JPS61186214A - Production of polychlorosilane - Google Patents
Production of polychlorosilaneInfo
- Publication number
- JPS61186214A JPS61186214A JP2645285A JP2645285A JPS61186214A JP S61186214 A JPS61186214 A JP S61186214A JP 2645285 A JP2645285 A JP 2645285A JP 2645285 A JP2645285 A JP 2645285A JP S61186214 A JPS61186214 A JP S61186214A
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- stainless steel
- reaction
- polychlorosilane
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Silicon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明はポリクロロシラン類の製造方法に関する。さら
に詳しくは反応装置の腐食の問題のないポリクロロシラ
ン類の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing polychlorosilanes. More specifically, the present invention relates to a method for producing polychlorosilanes without the problem of corrosion of reaction equipment.
従来の技術 ポリクロロシラン類は、集積回路、感光ドラム。Conventional technology Polychlorosilanes are used in integrated circuits and photosensitive drums.
太陽電池などの半導体製造用として有用なポリシラン類
の原料としてその需要が増大している。このポリクロロ
シラン類の製造法としては一般的にはケイ素とカルシウ
ム或いはマグネシウムとの合金などのケイ素の合金と塩
素を反応せしめる方法が知られている。Demand for polysilanes is increasing as a raw material for polysilanes useful in manufacturing semiconductors such as solar cells. A generally known method for producing polychlorosilanes is a method in which a silicon alloy, such as an alloy of silicon and calcium or magnesium, is reacted with chlorine.
発明が解決すべき問題点
」二連の方法は比較的収率良く、ポリクロロシランを簡
単に与える優れた方法であるが、工業的規模で実施する
には、反応装置の腐食が激しく、通常のステンレス鋼は
使用できずタンタル、ジルコニウムなどの特殊な金属を
使用しなげればならないという問題があった。``Problems to be Solved by the Invention'' The two-step method is an excellent method for easily producing polychlorosilane with a relatively high yield, but it cannot be carried out on an industrial scale because the reaction equipment is severely corroded, and the conventional There was a problem in that stainless steel could not be used and special metals such as tantalum and zirconium had to be used.
本発明者らは、かかる特殊な金属を使用することなく安
価なステンどス鋼でもポリクロロシランを製造すること
が可能な条件について鋭意検討した結果、単に不活性ガ
スで希釈した特定濃度の塩素ガスを使用するだけで上記
問題が解決できることを見い出し本発明を完成した。As a result of intensive study on the conditions under which polychlorosilane can be produced using inexpensive stainless steel without using such special metals, the inventors of the present invention discovered that chlorine gas at a specific concentration simply diluted with an inert gas. The present invention was completed by discovering that the above problem could be solved simply by using the following.
問題点を解決するための手段
即ち本発明はケイ素の合金と塩素を反応させてポリクロ
ロンラン類を製造する方法において、不活性ガスで0.
1モル係〜30モル係に希釈した塩素ガスを使用するこ
とを特徴とするポリクロロシラン類の製造方法である。Means for solving the problems, that is, the present invention is a method for producing polychlorolans by reacting a silicon alloy with chlorine.
This is a method for producing polychlorosilanes characterized by using chlorine gas diluted to 1 molar to 30 molar.
本発明において不活性ガスとは反応条件下にガス状であ
り、ケイ素の合金と塩素の反応を実質的に阻害しないも
のであれば良く、チノ素、アルゴン、ヘリウム、ネオン
などのいわゆる不活性ガスのみならず四塩化ケイ素など
も使用可能である。In the present invention, the inert gas may be any gas that is gaseous under the reaction conditions and does not substantially inhibit the reaction between the silicon alloy and chlorine, and includes so-called inert gases such as chino, argon, helium, and neon. In addition to silicon tetrachloride, silicon tetrachloride can also be used.
