JPS61183453A - Manufacture of magnetic core of amorphous alloy - Google Patents

Manufacture of magnetic core of amorphous alloy

Info

Publication number
JPS61183453A
JPS61183453A JP60020021A JP2002185A JPS61183453A JP S61183453 A JPS61183453 A JP S61183453A JP 60020021 A JP60020021 A JP 60020021A JP 2002185 A JP2002185 A JP 2002185A JP S61183453 A JPS61183453 A JP S61183453A
Authority
JP
Japan
Prior art keywords
amorphous alloy
magnetic core
heat treatment
amorphous
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020021A
Other languages
Japanese (ja)
Inventor
Michio Hasegawa
長谷川 迪雄
Takao Sawa
孝雄 沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60020021A priority Critical patent/JPS61183453A/en
Publication of JPS61183453A publication Critical patent/JPS61183453A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a magnetic core of an amorphous alloy capable of further reducing the iron loss by winding a thin strip of a specified amorphous alloy, subjecting it to strain relief heat treatment, and stripping stuck parts formed by the heat treatment. CONSTITUTION:A thin strip of an amorphous alloy represented by the formula [where M is one or more among Ti, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, Hf, Ta and W, X is B or B+Si (Si<=10 atomic %), 0<=a<=0.25, and 12<=b<=30] is wound and subjected to strain relief heat treatment, and stuck parts formed by the heat treatment are stripped to manufacture a magnetic core of an amorphous alloy.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は低鉄損非晶質合金磁芯の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a low iron loss amorphous alloy magnetic core.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、電磁気装置の磁芯として用いられているものに、
パーマロイ、フェライト等のm品質の材料がある。しか
しながらパーマロイは比抵抗が小さいので、高周波領域
での鉄損が大きくなる。又フェライトは高周波領域での
鉄損は小さいものの飽和磁束密度が5000 G程度と
小さいという欠点がある。
Conventionally, what is used as the magnetic core of electromagnetic devices is
There are m-quality materials such as permalloy and ferrite. However, since permalloy has a low resistivity, iron loss in the high frequency range increases. Further, although ferrite has a small iron loss in a high frequency region, it has a drawback that its saturation magnetic flux density is as small as about 5000 G.

これに対し、Fe 、Go 、Ni等を基本とし、p、
c。
On the other hand, based on Fe, Go, Ni, etc., p,
c.

B、 8i 、 143. Ge等を含有し、結晶性を
もたない非晶質合金は、優れた軟磁気特性を有し、七の
研究が盛んである。
B, 8i, 143. Amorphous alloys containing Ge and the like and having no crystallinity have excellent soft magnetic properties, and are the subject of active research.

非晶質合金の製造にあたっては磁気特性の向上。Improving magnetic properties in manufacturing amorphous alloys.

鉄損の減少等の磁気特性改善の為に熱処理を行なうこと
が一般的である。このような熱処理はキュリ一温度以上
かつ結晶化温度以下の範囲で行なわれ、鉄損の減少等、
ある程度、磁気特性は改善される。ま、た非晶質合金を
用いた巻鉄芯の場合も巻回後、歪取り熱処理を施こすこ
とにより、鉄損が低減される。しかしながら、より一層
の鉄損の低減が要求されている。
It is common to perform heat treatment to improve magnetic properties such as reducing iron loss. Such heat treatment is carried out at a temperature above one Curie temperature and below the crystallization temperature, and reduces iron loss, etc.
The magnetic properties are improved to some extent. In addition, in the case of a wound iron core using an amorphous alloy, iron loss can be reduced by applying strain relief heat treatment after winding. However, further reduction in iron loss is required.

〔発明の目的〕[Purpose of the invention]

本発明は以上の点を考慮してなされたもので、鉄損をよ
り一層低減することのできる非晶質合金磁芯の製造方法
を提供することを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a method for manufacturing an amorphous alloy magnetic core that can further reduce iron loss.

〔発明の概要〕[Summary of the invention]

本発明者等は、非晶質合金薄帯からなるトロイダル磁芯
の場合には歪取り熱処理後において局所的に付着した部
分やリボン表面の凹凸によって生じる摩擦のため薄帯層
間のところどころに応力集中部分が生じ、そのため磁歪
との相互作用にょって鉄損は増大するという点に着目I
−だ。
The present inventors discovered that in the case of a toroidal magnetic core made of amorphous alloy ribbon, stress is concentrated here and there between the ribbon layers due to friction caused by locally attached parts and unevenness of the ribbon surface after strain relief heat treatment. Focusing on the point that iron loss increases due to the interaction with magnetostriction.
-It is.

