JPS62257047A - Hydrogen sensor - Google Patents

Hydrogen sensor

Info

Publication number
JPS62257047A
JPS62257047A JP10059886A JP10059886A JPS62257047A JP S62257047 A JPS62257047 A JP S62257047A JP 10059886 A JP10059886 A JP 10059886A JP 10059886 A JP10059886 A JP 10059886A JP S62257047 A JPS62257047 A JP S62257047A
Authority
JP
Japan
Prior art keywords
film
glass substrate
vapor deposition
hydrogen
solid compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10059886A
Other languages
Japanese (ja)
Inventor
Tetsuya Kubo
久保 哲哉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hochiki Corp
Original Assignee
Hochiki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hochiki Corp filed Critical Hochiki Corp
Priority to JP10059886A priority Critical patent/JPS62257047A/en
Publication of JPS62257047A publication Critical patent/JPS62257047A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

PURPOSE:To enhance sensitivity and to minimize the irregularity of a characteristic between elements, in a hydrogen sensor constituted of a laminated structure of a catalytic metal and a solid compound, by forming the solid compound into a crystal film having a high orientation property with respect to a crystal surface of a predetermined index. CONSTITUTION:A clean glass substrate 1 is set to a vacuum vapor deposition apparatus and a WO3 powder is thrown in a vapor deposition source 4 to perform vapor deposition according to a resistance heating method until a predetermined film thickness is obtained. At this time, the crystal film of WO3 is formed by heating the glass substrate 1 to a predetermined temp. and, at the same time, the quality of the WO3-film vapor-deposited on the glass substrate 1 is controlled so as to have a high orientation property with respect to a crystal surface of a predetermined index, for example, a (001) surface. This can be realized by arranging the glass substrate 1 directly above the vapor deposition source. The WO3-film thus formed is annealed in oxygen gas and, subsequently, Pd is applied to the surface of the WO3-film formed on the glass substrate as a catalytic metal, for example, by sputtering.

Description

【発明の詳細な説明】 (産業上の利用分野〉 本発明は、触媒金属内に解離吸着した水素原子の還元作
用による固体化合物の光吸収量の変化を利用して水素又
は含水素化合物ガスを検出するようにした水素センサに
関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention utilizes changes in the amount of light absorbed by a solid compound due to the reduction action of hydrogen atoms dissociated and adsorbed within a catalyst metal to generate hydrogen or hydrogen-containing compound gas. The present invention relates to a hydrogen sensor configured to detect hydrogen.

(従来技術) 従来、この種の水素センサ゛としては、例えば第5図の
ものがある。
(Prior Art) Conventionally, as this type of hydrogen sensor, there is one shown in FIG. 5, for example.

第5図において、1はガラス基板であり、例えば請、外
線透過ガラスが使用される。ガラス基板1の上にはクロ
ミック材料として知られた例えば三酸化タングステンW
O3てなる固体化合物3が所定の厚さに蒸着等により形
成され、更に固体化合物2の表面に例えばパラジウムP
d等の触媒金属3を透明・目を損わないように所定の厚
さに蒸着等により形成している。
In FIG. 5, reference numeral 1 denotes a glass substrate, and for example, external ray transmitting glass is used. For example, tungsten trioxide W, which is known as a chromic material, is placed on the glass substrate 1.
A solid compound 3 consisting of O3 is formed to a predetermined thickness by vapor deposition, etc., and further, for example, palladium P is applied to the surface of the solid compound 2.
The catalyst metal 3 such as d is formed by vapor deposition or the like to a predetermined thickness so as to be transparent and not damage the eyes.