ケイ素の合金と塩素との反応は反応速度及び選択率の点
から150〜300℃で行うのが好ましく、反応圧力と
しては常圧〜1. Oatm程度で行うのが一般的であ
る。The reaction between the silicon alloy and chlorine is preferably carried out at 150 to 300°C from the viewpoint of reaction rate and selectivity, and the reaction pressure is normal pressure to 1.5°C. It is common to do this at about Oatm.
本発明において肝要なのは塩素ガスとして上述の不活性
ガスで希釈したものを用いその範囲として0.1モル係
〜30モル係を選ぶことにある。What is important in the present invention is to use chlorine gas diluted with the above-mentioned inert gas and to select the range from 0.1 molar to 30 molar.
0.1モル係未満では反応速度が遅く好ましくなく又3
0モル係を越えると急激に腐食性が高まり、安価なステ
ンレス鋼を反応器として使用することはできない。If the molar ratio is less than 0.1, the reaction rate is slow and undesirable.
When the molar ratio exceeds 0, the corrosivity increases rapidly, and inexpensive stainless steel cannot be used as a reactor.
本発明において使用する塩素ガスとしては水分が数十p
pm以下好ましくは数ppm以下の比較的高純度の水を
使用するのが装置の腐食の問題からも好ましい。The chlorine gas used in the present invention contains several tens of pp of water.
It is preferable to use relatively high purity water of pm or less, preferably several ppm or less, from the viewpoint of corrosion of the equipment.
作用及び効果
本発明において単に不活性ガスによって使用する塩化水
素の濃度を特定の範囲とすることでオーステナイト系ス
テンレス鋼などの安価なステンレス鋼を使用した装置を
腐食することなくポリクロロシランを製造することが可
能である理由は正確には明らかではないが1本発明によ
れば安価なステンレス鋼で作った装置でポリクロロシラ
ンを工業的規模で収率よく製造することが可能となりそ
の工業的意義は太きい。Functions and Effects In the present invention, polychlorosilane can be produced without corroding equipment using inexpensive stainless steel such as austenitic stainless steel by simply adjusting the concentration of hydrogen chloride to a specific range using an inert gas. It is not clear exactly why this is possible, but according to the present invention, it is possible to produce polychlorosilane in high yield on an industrial scale using equipment made of inexpensive stainless steel, and its industrial significance is enormous. Hey.
実施例 以下に実施例を挙げ本発明を説明する。Example The present invention will be explained below with reference to Examples.
実施例−1
パイレックス(コーンニング社商標)ガラス製の筒型反
応器(容量5000ffl )を用いて市販のケイ化カ
ルシウム(日本重化学工業社製48〜200mesh
、 S i含有量 61重量% ) 600りをアルゴ
ン雰囲気下に充てんし層高400mmHを有する固定層
型反応器を形成した。Example 1 Using a cylindrical reactor (capacity: 5000 ffl) made of Pyrex (Korning Co., Ltd.) glass, commercially available calcium silicide (48-200 mesh manufactured by Japan Heavy Chemical Industries, Ltd.) was
, Si content: 61% by weight) was filled in an argon atmosphere to form a fixed bed reactor having a bed height of 400 mmH.
層高4.00.mI(のケイ化カルシウムの表面かう1
00mmHの位置に縦30mm、横30mm厚さ3mm
の5US304ステンレス鋼、 5US316ステンレ
ス鋼、ジルコニウム、メンタル、炭素鋼のテストピース
を挿入した。反応器温度を250℃に設定しアルゴン(
流量2 l /min )中に塩素ガス(鶴見曹達社製
、純度98重量%、流量0.25A!/ min )を
同伴させて供給し70時間塩素化反応を行なった。反応
70時間後において反応器出口ガス中の塩素ガス流量は
O,0OIl/mi nであり、また反応残査中の81
含有量は39gであり、これは転化率89チに相当する
ものであった。Layer height 4.00. The surface of calcium silicide of mI (1)
30mm long, 30mm wide and 3mm thick at the 00mmH position
Test pieces of 5US304 stainless steel, 5US316 stainless steel, zirconium, mental, and carbon steel were inserted. The reactor temperature was set at 250°C and argon (
A chlorine gas (manufactured by Tsurumi Soda Co., Ltd., purity 98% by weight, flow rate 0.25 A!/min) was supplied together with a flow rate of 2 l/min, and a chlorination reaction was carried out for 70 hours. After 70 hours of reaction, the chlorine gas flow rate in the reactor outlet gas was O.
