JPS61186018A - Field effect transistor logic circuit - Google Patents

Field effect transistor logic circuit

Info

Publication number
JPS61186018A
JPS61186018A JP60025473A JP2547385A JPS61186018A JP S61186018 A JPS61186018 A JP S61186018A JP 60025473 A JP60025473 A JP 60025473A JP 2547385 A JP2547385 A JP 2547385A JP S61186018 A JPS61186018 A JP S61186018A
Authority
JP
Japan
Prior art keywords
node
logic circuit
buffer
output
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60025473A
Other languages
Japanese (ja)
Inventor
Tadashi Maeta
正 前多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60025473A priority Critical patent/JPS61186018A/en
Publication of JPS61186018A publication Critical patent/JPS61186018A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/09432Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors with coupled sources or source coupled logic
    • H03K19/09436Source coupled field-effect logic [SCFL]

Abstract

PURPOSE:To drive a buffer by one stage of an SCFL logic circuit by obtaining two inputs, 'true' and 'false' required for a totem pole type buffer from an output of the SCFL logic circuit. CONSTITUTION:An input signal voltage is impressed to a gate electrode 60 of an FET3 and a comparison voltage is impressed to a gate electrode 61 of an FET4. The difference between the input signal and the comparison voltage is amplified and appears output terminals 20, 21 of the SCFL. In general, the FETs 3, 4 are biased so as to be operated within a drain current saturation region. The outputs 20, 21 of the SCFL connect to the gate electrodes of FETs 6, 7 of the buffer circuit, one FET is turned on and the rest is turned off. Thus, an output is obtained from an output terminal 30.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、厩界効果トランジスタを用いた論理回路に関
し、特にソース結合型論理回路(以後5CFLと称す)
とトーテムポール型バッファから成る電界効果トランジ
スタ論理回路、こ関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a logic circuit using stable field effect transistors, and particularly to a source-coupled logic circuit (hereinafter referred to as 5CFL).
This field-effect transistor logic circuit consists of a totem-pole type buffer and a totem-pole buffer.

(従来技術とその問題点) GaAs半導体は、si#こ比へ電子の移動fljJ5
大きく、さらに集積化を図る際に半P3縁性GaAsを
基板として用いることが出来るため回路の寄生容量を軽
減することが可能となる。従ってGaAs半導体を動作
層とするGaAsショットキーゲート電界効果トランジ
スタ(以後GaAs MFj8FF+Tと称す)を用い
た論理回路は、8iバイポーラトランジスタを用いた論
理回路に比べ高速論理動作が可能となる。しかし、Ga
As M138FETを用いた論理回路は、負荷駆動能
力が小さいことから大負荷を駆動しようとする場合、従
来は第4図、第5図に示すようにインバータにバッファ
回路を付加することで回路の負荷駆動能力を増大し、高
速論理動作を可能にしようとする回路方式がとられてい
た。
(Prior art and its problems) In GaAs semiconductors, electrons move to the Si# ratio fljJ5
Since it is large, and when further integration is desired, semi-P3 edge GaAs can be used as a substrate, making it possible to reduce the parasitic capacitance of the circuit. Therefore, a logic circuit using a GaAs Schottky gate field effect transistor (hereinafter referred to as GaAs MFj8FF+T) having a GaAs semiconductor as an operating layer is capable of higher-speed logic operation than a logic circuit using an 8i bipolar transistor. However, Ga
Logic circuits using As M138FETs have low load driving capability, so when trying to drive a large load, conventionally, as shown in Figures 4 and 5, the load on the circuit was reduced by adding a buffer circuit to the inverter. Circuit systems were used to increase drive capability and enable high-speed logic operations.

第4図において、抵抗1及び2は、電源の端子100に
接続され、かつエンハンスメント型GaAsMF!8F
FjT3及び4のドレイン電極に接続されている。抵抗
5は8CPLのMBSFET、3.4のソース電極と電
源の端子101に接続されている。バッファ回路は、エ
ンハンスメント型PET16のドレイン電極が電源の端
子100に接続され、ゲート電極が8CFLの出力20
に接続され、ソース電極が節点41に接続されている。
In FIG. 4, resistors 1 and 2 are connected to a terminal 100 of a power supply and are of the enhancement type GaAsMF! 8F
Connected to the drain electrodes of FjTs 3 and 4. The resistor 5 is connected to the source electrode of the 8CPL MBSFET, 3.4, and the power supply terminal 101. In the buffer circuit, the drain electrode of the enhancement type PET 16 is connected to the power supply terminal 100, and the gate electrode is connected to the output 20 of the 8CFL.
The source electrode is connected to the node 41.