このような積層構造をもつ検出素子にあっては、水素ガ
スがないときには、固体化合物3を形成する三酸化タン
グステンW03自体が5つ薄い黄色を了しているが、第
6図に模式的に示すように、水素ガス1−12を含む雰
囲気の接触を受けると、水素原子1」が触媒金属3によ
りfP7離吸着されて三酸化タングステン〜■03てな
る固定化合物2の中に入り込み、還元作用によってl−
1x〜■03という青色の物質を生成し、水素ガスの温
度に応じて光吸収ωが増加するようになる。そこで、検
出素子の光吸収量の変化を透過光■の変化として検出す
るセンサ1溝造を股()ることてことで水素ガスを検知
づることか−Cさ゛る。
In a detection element with such a laminated structure, when there is no hydrogen gas, the five tungsten trioxide W03 forming the solid compound 3 turn pale yellow, which is schematically shown in Figure 6. As shown, when exposed to an atmosphere containing hydrogen gas 1-12, hydrogen atoms 1' are adsorbed by fP7 by the catalyst metal 3 and enter the fixed compound 2 consisting of tungsten trioxide~■03, causing a reducing action. by l-
A blue substance of 1x to 03 is produced, and the light absorption ω increases depending on the temperature of the hydrogen gas. Therefore, it is possible to detect hydrogen gas by using a sensor with a groove structure that detects changes in the amount of light absorbed by the detection element as changes in transmitted light.

(ざご明が解決しようとする問題点) しかしながら、このような従来の水素センサを常温で動
作させた場合には、例えば三酸化タンク、ステンWO・
、を使用した固体化合物の膜質としてどのようなものが
最適であるかがはっきりしていなかったため、常温での
検出感度が小さ過ぎたり、製造した素子の特性にバラ付
きを起こす等の問題が残されていた。
(The problem that Zagoaki is trying to solve) However, when such a conventional hydrogen sensor is operated at room temperature, for example, a trioxide tank, stainless steel WO,
Because it was not clear what kind of film quality was best for the solid compound using It had been.

(問題点を解決するための手段) 本発明は、このような従来の問題点に鑑みてなされたも
ので、常温状態で水素又は含水素化合物ガスに対りる検
出感度、即ち光吸収量の変化が大ぎく、11つ素子の!
lξt titのバライ」きも最小限に押えられるJ:
うにした膜v1の固体化合物を描えた水素センサを提供
することを目的とする。
(Means for Solving the Problems) The present invention has been made in view of the above-mentioned conventional problems. Big change, 11 elements!
Lξt tit's variation is kept to a minimum J:
The object of the present invention is to provide a hydrogen sensor in which a solid compound of a membrane v1 can be drawn.

この「I的を達成するため本発明に必っでは、三酸化タ
ングステン’VVO−鱒の固体化合物を結晶質の膜71
として蒸着により形成すると共に、この熊谷等により形
成するに際し、結晶膜か所定の指数の結晶面、例えば(
001)面で高い配向性をもつように条件をコント[1
−ルした素子構造を得るようにしたものである。
In order to achieve this objective, it is essential to the present invention to use a solid compound of tungsten trioxide'VVO-trout as a crystalline film 71.
In addition, when forming the crystal film by vapor deposition, the crystal film has a crystal plane of a predetermined index, for example (
The conditions were controlled to have high orientation on the [1
- A well-defined element structure is obtained.

(実施例) まず固体化合物として三酸化タングステンW O3、触
媒金属としてパラジウムPdを使用した本発明の水素セ
ンサの製造工程を説明する。
(Example) First, the manufacturing process of a hydrogen sensor of the present invention using tungsten trioxide W 2 O 3 as a solid compound and palladium Pd as a catalyst metal will be described.

第5図に示したにうに本発明の検出素子は、ガラス基板
1、固体化合物2及び触媒金属3の積層構造をbつこと
がら、より”所定の大きさをもった清浄なノコラス塁仮
を第1図に示すように真空蒸着装置にセットする。次に
、真空蒸着装置の蒸着源4の中にWO3扮末を投入して
抵抗加熱法等により所定の膜圧が得られるまで蒸着を行
なう。
As shown in FIG. 5, the detection element of the present invention has a laminated structure of a glass substrate 1, a solid compound 2, and a catalytic metal 3, and has a clean Nocolas base having a predetermined size. Set in a vacuum evaporation apparatus as shown in Figure 1.Next, WO3 powder is introduced into the evaporation source 4 of the vacuum evaporation apparatus, and evaporation is performed by resistance heating or the like until a predetermined film pressure is obtained. .