The content was 39 g, which corresponded to a conversion rate of 89 g.
70時間反応終了後、前記のテストピースをとり出し表
面の状態を観察した後1重量を測定し、その減量から、
表面の腐食速度を算出した。表面の観察結果炭素鋼につ
いて茶かつ色に変色し表面金属光沢が全くなくなってい
た他は試験前と変化なかった。After 70 hours of reaction, the test piece was taken out, the surface condition was observed, and the weight was measured. From the weight loss,
The corrosion rate of the surface was calculated. Observation results of the surface of the carbon steel showed no change from before the test, except that the carbon steel turned brown and had no metallic luster at all.
0.018 mm/Y r、 ジルコニウムが0.0
20 mrn/Y r、タンタルが0.016 mm1
Y rで、耐食材料と判断される。0.018 mm/Y r, zirconium is 0.0
20 mrn/Y r, tantalum is 0.016 mm1
It is judged to be a corrosion-resistant material due to Y r.
また炭素鋼については、1.6 mm/Y r であ
り材料として不適であったがステンレス鋼はタンタル、
ジルコニウムと同等の腐食速度であり充分に装置用の材
料として使用可能と推定される。In addition, carbon steel has a value of 1.6 mm/Y r and is not suitable as a material, but stainless steel has tantalum,
It has a corrosion rate similar to that of zirconium, so it is estimated that it can be used as a material for equipment.
実施例−2
実施例−1で用いたガラス製反応器と同一形状の反応器
をSUS 304ステンレス鋼で製作した。Example 2 A reactor having the same shape as the glass reactor used in Example 1 was manufactured from SUS 304 stainless steel.
ステンレス鋼の厚さく’6.6mm)実施例−1と同様
の反応条件で1バッチ70時間の反応を30バツチくり
返して行なった。稼動期間は約6ケ月間であった。The reaction was repeated 30 times for 70 hours per batch under the same reaction conditions as in Example 1 (thickness of stainless steel: 6.6 mm). The operating period was approximately 6 months.
試験終了後反応器内部の点検をした結果、金属光沢に変
化はなく、反応器内部5ケ所の肉厚測定の結果腐食速度
はそれぞれ0.008 mm/ Y、0.001mm/
Y、Omu / Y、−0,002mm/Y、0.01
2mm/Yであり耐食材料として推奨される結果を得た
。After the test was completed, we inspected the interior of the reactor and found that there was no change in the metallic luster, and the wall thickness measurements at 5 locations inside the reactor showed a corrosion rate of 0.008 mm/Y and 0.001 mm/Y, respectively.
Y, Omu/Y, -0,002mm/Y, 0.01
The result was 2 mm/Y, which is recommended as a corrosion-resistant material.
実施例−3
実施例−1と同様の方法で塩素流量を一定(即ち0.2
51/m1n)とし、希釈用アルゴンの流量を各々2
、25 l/H11,、OOl/I(、0、581/I
(、、0、3817HO,25lA−’fと一定にして
、供給ガス中の塩素濃度を各々10モル係、20モル%
、30モル%、40モル係、50モル係になる様にテス
ト毎に調整した。Example-3 The chlorine flow rate was kept constant (i.e. 0.2
51/m1n), and the flow rate of argon for dilution was set to 2.
,25 l/H11,,OOl/I(,0,581/I
(, 0, 3817HO, 25lA-'f, and the chlorine concentration in the supplied gas is 10 mol% and 20 mol%, respectively.
, 30 mol %, 40 mol %, and 50 mol % for each test.