すなわち、本発明は、歪取り熱処理によって生じる局所
的な付着部分等を取り除くことにより低鉄損の非晶質合
金磁芯な得ることを基本とするものである。具体的方法
としては、熱処理後巻回を解き、再度巻回する方法、熱
処理後強制的振動を加える方法、熱処理後層間の付着部
分を離すように層間な例えば針状の部材で走査する方法
等が挙げられる。より確実に行なうためには再度巻回す
る方法が好ましい。
That is, the present invention is based on obtaining an amorphous alloy magnetic core with low iron loss by removing localized adhering portions etc. caused by strain relief heat treatment. Specific methods include a method of unwinding and rewinding after heat treatment, a method of applying forced vibration after heat treatment, and a method of scanning with a needle-like member, for example, between the layers so as to separate the adhering portions between the layers after heat treatment. can be mentioned. In order to do this more reliably, it is preferable to wind it again.

すなわち、非晶質磁性合金薄帯を用いてトロイダル磁芯
な作製する過程においてトロイダル状で歪取り熱処理を
施した後にトロイダルの薄帯層間のところどころに存在
する異物によるものと思われる局所的な付着箇所や、リ
ボン表向の凹凸のため摩擦(静止摩擦)が生じている箇
所を取り除くことにより高周波鉄損が低減されることを
見出したのである。
In other words, in the process of fabricating a toroidal magnetic core using an amorphous magnetic alloy ribbon, after heat treatment is applied to remove strain in the toroidal shape, local adhesion appears to be caused by foreign matter that exists here and there between the toroidal ribbon layers. They have discovered that high-frequency iron loss can be reduced by removing areas where friction (static friction) occurs due to unevenness on the surface of the ribbon.

この方法は各種の非晶質磁性合金に適用することが出来
るが、とくε2正の磁歪を有するFe基非晶質合金にお
いて有効である。
Although this method can be applied to various amorphous magnetic alloys, it is particularly effective for Fe-based amorphous alloys having ε2 positive magnetostriction.

とくに (P el−、Ma )loo−b xbただしM ;
 Ti 、V、Cr 、Mn 、Co 、Ni 、Zr
 、Nb、Mo 。
Especially (Pel-, Ma)loo-b xbHowever, M;
Ti, V, Cr, Mn, Co, Ni, Zr
, Nb, Mo.

Hf 、Ta 、Wのうちの少なくとも一種X;B(1
0原子−以下の8iで1攪しても良い) O≦a≦0.25 12≦b≦30 で表わされるFe基非晶質磁性合金を用いると、低鉄損
の非晶質合金磁芯な得ることができる。Mの添加により
、高周波領域における鉄損の低下及び結晶化温度の上昇
の効果を得る。微量の添加で効果があられれるが、実用
上は、a≧0.01  であることが好ましい。一方a
 ) 0.25だとTcが低くなりすぎ、実用上好まし
くない。またXは非晶質化に必須の元素であり、B及び
必要に応じ8iを加えると良い。Stを加えると非晶質
化が容易となり熱安定性が増す。しかしながらSiが1
0原子−より大となると鉄損が大きくなってしまう。
At least one of Hf, Ta, W; B(1
(0 atoms - 1 stirring may be performed with 8i below) When using an Fe-based amorphous magnetic alloy represented by O≦a≦0.25 12≦b≦30, an amorphous alloy magnetic core with low core loss can be obtained. You can get it. By adding M, the effects of reducing iron loss and increasing crystallization temperature in the high frequency region are obtained. Although the effect can be obtained by adding a small amount, it is practically preferable that a≧0.01. On the other hand a
) If it is 0.25, Tc will be too low, which is not preferable in practical terms. Further, X is an essential element for amorphization, and B and 8i may be added as necessary. Addition of St facilitates amorphization and increases thermal stability. However, Si is 1
If it is larger than 0 atoms, the iron loss will increase.

84は少量の添加で効果を発揮するが好ましくは2チ以
上が良い。またXの添加量すは、12より少ないと非晶
質化が困難であり、30より多いと融点が高くなり、や
はり非晶質化が困難になってしまうため、 12≦b≦
30の範囲が好ましい。
84 exhibits its effect when added in a small amount, but preferably 2 or more. In addition, if the amount of X added is less than 12, it is difficult to make it amorphous, and if it is more than 30, the melting point becomes high and it is also difficult to make it amorphous, so 12≦b≦
A range of 30 is preferred.