このガラス基板1に対するWO3膜の蒸着形成に際し、
本発明にあっては、ガラス基板1の温度を所定温度まで
加熱することでWO3の結晶膜を形成し、同時にガラス
基板1上に蒸着されたWO3の膜質が所定の指数の結晶
面、例えば(001)面について高い配向性をもつよう
に形成する。
When forming the WO3 film on the glass substrate 1 by vapor deposition,
In the present invention, a crystalline film of WO3 is formed by heating the glass substrate 1 to a predetermined temperature, and at the same time, the film quality of the WO3 deposited on the glass substrate 1 has a crystal plane with a predetermined index, for example ( 001) is formed to have a high degree of orientation.

この(OO’l)面に高い配向性をもつ膜質を得るため
には、例えば第1図に示ずように蒸着源4の直上にガラ
ス基板1を配置することにより実現することができる。
In order to obtain a film having high orientation on the (OO'l) plane, it can be achieved, for example, by placing the glass substrate 1 directly above the vapor deposition source 4 as shown in FIG.

このような蒸着によりガラス基板1上に形成されたWO
−膜を酸素ガス中においてアニール処理を行なう。
WO formed on the glass substrate 1 by such vapor deposition
- annealing the film in oxygen gas;

続いて、ガラス基板上に形成された〜vQ3膜の表面に
触媒金属としてパラジウムPdを例えばスパッタにより
形成づ゛る。このとき素子の透明性を損わないように形
成する。
Subsequently, palladium Pd is formed as a catalyst metal on the surface of the ~vQ3 film formed on the glass substrate by, for example, sputtering. At this time, it is formed so as not to impair the transparency of the element.

第2図は上記の製造工程で得られた〜■03肱のX線回
折データを実線で示す。尚、第2図には第1図に示した
ガラス基板1に対するWO3膜の蒸着と同時に蒸盾源4
の直上から横方向に所定距離1−Jらした位置に他のガ
ラス基板1aを配置し、このガラス単板1aに形成され
たWO3膜についてのX線回折データを比較例として点
線で承り。
FIG. 2 shows the X-ray diffraction data of ~■03 elbow obtained in the above manufacturing process as a solid line. Incidentally, FIG. 2 shows an evaporation shield source 4 at the same time as the WO3 film is deposited on the glass substrate 1 shown in FIG.
Another glass substrate 1a is placed at a position a predetermined distance 1-J laterally from directly above the glass substrate 1a, and the X-ray diffraction data for the WO3 film formed on this glass single plate 1a is shown by the dotted line as a comparative example.

この第2図のX線回折データから明らかなように、蒸着
源4の直上にガラス基板1を配置して膜を形成した本発
明のWO3膜の結晶(74造におっては、実線で承りよ
うに、回折角20=23.3゜イ・1近となる(001
)面で相対的に大きな回折強度のピーク値が得られてお
り、蒸着源4の直上にガラス基板1を配置することで(
001)面で高い配向゛1′Uをもった〜■03の結晶
膜を形成できることかMr 認されている。一方、蒸着
源4の直上から横方向に所定距離りずらして配置したガ
ラス基板1aに形成されるWO3膜については、点線で
示すように(001)面での回折強度は相対的にそれ稈
高くなく、この点線で示す比較データからも蒸着源4の
直上にガラス基板1を配置することで(001)而で高
い配向性をもつWO3の結晶膜を形成できることが確認
される。
As is clear from the X-ray diffraction data in FIG. As such, the diffraction angle 20 = 23.3゜i・1 (001
) A relatively large peak value of diffraction intensity was obtained at the plane (
It has been confirmed that it is possible to form crystal films of 001) to 03 with high orientation 1'U. On the other hand, for the WO3 film formed on the glass substrate 1a placed a predetermined distance laterally from directly above the vapor deposition source 4, the diffraction intensity on the (001) plane is relatively high as shown by the dotted line. Moreover, it is confirmed from the comparative data shown by the dotted line that by placing the glass substrate 1 directly above the vapor deposition source 4, it is possible to form a WO3 crystal film having a high (001) orientation.