節点41と出力端子30との間にダイオード17が設置
される。抵抗18はバッファ回路の負荷であり、電源接
続端子102に接続されている。このような回路では、
バッファ回路には常時電流が流れており、バッファ回路
のPETのゲート幅を大きくすることで大負荷を駆動す
ることは可能であるが、そのために回路の消費電力が増
大するという欠点を有する。一方、Ga人SはSiに比
べ熱抵抗が大きいため、回路の消費電力が大きいことは
素子の特性の劣化の可能性があり不利である。
A diode 17 is installed between the node 41 and the output terminal 30. The resistor 18 is a load of the buffer circuit and is connected to the power supply connection terminal 102. In such a circuit,
Current always flows through the buffer circuit, and although it is possible to drive a large load by increasing the gate width of the PET in the buffer circuit, this has the drawback of increasing the power consumption of the circuit. On the other hand, since Ga silicon has a higher thermal resistance than Si, the large power consumption of the circuit is disadvantageous because it may deteriorate the characteristics of the element.

第5図においては、通常のエンハンスメント型FF!T
7.15.23とデプレーション型FET6.14.1
9で構成された二段のインバータの出力でトーテムポー
ル型バッファを駆動する論理回路である。バッファ回路
のデプレーション型F13T6はドレイン電極が電源の
端子100に接続されゲート電極が二段目のインバータ
の出力に接続され、ソース電極が出力端子30に接続さ
れている。また、エンハンスメントPET7のドレイン
電極は出力端子30に接続され、ゲート電極は、一段目
のインバータの出力に接続され、ソース電極は、電源の
端子102に接続されている。この回路はインバータの
出力によってどちらかのFHTをON”又は“OFF”
とすることにより出力を得ることが出来る。なお60は
入力端子である。このような回路では、大負荷を駆動す
るためにバッファのゲート幅を大きくしても負荷容量の
充放電の時間のみバッファに電流が流れるため回路の消
費電力は、大きくならない。しかし、バッファの入力に
は、′真”偽”の二人力が必要となり論理回路の出力は
、二段目のインバータの出力の遅延時間で決定され、動
作速度はインバータ一段分遅れることになる。従って、
この方法では、高速な論理動作は、期待出来ない。
In FIG. 5, a normal enhancement type FF! T
7.15.23 and depletion type FET6.14.1
This is a logic circuit that drives a totem pole type buffer with the output of a two-stage inverter made up of 9. The depletion type F13T6 buffer circuit has a drain electrode connected to the power supply terminal 100, a gate electrode connected to the output of the second stage inverter, and a source electrode connected to the output terminal 30. Further, the drain electrode of the enhancement PET 7 is connected to the output terminal 30, the gate electrode is connected to the output of the first stage inverter, and the source electrode is connected to the terminal 102 of the power supply. This circuit turns either FHT ON or OFF depending on the inverter output.
By doing so, the output can be obtained. Note that 60 is an input terminal. In such a circuit, even if the gate width of the buffer is increased to drive a large load, the power consumption of the circuit does not increase because current flows through the buffer only during the charging and discharging time of the load capacitance. However, the input of the buffer requires two inputs, ``true'' and ``false'', and the output of the logic circuit is determined by the delay time of the output of the second-stage inverter, and the operating speed is delayed by one inverter stage. Therefore,
With this method, high-speed logic operations cannot be expected.

(本発明の目的) 本発明の目的は、大負荷を駆動する場合でも高速論理動
作が可能で、しかも消費電力の小さな論理回路を得よう
とするものである。
(Objective of the Present Invention) An object of the present invention is to obtain a logic circuit that is capable of high-speed logic operation even when driving a large load and has low power consumption.

