JPS61183195A - Vessel for liquid starting material - Google Patents

Vessel for liquid starting material

Info

Publication number
JPS61183195A
JPS61183195A JP2245585A JP2245585A JPS61183195A JP S61183195 A JPS61183195 A JP S61183195A JP 2245585 A JP2245585 A JP 2245585A JP 2245585 A JP2245585 A JP 2245585A JP S61183195 A JPS61183195 A JP S61183195A
Authority
JP
Japan
Prior art keywords
gas
starting material
raw material
chambers
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2245585A
Other languages
Japanese (ja)
Inventor
Akihiko Okamoto
明彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2245585A priority Critical patent/JPS61183195A/en
Publication of JPS61183195A publication Critical patent/JPS61183195A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Abstract

PURPOSE:To prevent a liq. starting material in a vessel from flowing into a gas introducing inlet by dividing the vessel into two chambers with a partition wall having a communicating hole at the lower part, fitting the gas introducing inlet and a gas releasing outlet to the separate chambers, and feeding a gas into the liq. starting material. CONSTITUTION:A carrier gas is fed into the liq. starting material such as trimethyl gallium or other organometallic compound to bubble the starting material, and the vaporized starting material is sent to a stage for growing a semiconductor in a vapor phase. At this time, the body 1 of the vessel contg. the liq. starting material (f) is divided into two chambers 2, 3 with a partition wall 1a having a hole 6 for introducing a bubbling gas at the lower part. The chambers 2, 3 communicate with each other by the hole 6. The gas introducing inlet 4 and a gas releasing outlet 5 are separately fitted to the upper parts of the chambers 2, 3. Even when a carrier gas pipe is connected to the gas releasing outlet 5 by mistake, the liq. starting material (f) is prevented from surging back into the gas introducing inlet 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は気相成長装置に関し、特に半導体素子の製造等
に用いる気相成長装置の液体原料容器に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vapor phase growth apparatus, and more particularly to a liquid raw material container for a vapor phase growth apparatus used for manufacturing semiconductor devices.

〔従来の技術〕[Conventional technology]

高集積回路、半導体レーデ−及び光検知等の微細構造を
有する半導体装置を作成するにあたシ、薄膜成長はきわ
めて重要な工程の一つである。然るに薄膜成長方法とし
ては気相成長法、液相成長法、及び分子線エピタキシャ
ル法が用いられているが、分子線エピタキシャル法及び
気相成長法は原料ガス又は原料となる分子から結晶基板
への直接成長という有利嘔から量産性の点で最も優れて
いる。
Thin film growth is one of the extremely important steps in producing semiconductor devices with fine structures such as highly integrated circuits, semiconductor radars, and photodetectors. However, the vapor phase growth method, liquid phase growth method, and molecular beam epitaxial method are used as thin film growth methods. However, the molecular beam epitaxial method and the vapor phase growth method are methods for growing thin films from a source gas or raw material molecules to a crystal substrate. It has the advantage of direct growth and is the best in terms of mass production.

従来の気相成長法において、思料ガスはガスぎンベよシ
又液体原料の場合はバブラー(bubbler)よシ輸
送ガスとともに反応管に供給される。結晶基板は反応管
内にて抵抗加熱、高周波加熱等によシ加熱てれ送られて
きた原料ガスは結晶基板上又はその近傍にて化学反応を
おこし結晶基板上にエピタキシャル成長する。
In conventional vapor phase growth methods, the target gas is supplied to the reaction tube together with a transport gas, either through a gas tank or, in the case of a liquid source, through a bubbler. The crystal substrate is heated in a reaction tube by resistance heating, high frequency heating, etc., and the supplied raw material gas causes a chemical reaction on or near the crystal substrate, resulting in epitaxial growth on the crystal substrate.