第3図は1−記の製造方法で形成された(001)面で
高い配向f1をもつ結晶′jqWO3膜を備えた水素セ
ンサの水素ガス接触時における光吸収量の変化を、配向
・Pi/′考慮せずに形成したWO3膜を右するセンサ
(比較例)と対比して示したグラフ図である。
FIG. 3 shows the change in the amount of light absorption upon contact with hydrogen gas in a hydrogen sensor equipped with a crystalline 'jqWO3 film with a high orientation f1 on the (001) plane formed by the manufacturing method described in 1-1 above. It is a graph diagram showing a WO3 film formed without considering '' in comparison with the sensor on the right (comparative example).

ここで横軸は検出素子に対する透過光の光波長λを取り
、縦軸には光吸収ff1ODをとっている。
Here, the horizontal axis represents the optical wavelength λ of the transmitted light to the detection element, and the vertical axis represents the optical absorption ff1OD.

この第3図から明らかなように、(001)面に強い配
向性をもった結晶質WO3膜を備えた本発明の水素セン
1ノにあっては、水素ガスの接触にJ、る光吸収量の変
化T2か配向・Iffを考慮しない素子構造に比べ実線
で示すように充分大さな値が得られ、常温における水素
ガスに対する検出窓1哀が飛躍的に高められることが確
認された。
As is clear from FIG. 3, in the hydrogen sensor 1 of the present invention, which is equipped with a crystalline WO3 film with strong orientation in the (001) plane, light absorption of As shown by the solid line, a sufficiently large value was obtained compared to an element structure in which the amount change T2 or the orientation/Iff was not considered, and it was confirmed that the detection window 1 for hydrogen gas at room temperature was dramatically increased.

尚、上記の実施例にあっては、触媒金属としてパラジウ
ムPd 、固体化合物として三酸化タングステンWO3
を例(ことるものであったが、このイ也に触媒金属とし
ては白金ptを使用することがでさ、また固体化合物と
しては三酸化モリブデンM003、二酸化チタンTiO
2、水酸化イリジウムI r (Oti) n 、五酸
化バナジウムV2O5等のクロミック月利を用いても良
く、これらのクロミック材料についてもガラス基板上に
蒸着形成する際に所定の指数の結晶面に高い配向性をも
たけることで水素ガスが接触したときの検出感度を飛躍
的に高めることができる。また、上記の実施例は水素ガ
スの接触による光吸収量の変化を例にとるものであった
が、本発明の水素センサはこの他にアンモニアガスNH
3、硫化水素ガス上12S1シランガスs 1l−14
等の含水素化合物ガスの接触についても同様に光吸収量
が変化して常温動作にJ:るガス検出ができる。
In the above example, palladium Pd was used as the catalyst metal, and tungsten trioxide WO3 was used as the solid compound.
For example, platinum PT can be used as the catalyst metal, and molybdenum trioxide M003, titanium dioxide TiO3 can be used as the solid compound.
2. Chromic materials such as iridium hydroxide Ir(Oti)n, vanadium pentoxide V2O5, etc. may be used, and when these chromic materials are deposited on a glass substrate, high By increasing the orientation, the detection sensitivity when hydrogen gas comes into contact can be dramatically increased. In addition, although the above embodiment takes as an example the change in the amount of light absorption due to contact with hydrogen gas, the hydrogen sensor of the present invention also uses ammonia gas NH.
3. Hydrogen sulfide gas 12S1 silane gas s 1l-14
In the case of contact with a hydrogen-containing compound gas such as, the amount of light absorption changes in the same way, allowing gas detection to operate at room temperature.