(発明の構成) 本発明の論理回路は、一端が第1の電源接続端子に接続
され、他端が第1の節点に接続された第1の負荷素子と
、一端が前記第1の電源接続端子に接続され他端が第2
の節点に接続された第2の負荷素子とドレイン電極が前
記第1の節点に接続され、ゲート電極が第1の入力端子
に接続され、ソース電極が第3の節点に接続された第1
のFBTと、ドレイン電極が前記第2の節点に接続され
、ゲート電極が第2の入力端子に接続され、ソース電極
が前記第3の節点に接続された第2のPF8Tと、一端
が前記第3の節点に接続され、他端が第2の電源接続端
子に接続された第3の負荷素子を有するソース結合型論
理回路とドレイン電極が前記第1の電源接続端子に接続
されゲート1!框が前記第1の節点に接続され、ソース
電極が出力端子に接続された第1のデプレーション型F
]13Tと、ドレイン電極が出力端子に接続され、ゲー
ト電極が前記第2の節点に接続され、ソース電極が第3
の電源接続端子に接続された第3のFETを有するトー
テムポール型バッファから成ることを特徴とする特 (作用) 本発明による論理回路においては、トーテムポール型バ
ッファの入力に必要な“真”、“偽”の二つの入力を8
0FL論理回路の出力から得ることにより、8CFL一
段でバッファを駆動することが出来る。従って、通常の
二段インバータで構成された第5図に示すような論理回
路に比べて高速論理動作が可能である。さらに、大負荷
を駆動するためにバッファのゲート幅を大きくしても、
バッファ回路では、出力端子に接続された負荷を充放電
する間のみ電流が流れるため定常状態での消費電力が少
なくてすむ。
(Structure of the Invention) A logic circuit of the present invention includes a first load element having one end connected to a first power supply connection terminal and the other end connected to a first node, and one end connected to the first power supply connection terminal. terminal and the other end is the second
a second load element connected to a node, a drain electrode connected to the first node, a gate electrode connected to the first input terminal, and a first load element connected to the third node;
a second PF8T having a drain electrode connected to the second node, a gate electrode connected to the second input terminal, and a source electrode connected to the third node; A source-coupled logic circuit having a third load element whose other end is connected to the second power supply connection terminal and whose drain electrode is connected to the first power supply connection terminal and whose gate 1! a first depletion type F in which a frame is connected to the first node and a source electrode is connected to the output terminal;
]13T, the drain electrode is connected to the output terminal, the gate electrode is connected to the second node, and the source electrode is connected to the third node.
Features (Functions) In the logic circuit according to the present invention, the logic circuit includes a totem-pole type buffer having a third FET connected to the power supply connection terminal of the totem-pole type buffer. 8 “false” two inputs
By obtaining the output from the 0FL logic circuit, it is possible to drive the buffer with one stage of 8CFLs. Therefore, higher-speed logic operation is possible than in a logic circuit as shown in FIG. 5, which is configured with a normal two-stage inverter. Furthermore, even if the buffer gate width is increased to drive a large load,
In the buffer circuit, current flows only while charging and discharging the load connected to the output terminal, so power consumption in a steady state is low.

(実施例) 第1図に本発明による論理回路の第1の実施例を示す。(Example) FIG. 1 shows a first embodiment of a logic circuit according to the present invention.

なお、第1図と同一構成部分には、同一番号を付して説
明する。本発明は、8CFL論理回路で、トーテムポー
ル型バッファを駆動するものである。抵抗1及び2は、
それぞれ電源の端子100に接続され、かつエンハンス
メント型GaAsME8F]13T3及び4のドレイン
電極に接続されている。抵抗5は80F’LのMl!i
8F’BTのソース電極と電源の端子101に接続され
ている。
Note that the same components as those in FIG. 1 will be described with the same numbers. The present invention uses an 8CFL logic circuit to drive a totem pole type buffer. Resistors 1 and 2 are
They are each connected to a power supply terminal 100 and to the drain electrodes of enhancement type GaAsME8F]13T3 and 4, respectively. Resistor 5 is 80F'L Ml! i
It is connected to the source electrode of 8F'BT and the power supply terminal 101.