内温な250℃に調整し、70時間のテストピースの腐
蝕速度テストを行なった結果は表−1に示す如く汎用ス
テンレス鋼でも30モル係以下に希釈した塩素ガスを使
用することで夕/タル、ジルコニウムと同様の耐食材料
(鉄鋼材料便覧(日本金属学会日本鉄鋼協会線、丸善出
版)単位装置の材料選択基準)として使用可能であるこ
とがわかる。The results of a 70-hour corrosion rate test on a test piece adjusted to the internal temperature of 250°C are shown in Table 1. Even with general-purpose stainless steel, the use of chlorine gas diluted to less than 30 molar ratio shows that the corrosion rate can be reduced. It can be seen that it can be used as a corrosion-resistant material similar to zirconium (material selection criteria for unit equipment in the Steel Material Handbook (Japan Institute of Metals, Japan Iron and Steel Association Line, Maruzen Publishing)).
表−1Table-1
Claims (2)
ン類を製造する方法において、不活性ガスで0.1モル
〜30モル%に希釈した塩素ガスを使用することを特徴
とするポリクロロシラン類の製造方法(1) A method for producing polychlorosilanes by reacting a silicon alloy with chlorine, which is characterized by using chlorine gas diluted to 0.1 to 30 mol% with an inert gas. Production method
置を用い150〜300℃で行う特許請求の範囲第1項
記載の方法(2) The method according to claim 1, in which the reaction between silicon alloy and chlorine is carried out at 150 to 300°C using a stainless steel device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2645285A JPS61186214A (en) | 1985-02-15 | 1985-02-15 | Production of polychlorosilane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2645285A JPS61186214A (en) | 1985-02-15 | 1985-02-15 | Production of polychlorosilane |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61186214A true JPS61186214A (en) | 1986-08-19 |
Family
ID=12193891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2645285A Pending JPS61186214A (en) | 1985-02-15 | 1985-02-15 | Production of polychlorosilane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61186214A (en) |
-
1985
- 1985-02-15 JP JP2645285A patent/JPS61186214A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5149378A (en) | Tungsten film forming apparatus | |
US5009963A (en) | Metal material with film passivated by fluorination and apparatus composed of the metal material | |
JP4717083B2 (en) | Electrolytic apparatus for producing fluorine or nitrogen trifluoride | |
US8288161B2 (en) | Articles of manufacture containing increased stability low concentration gases and methods of making and using the same | |
US5637285A (en) | Process for nitrogen trifluoride synthesis | |
US20120063984A1 (en) | Processes and an apparatus for manufacturing high purity polysilicon | |
TW201144483A (en) | Cylinder surface treatment for monochlorosilane | |
EP2165973B1 (en) | Method for production of iodine heptafluoride | |
US6231690B1 (en) | Method of oxidizing inner surface of ferritic stainless pipe | |
TWI735561B (en) | Supply method of chlorine fluoride | |
US20040042950A1 (en) | Method for producing high-purity, granular silicon | |
JPS61186214A (en) | Production of polychlorosilane | |
Peev et al. | Kinetics of the chemical reaction between dichlorosilane and ammonia during silicon nitride film deposition | |
US7273588B1 (en) | Methods of sampling halosilanes for metal analytes | |
WO2010055769A1 (en) | Inter-halogen compound synthesis method | |
CN113227026A (en) | Process for producing cyclobutene | |
KR102675453B1 (en) | Gases for substrate processing, storage containers and substrate processing methods | |
JPH02175855A (en) | Metallic material having formed fluorinated passive state film and device using its metallic material | |
JP3258413B2 (en) | Method for producing germanium tetrafluoride | |
Blauer et al. | Thermal dissociation of chlorine trifluoride behind incident shock waves | |
JPH03215656A (en) | Metallic material with passivating fluoride film and its production and equipment using same | |
EP3718994B1 (en) | Process for the production of 1,2,3,4-tetrachlorobutane | |
JP2019119614A (en) | Method for producing high-purity boron trichloride | |
WO2024204654A1 (en) | Reactor, method for producing metal nitride catalyst, and method for synthesizing ammonia | |
WO1997048640A1 (en) | Moisture generation method and moisture generator |