液体原料を用いる場合、液体原料を収納した容器に輸送
ガスをおくりこみ、原料を気化するとともに輸送ガスは
反応部へ送シ出される。その際原料の濃度を一定とする
丸めに容器を一定の温度とし、又原料の蒸気圧を飽和蒸
気圧とするためにおくシこまれたガスを液体原料の中に
送ルこみこれを泡出式せる。
When using a liquid raw material, a transport gas is pumped into a container containing the liquid raw material, and the raw material is vaporized and the transport gas is sent to the reaction section. At this time, the temperature of the container is kept constant to keep the concentration of the raw material constant, and the gas pumped into the liquid raw material is pumped to bring the vapor pressure of the raw material to the saturated vapor pressure. The ceremony can be held.

このような方法において、従来の方法ではたとえばトリ
メチルがリウA (tryme、thylsgalll
um )等の有機金属を用いる場合、原料を高純度に保
つ必要があシ、又空気中では爆発的に燃焼するために容
器は通常ステンレス製でできている。従って容器内の状
態は外部からはわからない。又ガスを泡立たせるためガ
ス導入口から通常ステンレスのパイプが容器の底部に配
設されている。送られたガスはガス導入口よシ容器内に
はいり、前記パイプをとおシ容器の底部に達し液体原料
の中に送シ込まれる。
In such a method, in the conventional method, for example, trimethyl is
When organic metals such as um) are used, it is necessary to maintain the raw materials at a high purity, and since they burn explosively in the air, containers are usually made of stainless steel. Therefore, the condition inside the container cannot be seen from the outside. In order to bubble the gas, a stainless steel pipe is usually installed at the bottom of the container from the gas inlet. The sent gas enters the container through the gas inlet, reaches the bottom of the container through the pipe, and is pumped into the liquid raw material.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような構造において誤ってガス導入口と
ガス放出口を逆にとシつけた場合液体原料がそのまま容
器外に送シだされてしまうこととなる。又ガス導入口と
ガス放出口とを正常にとシつけた場合でもガスの操作の
誤)によってガス導入口の圧力がガス放出口の圧力より
小てくなった場合、液体原料が逆流してしまうという欠
点がある。とくに有機金属原料のトリメチルがリウムな
どは大気中ではきわめてはげしく燃焼するため、原料が
逆流した状態で有機金属容器をとbaずした場合原料が
燃焼するという危険がある。
However, in such a structure, if the gas inlet and gas outlet are mistakenly installed in the opposite direction, the liquid raw material will be directly discharged out of the container. Even if the gas inlet and gas outlet are connected correctly, if the pressure at the gas inlet becomes lower than the pressure at the gas outlet due to incorrect gas operation, the liquid material will flow backwards. There is a drawback. Particularly, organometallic raw materials such as trimethyl lithium burn very violently in the atmosphere, so if the organometallic container is removed while the raw materials are flowing backwards, there is a risk that the raw materials will burn.

本発明の目的は上記のような危険性を除去し得る液体原
料容器を提供することにある。
An object of the present invention is to provide a liquid raw material container that can eliminate the above-mentioned risks.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は液体原料中に輸送ガスを供給し、これを泡立た
せて半導体気相成長等の工程に気化された原料を送出す
る液体原料容器において、容器内を少なくとも2室に区
画し、前記2室の一部を下部で連通式せ、各室の上部に
ガス導入口又はガス放出口の少なくとも一つを設けたこ
とを特徴とする液体原料容器である。
The present invention provides a liquid raw material container for supplying a transport gas into a liquid raw material, making the gas bubble, and delivering the vaporized raw material to a process such as semiconductor vapor phase growth, in which the inside of the container is divided into at least two chambers, and the container is divided into at least two chambers. This is a liquid raw material container characterized in that some of the chambers are connected at the lower part and at least one of a gas inlet or a gas outlet is provided in the upper part of each chamber.

〔実施例〕〔Example〕

以下トリメチルガリウム等有機金属の液体原料容器を例
にあげて本発明の実施例を詳細に説明する。
Embodiments of the present invention will be described in detail below, taking as an example a container for a liquid raw material containing an organic metal such as trimethyl gallium.

