反射した物
質はヒータ10により再蒸発せしめられる。従って、膜
厚検出器4は、蒸発源1の影響を受けずに蒸発源2から
の蒸発物(Mn )を正確に検知することができる。こ
の検知は、蒸発源2の蒸発速度が小さく正確な検知を必
要とする場合、特に効果的に行われる。また、本例のよ
うにヒータlOをメツシュ状にすることにより、蒸発速
度を制限する効果が得られる。なお、メツシュ状ヒータ
を用いる場合、該メツシュ状ヒータの温度は300℃以
上とすることが望ましい。これは、ZnSの場合、基板
への蒸着速度が基板温度300℃以上では大きく低下し
400℃以上ではほとんど付着しないためである。さら
に、本例のように、ZnSとMnの2原酒着の場合Mn
蒸発源2の側にじゃ蔽部材9.モータ10を設ければ、
Muの硫化防止を図って凪の蒸発速度を安定させる効果
が得られる。
In the present invention, a cylindrical shielding member 9 that covers the sides of the evaporation source 2 and the film thickness detector 4 is provided, and the shielding member 9
A heater 10 is provided at the upper end (generally between the shield member 9 and the substrate 7). The heater 10 has a mesh shape and is connected to the source by a lead wire 11. In this way, the evaporation source 2 and the film thickness detector 4 corresponding to the evaporation source 2 are connected to each other by the shield member 9. Since the sides are covered, the material (Zn) that evaporates from the evaporation source 1 during vapor deposition and flies out
S) does not directly enter the film thickness detector. Also,
Since the ZnS that jumps out around this is a sublimable substance, when the substrate 7 is heated by the substrate heating source 8, the sublimable substance is reflected from the substrate 7, but this reflected substance is absorbed by the heater 10. It is re-evaporated by Therefore, the film thickness detector 4 can accurately detect the evaporated matter (Mn) from the evaporation source 2 without being influenced by the evaporation source 1. This detection is particularly effective when the evaporation rate of the evaporation source 2 is low and requires accurate detection. Furthermore, by forming the heater IO in a mesh shape as in this example, the effect of limiting the evaporation rate can be obtained. In addition, when using a mesh-like heater, it is desirable that the temperature of the mesh-like heater is 300° C. or higher. This is because, in the case of ZnS, the deposition rate on the substrate decreases significantly when the substrate temperature is 300° C. or higher, and it hardly adheres when the substrate temperature is 400° C. or higher. Furthermore, as in this example, in the case of two raw materials of ZnS and Mn, Mn
A shielding member 9 is placed on the side of the evaporation source 2. If the motor 10 is provided,
The effect of stabilizing the evaporation rate of the calm by preventing Mu from being sulfurized can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、多源蒸着に際して
蒸発速度を小さくして蒸発させる物質が存在しても、他
の蒸発源からの回シ込みをなくして蒸発速度を検知でき
るため、再現性の良い蒸着膜形成が可能である。
As described above, according to the present invention, even if there is a substance that is evaporated by reducing the evaporation rate during multi-source evaporation, the evaporation rate can be detected by eliminating recirculation from other evaporation sources. It is possible to form a deposited film with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例の多源蒸着装置の概要を示す正面
図である。 図中、 1.2は蒸発源 3.4は膜厚検出器 5はチャンバ 7は基板(被蒸着部材) 8は基板加熱源 9はしや腋部材 10はヒータである。
The drawing is a front view showing an outline of a multi-source vapor deposition apparatus according to an embodiment of the present invention. In the figure, 1.2 is an evaporation source 3.4 is a film thickness detector 5, a chamber 7 is a substrate (a member to be evaporated), 8 is a substrate heating source 9, and an armpit member 10 is a heater.