一方、バッファ回路は、デプレーシ田ン型GaAsMB
SFgT6のドレイン電極が電源の端子100に接続さ
れ、ゲート電極が8CFLの出力端子20に接続され、
ソース電極が出力端子30に接続され、エンハンスメン
ト型GaAsME8FBT7のドレイン電極が出力端子
に接続され、ゲート電極が8CFLの出力端子21に接
続され、ソース電極が電源の端子102に接続されてい
る。FBT3のゲート電極60に入力信号n圧が印加さ
れ、FEで4のゲート電極61には、比較電圧が印加さ
れる。入力信号と比較電圧の差は増幅されて、5CFL
の出力端子20.21に現われる。一般にFBT3とF
B’r4はドレイン電流飽和領域内で動作するようにバ
イアスされる。5CFLの出力20.21はバッファ回
路のFET6.7のゲート電極に接続されており、どち
らか一方のFBTを“ON”の状態にし、残りを“OF
”F”の状態にする。従って出力端子30から出力を得
ることが出来る。なお、バッファ回路のPE’r6は、
5CFLの出力20がハイレベル時に“ON″の状態と
なるようにデプレーシ言ン型M B S F B Tを
用いる必要がある。第2図は、本発明による第2の実施
例であり、抵抗1,2.5に代え、デプレーション型G
a人s MFj8FETを用いたものである。
On the other hand, the buffer circuit is a deplacement type GaAsMB.
The drain electrode of SFgT6 is connected to the terminal 100 of the power supply, the gate electrode is connected to the output terminal 20 of 8CFL,
A source electrode is connected to the output terminal 30, a drain electrode of the enhancement type GaAsME8FBT7 is connected to the output terminal, a gate electrode is connected to the output terminal 21 of the 8CFL, and a source electrode is connected to the terminal 102 of the power supply. An input signal n voltage is applied to the gate electrode 60 of FBT3, and a comparison voltage is applied to the gate electrode 61 of FBT4. The difference between the input signal and the comparison voltage is amplified to 5CFL
appears at output terminal 20.21 of. Generally FBT3 and F
B'r4 is biased to operate within the drain current saturation region. The outputs 20.21 of 5CFL are connected to the gate electrodes of FETs 6.7 of the buffer circuit, and one of the FBTs is turned on and the rest are turned on.
Set it to “F” state. Therefore, an output can be obtained from the output terminal 30. In addition, PE'r6 of the buffer circuit is
It is necessary to use the deplacement type M B S F B T so that the output 20 of the 5CFL is in the "ON" state when it is at a high level. FIG. 2 shows a second embodiment according to the present invention, in which a depletion type G is used instead of the resistors 1 and 2.5.
This uses an MFj8FET.

第3図は本発明による第3の実施例であり、PBTを全
てデプレーション型としたものである。この場合5CF
Lの出力21は、ロウレベル時にFET13が“OFF
”の状態となるように設計する必要がある。
FIG. 3 shows a third embodiment of the present invention, in which all PBTs are of the depletion type. In this case 5CF
When the L output 21 is at low level, the FET 13 is “OFF”.
It is necessary to design the system so that the

(発明の効果) 本発明による論理回路では、トーテムポール型バッファ
の“真”偽”の2つの入力を80FLの出力から得るこ
とにより、8CFL一段でバッファを駆動出来るため、
従来の二段インバータで構成された論理回路に比べて高
速論理動作が可能である。さらに大負荷を駆動する場合
バッファ回路のPETのゲート幅を大きくしても消費電
力は少なくてすむ。従って、GaAaのような熱抵抗の
大きな半導体においても素子の性能を低下させずに高速
論理動作が可能となる。
(Effects of the Invention) In the logic circuit according to the present invention, by obtaining the two inputs "true" and "false" of the totem pole type buffer from the output of 80FL, the buffer can be driven with one stage of 8CFL.
High-speed logic operation is possible compared to conventional logic circuits configured with two-stage inverters. Furthermore, when driving a large load, power consumption can be reduced even if the gate width of the PET of the buffer circuit is increased. Therefore, even in a semiconductor having a high thermal resistance such as GaAa, high-speed logic operation is possible without deteriorating the performance of the device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜3図は本発明の実施例を示す図。第4゜5図は従
来例を示す図。 1.2,5,18・・・抵抗、3,4,7,15゜16
.23・・・エンハンスメント型Mg8F’ET。 6.8,9,10,11,12,13,14.19・・
・デプレーシ目ン型MESFgT、17・・・ダイオー
ド、60.61・・・入力端子、30・・・出力端子、
100.101.102・・・電源接続端子、20゜2
1.22,41,50,51・・・節点。 l00 亭  2  図
1 to 3 are diagrams showing embodiments of the present invention. FIG. 4.5 is a diagram showing a conventional example. 1.2,5,18...Resistance, 3,4,7,15°16
.. 23...Enhancement type Mg8F'ET. 6.8, 9, 10, 11, 12, 13, 14.19...
・Deplacement type MESFgT, 17...Diode, 60.61...Input terminal, 30...Output terminal,
100.101.102...Power connection terminal, 20゜2
1.22, 41, 50, 51... Nodes. l00-tei 2 diagram

Claims (1)