また、歪取り熱処理後磁芯形状を解き、再び巻回する場
合には材料の脆化が問題となるが1Mの添加は脆化抵抗
を増すため有効である。
Furthermore, when the magnetic core shape is unwound after the strain relief heat treatment and the material is wound again, embrittlement of the material becomes a problem, but the addition of 1M is effective because it increases the embrittlement resistance.

〔発明の効果〕 以上説明したように本発明によれば低鉄損の非晶質合金
磁芯を得ることが出来る。
[Effects of the Invention] As explained above, according to the present invention, an amorphous alloy magnetic core with low iron loss can be obtained.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 単ロール法により作製した幅101+111、平均厚さ
20pmの(Peo、osNbo、oi )aa8is
Btt非晶質合金薄帯(結晶化温度486C、キュリ一
温度190 r ’)を用いて外径18 m 1内径1
2Ellのトロイダル磁芯を作製し、440Cで30分
間真空熱処理を施した後の直流特性及び5QKHzにお
ける鉄損と真空熱処理後トロイダル磁芯を−たん解き、
再巻回してもとのトロイダル磁芯の形に戻した後の直流
特性及び59KHzにおける鉄損な表1に示す。
Example 1 (Peo, osNbo, oi) aa8is with a width of 101+111 and an average thickness of 20 pm produced by a single roll method
Using Btt amorphous alloy ribbon (crystallization temperature 486C, Curie temperature 190 r'), the outer diameter is 18 m, the inner diameter is 1
A 2Ell toroidal magnetic core was prepared, and the DC characteristics after vacuum heat treatment at 440C for 30 minutes, the core loss at 5QKHz, and the toroidal magnetic core after vacuum heat treatment were solved.
Table 1 shows the DC characteristics and iron loss at 59 KHz after rewinding to return to the original toroidal magnetic core shape.

表  ま ただし表1においてHcは保磁力、B、は10eにおけ
る磁束密度、 Brは残留磁束密度、Br/13.は角
形比である。表1より明らかなように再巻回後の方が低
い鉄損が得られていることがわかる。
In Table 1, Hc is coercive force, B is magnetic flux density at 10e, Br is residual magnetic flux density, Br/13. is the squareness ratio. As is clear from Table 1, it can be seen that a lower iron loss is obtained after rewinding.

実施例2 単ロール法により作製した幅10調、平均厚さ16μm
の(F+56.16 Nto、1. NbO,1G )
08 fil Bll非晶質合金薄帯(結晶化温度54
0C、キュリ一温度170 C)を用いて外径18m、
内径121111のトロイダル磁芯を作製し、480 
Cで30分間真空熱処理を施した後の直流特性及び5Q
KHzにおける鉄損と真空熱処理後トロイダル磁芯な−
たん解き、再巻回してもとのトロイダル磁芯の形に戻し
た後の直流特性及び(資)KHzにおける鉄損を表2に
示す。
Example 2 10 widths, average thickness 16 μm manufactured by single roll method
(F+56.16 Nto, 1. NbO, 1G)
08 fil Bll amorphous alloy ribbon (crystallization temperature 54
0C, Curie temperature 170C), outer diameter 18m,
A toroidal magnetic core with an inner diameter of 121111 was made and
DC characteristics and 5Q after vacuum heat treatment at C for 30 minutes
Iron loss at KHz and toroidal magnetic core after vacuum heat treatment
Table 2 shows the DC characteristics and core loss at KHz after unwinding and rewinding to return to the original toroidal magnetic core shape.

表  2 実施例1と同様ζ二、再巻回後の方が低い鉄損が得られ
る。なお、他の組成の場合C;ついても実験を行った結
果同様の効果が得られた。
Table 2 Similar to Example 1, lower iron loss is obtained after rewinding. In addition, as a result of conducting experiments with other compositions (C), similar effects were obtained.