(発明の効果) 以上説明してきたように本発明によれば、水素または含
水素化合物ガスを解離吸着する触媒金属と、この触媒金
属の中の水素原子により還元される固体化合物との積層
構造を備え、固体化合物の還元による光吸収量の変化を
検出する水素センサにおいて、固体化合物として所定の
指数の結晶面について高い配向性をもった結晶として形
成するようにしたため、水素または含水素化合物ガスが
接触したときの光吸収量の増大により透過光量を大きく
減少させて常温においても高い検出感度を実現すること
ができ、また検出感度を高めるために結晶固体化合物膜
の配向性を高める蒸着等による形成条イ1が定まってい
るため、製造された素子の特性のバラ突きを起こすこと
なく安定した光吸収量の変化を1ワることがてきる。
(Effects of the Invention) As explained above, according to the present invention, a layered structure of a catalyst metal that dissociates and adsorbs hydrogen or hydrogen-containing compound gas and a solid compound that is reduced by hydrogen atoms in this catalyst metal is realized. In a hydrogen sensor that detects changes in light absorption due to reduction of a solid compound, the solid compound is formed as a highly oriented crystal with respect to a crystal plane with a predetermined index, so hydrogen or hydrogen-containing compound gas is By increasing the amount of light absorbed upon contact, it is possible to significantly reduce the amount of transmitted light and achieve high detection sensitivity even at room temperature.Also, in order to increase detection sensitivity, formation by vapor deposition etc. that increases the orientation of the crystalline solid compound film is possible. Since the line 1 is fixed, it is possible to stably change the amount of light absorption by 1 without causing variations in the characteristics of the manufactured device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は(001)面で配向性を高めるためのWO3膜
の蒸着状態を示した説明図、第2図は本発明の結晶質W
O3膜のX線回折データを比較例と共に示したグラフ図
、第3図は本発明の結晶W03を備えた水素センサの光
吸収量を比較例と共に示したグラフ図、第4図は従来の
素子構造の説明図、第5図は水素ガスが接触したときの
動作状態を模式的に示した説明図である。 1ニガラス基板 2:固体化合物(WO3膜) 3:触媒金属(Pd膜) 4:蒸着源
FIG. 1 is an explanatory diagram showing the state of evaporation of a WO3 film to improve orientation on the (001) plane, and FIG.
A graph showing the X-ray diffraction data of an O3 film together with a comparative example, FIG. 3 is a graph showing the amount of light absorption of a hydrogen sensor equipped with the crystal W03 of the present invention together with a comparative example, and FIG. 4 shows a conventional element. An explanatory diagram of the structure, FIG. 5 is an explanatory diagram schematically showing the operating state when hydrogen gas comes into contact with it. 1 Glass substrate 2: Solid compound (WO3 film) 3: Catalyst metal (Pd film) 4: Vapor deposition source

Claims (1)

【特許請求の範囲】 水素又は含水素化合物ガスを解離吸着する触媒金属と、
該触媒金属中の水素原子により還元される固体化合物と
の積層構造を備え、前記固体化合物の還元による光吸収
量の変化を検出する水素センサに於いて、 前記固体化合物として、所定の指数の結晶面について高
い配向性をもった結晶膜として形成したことを特徴とす
る水素センサ。
[Claims] A catalytic metal that dissociates and adsorbs hydrogen or hydrogen-containing compound gas;
In a hydrogen sensor that has a layered structure with a solid compound that is reduced by hydrogen atoms in the catalyst metal and detects a change in light absorption amount due to the reduction of the solid compound, the solid compound is a crystal with a predetermined index. A hydrogen sensor characterized by being formed as a crystalline film with high plane orientation.
JP10059886A 1986-04-30 1986-04-30 Hydrogen sensor Pending JPS62257047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10059886A JPS62257047A (en) 1986-04-30 1986-04-30 Hydrogen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10059886A JPS62257047A (en) 1986-04-30 1986-04-30 Hydrogen sensor

Publications (1)

Publication Number Publication Date
JPS62257047A true JPS62257047A (en) 1987-11-09

Family

ID=14278301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10059886A Pending JPS62257047A (en) 1986-04-30 1986-04-30 Hydrogen sensor

Country Status (1)

Country Link
JP (1) JPS62257047A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086265A2 (en) * 2000-05-05 2001-11-15 Midwest Research Institute H02 doped w03, ultra-fast, high-sensitive hydrogen sensors
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
US6723566B2 (en) 2000-05-05 2004-04-20 Midwest Research Institute Pd/Ni-WO3 anodic double layer gasochromic device
JP2006258595A (en) * 2005-03-17 2006-09-28 Jfe Steel Kk Hydrogen microprinting method
JP2007121013A (en) * 2005-10-26 2007-05-17 Japan Atomic Energy Agency Optical hydrogen gas detection element, its manufacturing method, and optical hydrogen gas detection device and method using element
US7419635B2 (en) 2000-05-05 2008-09-02 Midwest Research Institute Pd/V2O5 device for colorimetric H2 detection
US8084265B2 (en) 2001-05-05 2011-12-27 Alliance for Sustianable Energy, LLC Method and Pd/V2 O5 device for H2 detection