【特許請求の範囲】[Claims] 一端が第1の電源接続端子に接続され、他端が第1の節
点に接続された第1の負荷素子と、一端が前記第1の電
源接続端子に接続され、他端が第2の節点に接続された
第2の負荷素子と、ドレイン電極が前記第1の節点に接
続され、ゲート電極が第1の入力端子に接続され、ソー
ス電極が第3の節点に接続された第1のMESFETと
、ドレイン電極が前記第2の節点に接続され、ゲート電
極が第2の入力端子に接続され、ソース電極が前記第3
の節点に接続された第2のMESFETと、一端が前記
第3の節点に接続され、他端が第2の電源接続端子に接
続された第3の負荷素子を有するソース結合型論理回路
と、ドレイン電極が前記第1の電源接続端子に接続され
、ゲート電極が前記第1の節点に接続され、ソース電極
が出力端子に接続される第1のデプレーション型FET
と、ドレイン電極が出力端子に接続され、ゲート電極が
前記第2の節点に接続され、ソース電極が第3の電源接
続端子に接続された第3のMESFETを有するトーテ
ムポール型バッファから成ることを特徴とする電界効果
トランジスタ論理回路。
a first load element having one end connected to the first power supply connection terminal and the other end connected to the first node; and a first load element having one end connected to the first power supply connection terminal and the other end connected to the second node. and a first MESFET having a drain electrode connected to the first node, a gate electrode connected to the first input terminal, and a source electrode connected to the third node. , a drain electrode is connected to the second node, a gate electrode is connected to the second input terminal, and a source electrode is connected to the third node.
a source-coupled logic circuit having a second MESFET connected to the node, and a third load element having one end connected to the third node and the other end connected to the second power supply connection terminal; a first depletion type FET having a drain electrode connected to the first power supply connection terminal, a gate electrode connected to the first node, and a source electrode connected to the output terminal;
and a totem-pole buffer having a third MESFET whose drain electrode is connected to the output terminal, whose gate electrode is connected to the second node, and whose source electrode is connected to the third power supply connection terminal. Features a field-effect transistor logic circuit.
JP60025473A 1985-02-13 1985-02-13 Field effect transistor logic circuit Pending JPS61186018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60025473A JPS61186018A (en) 1985-02-13 1985-02-13 Field effect transistor logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60025473A JPS61186018A (en) 1985-02-13 1985-02-13 Field effect transistor logic circuit

Publications (1)

Publication Number Publication Date
JPS61186018A true JPS61186018A (en) 1986-08-19

Family

ID=12167005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60025473A Pending JPS61186018A (en) 1985-02-13 1985-02-13 Field effect transistor logic circuit

Country Status (1)

Country Link
JP (1) JPS61186018A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244930A (en) * 1987-03-13 1988-10-12 グールド・インコーポレイテッド Intergrated logic circuit
JPS63280515A (en) * 1987-05-13 1988-11-17 Nec Corp Logic circuit
JPS63287111A (en) * 1987-05-19 1988-11-24 Nippon Telegr & Teleph Corp <Ntt> Logic circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195322A (en) * 1982-05-10 1983-11-14 Matsushita Electric Ind Co Ltd Field effect transistor circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195322A (en) * 1982-05-10 1983-11-14 Matsushita Electric Ind Co Ltd Field effect transistor circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244930A (en) * 1987-03-13 1988-10-12 グールド・インコーポレイテッド Intergrated logic circuit
JPS63280515A (en) * 1987-05-13 1988-11-17 Nec Corp Logic circuit
JPS63287111A (en) * 1987-05-19 1988-11-24 Nippon Telegr & Teleph Corp <Ntt> Logic circuit

Similar Documents

Publication Publication Date Title
US5977800A (en) Differential MOS current-mode logic circuit having high gain and fast speed
JPH08204536A (en) Interface circuit and level conversion circuit
US4798972A (en) Apparatus and method for capacitor coupled complementary buffering
JPH04129320A (en) Reproductive comparator and differential amplifier
JP2534346B2 (en) High-speed logic circuit
JPH06140915A (en) Interface circuit
US4712022A (en) Multiple input OR-AND circuit for FET logic
US4387309A (en) Input stage for N-channel junction field effect transistor operational amplifier
JPS61186018A (en) Field effect transistor logic circuit
US4954730A (en) Complementary FET circuit having merged enhancement/depletion FET output
JPH02216912A (en) Source-follower field effect type logical gate suitable for group iii-v tachnology
JPH08250984A (en) Logic circuit
JPH0311129B2 (en)
JPS62217721A (en) Field effect transistor logic circuit
US6049226A (en) Level converter
JP2545712B2 (en) Gallium arsenide semiconductor integrated circuit
JP2001257570A (en) Switching means, bistable circuit and multistable circuit
JPS61206317A (en) Field effect transistor logic circuit
JPH02182029A (en) Semiconductor device
JPS63111718A (en) Semiconductor integrated circuit
JPH06204853A (en) Logic circuit
JPH0115203B2 (en)
JPS6269710A (en) Compound semiconductor push-pull amplifier
JPH03272221A (en) Chemical compound semiconductor integrated circuit
JPS62104312A (en) Semiconductor device