Claims (4)

【特許請求の範囲】[Claims] (1)非晶質合金薄帯を巻回し、歪取り熱処理を施すこ
とにより生じた非晶質合金薄帯間の付着部分を剥離する
ことを特徴とする非晶質合金磁芯の製造方法。
(1) A method for producing an amorphous alloy magnetic core, which comprises winding an amorphous alloy ribbon and subjecting it to heat treatment to remove strain, thereby peeling off the adhesion between the amorphous alloy ribbons.
(2)非晶質磁性合金薄帯を巻回し、歪取り熱処理を施
した後、巻回を解き、その後再度巻回することを特徴と
する特許請求の範囲第1項記載の非晶質合金磁芯の製造
方法。
(2) The amorphous alloy according to claim 1, wherein the amorphous magnetic alloy ribbon is wound, subjected to strain relief heat treatment, unwound, and then wound again. Method of manufacturing magnetic core.
(3)前記非晶質磁性合金は正の磁歪を有するFe基非
晶質合金であることを特徴とする特許請求の範囲第1項
記載の非晶質合金磁芯の製造方法。
(3) The method for manufacturing an amorphous alloy magnetic core according to claim 1, wherein the amorphous magnetic alloy is an Fe-based amorphous alloy having positive magnetostriction.
(4)前記非晶質合金は、 (Fe_1_−_aM_a)_1_0_0_−_bX_
b(ただし M;Ti、V、Cr、Mn、Co、Ni、Zr、Nb、
Mo、Hf、Ta、Wの少なくとも一種 X;B又はB+Si(Siは10原子%以下)0≦a≦
0.25 12≦b≦30) であることを特徴とする特許請求の範囲第2項記載の非
晶質合金磁芯の製造方法。
(4) The amorphous alloy is (Fe_1_-_aM_a)_1_0_0_-_bX_
b (However, M; Ti, V, Cr, Mn, Co, Ni, Zr, Nb,
At least one of Mo, Hf, Ta, and W
0.25 12≦b≦30) The method for manufacturing an amorphous alloy magnetic core according to claim 2, characterized in that: 12≦b≦30).
JP60020021A 1985-02-06 1985-02-06 Manufacture of magnetic core of amorphous alloy Pending JPS61183453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020021A JPS61183453A (en) 1985-02-06 1985-02-06 Manufacture of magnetic core of amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020021A JPS61183453A (en) 1985-02-06 1985-02-06 Manufacture of magnetic core of amorphous alloy

Publications (1)

Publication Number Publication Date
JPS61183453A true JPS61183453A (en) 1986-08-16

Family

ID=12015436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020021A Pending JPS61183453A (en) 1985-02-06 1985-02-06 Manufacture of magnetic core of amorphous alloy

Country Status (1)

Country Link
JP (1) JPS61183453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880383A (en) * 1994-08-08 1999-03-09 Huff; Richard E. Vibrato assembly and acoustic coupling system for stringed instruments
US9551301B2 (en) 2014-02-27 2017-01-24 Yamabiko Corporation Rotary-type carburetor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880383A (en) * 1994-08-08 1999-03-09 Huff; Richard E. Vibrato assembly and acoustic coupling system for stringed instruments
US9551301B2 (en) 2014-02-27 2017-01-24 Yamabiko Corporation Rotary-type carburetor

Similar Documents

Publication Publication Date Title
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
US5252144A (en) Heat treatment process and soft magnetic alloys produced thereby
US4368447A (en) Rolled core
JPH0525946B2 (en)
JPH0226768B2 (en)
EP0086485B1 (en) Wound iron core
JP3059187B2 (en) Soft magnetic alloy, manufacturing method thereof and magnetic core
JPS61250162A (en) Production of amorphous alloy magnetic core
JP3856245B2 (en) Method for producing high permeability nanocrystalline alloy
JPH01247557A (en) Manufacture of hyperfine-crystal soft-magnetic alloy
JPS61183453A (en) Manufacture of magnetic core of amorphous alloy
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
US4834814A (en) Metallic glasses having a combination of high permeability, low coercivity, low AC core loss, low exciting power and high thermal stability
JP3055722B2 (en) Method for manufacturing wound core having high squareness ratio at high frequency and wound core
JPH08153614A (en) Magnetic core
JP2790277B2 (en) Manufacturing method of ultra-thin amorphous alloy
JPS6130008A (en) Toroidal magnetic core
JPS6229105A (en) Co radical amorphous wound magnetic core
JPS60128211A (en) Production of low iron loss amorphous alloy
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
KR0140788B1 (en) Ultrathin fe based nanocrystalline alloys and method for preparing ultrathin ribbons
JP3638291B2 (en) Low loss core
JP2713980B2 (en) Fe-based soft magnetic alloy
JP3058654B2 (en) Ultra-microcrystalline alloy and method for producing the same
JPH05117818A (en) Ultramicrocrystalline soft magnetic alloy