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209149A (en) * 1984-03-31 1985-10-21 Nippon Sheet Glass Co Ltd Hydrogen detector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209149A (en) * 1984-03-31 1985-10-21 Nippon Sheet Glass Co Ltd Hydrogen detector

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001086265A2 (en) * 2000-05-05 2001-11-15 Midwest Research Institute H02 doped w03, ultra-fast, high-sensitive hydrogen sensors
WO2001086265A3 (en) * 2000-05-05 2002-07-18 Midwest Research Inst H02 doped w03, ultra-fast, high-sensitive hydrogen sensors
US6723566B2 (en) 2000-05-05 2004-04-20 Midwest Research Institute Pd/Ni-WO3 anodic double layer gasochromic device
US7419635B2 (en) 2000-05-05 2008-09-02 Midwest Research Institute Pd/V2O5 device for colorimetric H2 detection
US7910373B2 (en) 2000-05-05 2011-03-22 Alliance For Sustainable Energy, Llc H2O doped WO3, ultra-fast, high-sensitivity hydrogen sensors
US8084265B2 (en) 2001-05-05 2011-12-27 Alliance for Sustianable Energy, LLC Method and Pd/V2 O5 device for H2 detection
JP2003329592A (en) * 2002-05-08 2003-11-19 Shinji Okazaki Method for manufacturing film for gas sensor
JP2006258595A (en) * 2005-03-17 2006-09-28 Jfe Steel Kk Hydrogen microprinting method
JP4600103B2 (en) * 2005-03-17 2010-12-15 Jfeスチール株式会社 Hydrogen microprint method
JP2007121013A (en) * 2005-10-26 2007-05-17 Japan Atomic Energy Agency Optical hydrogen gas detection element, its manufacturing method, and optical hydrogen gas detection device and method using element
JP4644869B2 (en) * 2005-10-26 2011-03-09 独立行政法人 日本原子力研究開発機構 OPTICAL HYDROGEN GAS DETECTING ELEMENT AND ITS MANUFACTURING METHOD, AND OPTICAL HYDROGEN GAS DETECTING DEVICE AND METHOD USING THE ELEMENT

Similar Documents

Publication Publication Date Title
EP1205244B1 (en) Use of a photocatalytic material
US6120891A (en) Mesoporous transition metal oxide thin films and methods of making and uses thereof
US4400412A (en) Thermochromic vanadium oxide coated glass
US4393095A (en) Chemical vapor deposition of vanadium oxide coatings
US20030054177A1 (en) Multifunctional energy efficient window coating
Barreca et al. Highly oriented V2O5 nanocrystalline thin films by plasma-enhanced chemical vapor deposition
US5397541A (en) Thin film oxygen sensor
US8591828B2 (en) Hydrogen gas detecting membrane
EP3963643B1 (en) A method for producing a semiconducting film of organic-inorganic metal-halide compound with perovskite-like structure
Alessandri et al. Cr-inserted TiO2 thin films for chemical gas sensors
JPS62257047A (en) Hydrogen sensor
Cao et al. Sputtering flexible VO2 films for effective thermal modulation
CA2341932A1 (en) Heat-resistant reflecting layer, laminate formed of the reflecting layer, and liquid crystal display device having the reflecting layer or the laminate
O'Neill et al. Atmospheric pressure chemical vapour deposition of thin films of Nb 2 O 5 on glass
JP2001207082A (en) Hydrophilic material
WO2011118700A1 (en) Process for production of optical vanadium dioxide thin film
JPH04311571A (en) Method for forming metallic oxide film on substrate
US5547706A (en) Optical thin films and method for their production
JPH09189801A (en) Optical parts with heat resistant antireflection film
JP3550658B2 (en) Method for producing titanium dioxide-based thin film with controlled crystal structure
Tomaev et al. Obtaining and studying films of tungsten, titanium and their oxides
US20050008775A1 (en) Method of forming dielectric optical thin film
JP4625906B2 (en) Optical hydrogen detection material using ion irradiation and manufacturing method thereof
JPH051897B2 (en)
Zaitsu et al. Laser-induced damage of optical coatings grown with surface chemical reaction