Claims (3)

【特許請求の範囲】[Claims] (1)複数の蒸発源により被蒸着部材への多源蒸着を行
うように構成され、該各蒸発源に対応する蒸発速度制御
用膜厚検出器を有する装置であって、前記複数の蒸発源
のうちの所定の蒸発源と該蒸発源に対応する前記膜厚検
出器の側方を覆うしゃ蔽部材と、該しゃ蔽部材と前記被
蒸着部材の間に設けられたヒータとを備えたことを特徴
とする多源蒸着装置。
(1) An apparatus configured to perform multi-source evaporation on a member to be evaporated using a plurality of evaporation sources, and having a film thickness detector for controlling evaporation rate corresponding to each of the evaporation sources, the apparatus comprising: A shielding member that covers the side of a predetermined evaporation source and the film thickness detector corresponding to the evaporation source, and a heater provided between the shielding member and the member to be deposited. A multi-source evaporation device featuring:
(2)ヒータがメッシュ状である特許請求の範囲第1項
記載の多源蒸着装置。
(2) The multi-source vapor deposition apparatus according to claim 1, wherein the heater has a mesh shape.
(3)メッシュ状ヒータの設定温度が300℃以上であ
る特許請求の範囲第2項記載の多源蒸着装置。
(3) The multi-source vapor deposition apparatus according to claim 2, wherein the set temperature of the mesh heater is 300° C. or higher.
JP2569785A 1985-02-13 1985-02-13 Multi-source vapor deposition device Pending JPS61186474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2569785A JPS61186474A (en) 1985-02-13 1985-02-13 Multi-source vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2569785A JPS61186474A (en) 1985-02-13 1985-02-13 Multi-source vapor deposition device

Publications (1)

Publication Number Publication Date
JPS61186474A true JPS61186474A (en) 1986-08-20

Family

ID=12172981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2569785A Pending JPS61186474A (en) 1985-02-13 1985-02-13 Multi-source vapor deposition device

Country Status (1)

Country Link
JP (1) JPS61186474A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971950A (en) * 1988-06-20 1990-11-20 Oji Paper Co., Ltd. Support sheet for thermal transfer image-receiving sheet and method of producing same
KR101224457B1 (en) * 2005-12-27 2013-01-22 엘지디스플레이 주식회사 Apparatus for depositing chemical layers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971950A (en) * 1988-06-20 1990-11-20 Oji Paper Co., Ltd. Support sheet for thermal transfer image-receiving sheet and method of producing same
KR101224457B1 (en) * 2005-12-27 2013-01-22 엘지디스플레이 주식회사 Apparatus for depositing chemical layers

Similar Documents

Publication Publication Date Title
CN107805783B (en) Evaporation source, evaporation equipment and evaporation control method
US6217212B1 (en) Method and device for detecting an incorrect position of a semiconductor wafer
JPS57189894A (en) Thermal recording material
KR20200017316A (en) Film forming rate monitoring apparatus and film forming apparatus
JPS61186474A (en) Multi-source vapor deposition device
US9905486B2 (en) Method for manufacturing organic EL display device, and film thickness measuring device
US4328763A (en) Vaporizer for vacuum deposition installations
US4406252A (en) Inductive heating arrangement for evaporating thin film alloy onto a substrate
US7339182B2 (en) Vacuum evaporator
GB1250740A (en)
JPS55122870A (en) Vacuum vapor deposition method
JPS62257047A (en) Hydrogen sensor
JPH0419302B2 (en)
JPH02204391A (en) Crucible for molecular beam source
CN107893211B (en) Film formation device
JP3095740B2 (en) Evaporator for organic compounds
KR101258252B1 (en) Apparatus for depositing chemical layers
SU370463A1 (en) METHOD OF THERMODYNAMIC CONTROL
JPH07116591B2 (en) Opaque thin film manufacturing method
US4382975A (en) Method for coating thin film alloy on a substrate utilizing inductive heating
KR20170056368A (en) Evaporation Source for Preventing Clogging
JPH09166501A (en) Temperature measuring device and temperature measuring method
JPH0619569Y2 (en) Molecular beam cell PBN crucible
JPS5842268B2 (en) Jyouchi Yakusouchi
SU418572A1 (en) METAL EVAPORATOR