第1図は本発明の一実施例である有機金属用液体原料容
器の断面図である。容器本体1は隔壁1aKて液体原料
容器室2.3に区画され、画室2.3は隔壁1&の下部
に開口したバブル用ガス導入口6によって連通し、収容
室2の上部にはガス導入口4、収容室3の上部にはガス
放出口5がそれぞれ接続されている。液体原料fは液体
原料収容室2及び3に収容されている。輸送ガス、たと
えば水素はガス導入口4よ)供給され、液体原料収容室
2の原料の液面を押さげる。そして液面が二つの原料収
容室2,3をつないでいるバブル用ガス導入口6に達し
たとき、ガスは液体原料収容室2よシ収容室3内におし
出されるときに泡立ちながら収容室3内の液面に達し、
ガス放出口5よ〕放出され、工程に送シ込まれる。なお
、この時液体原料収容室3の液面は上昇するので、ガス
放出口5までに達しな″いようにあらかじめ液体原料1
の量を調節しておく。本発明の容器の画状容室2.3は
基本的に対称形でよく、逆Kガス放出口5をガス導入口
として用いてまったく支障がない。さらにガス導入口4
側の液体原料収容室2に加えられる圧力が収容室3の圧
力よシも低くなった場合収容室3の液面が押しさげられ
るが、その液面がバブル用ガス導入口6に達したときガ
スが液体原料収容室2内にはいシ従って真空破壊され液
体原%lfがガス導入口4よシ逆流することはない。
FIG. 1 is a sectional view of a container for organic metal liquid raw material, which is an embodiment of the present invention. The container body 1 is divided into a liquid raw material container chamber 2.3 by a partition wall 1aK, and the compartments 2.3 are communicated with each other by a bubble gas inlet 6 opened at the lower part of the partition wall 1&, and a gas inlet port is provided at the upper part of the storage chamber 2. 4. Gas discharge ports 5 are connected to the upper part of the storage chamber 3, respectively. The liquid raw material f is stored in the liquid raw material storage chambers 2 and 3. A transport gas, such as hydrogen, is supplied through the gas inlet 4) and presses down the liquid level of the raw material in the liquid raw material storage chamber 2. When the liquid level reaches the bubble gas inlet 6 that connects the two raw material storage chambers 2 and 3, the gas is contained while bubbling as it is discharged from the liquid raw material storage chamber 2 into the storage chamber 3. Reaching the liquid level in chamber 3,
The gas is released from the gas discharge port 5 and sent to the process. At this time, since the liquid level in the liquid raw material storage chamber 3 rises, the liquid raw material 1 should be prepared in advance so that it does not reach the gas discharge port 5.
Adjust the amount. The partitioned chamber 2.3 of the container of the present invention may be basically symmetrical, and the inverted K gas discharge port 5 may be used as a gas introduction port without any problem. Furthermore, gas inlet 4
When the pressure applied to the liquid raw material storage chamber 2 on the side becomes lower than the pressure in the storage chamber 3, the liquid level in the storage chamber 3 is pushed down, but when the liquid level reaches the bubble gas inlet 6. When the gas enters the liquid raw material storage chamber 2, the vacuum is broken and the liquid raw material %lf does not flow back through the gas inlet 4.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明の液体原料容器に
よれば、液体原料のガス導入口への逆流をおこすことな
くしたがって液体原料の容器の誤った装着による事故や
ガス系の誤動作による液体原料の逆流による事故を防ぐ
ことが可能となシ、可燃性原料による事故を防ぐことが
でき、従来の液体原料容器に比してその取扱いを容易に
行うことができる。
As is clear from the above description, the liquid raw material container of the present invention prevents the liquid raw material from flowing back into the gas inlet port, thereby preventing accidents caused by incorrect installation of the liquid raw material container or malfunction of the gas system. Accidents caused by backflow of liquid can be prevented, accidents caused by flammable raw materials can be prevented, and handling can be performed more easily than conventional liquid raw material containers.

実施例は本発明を制限するものではない。すなわち本例
では2つの収容室を対称に設けた容器を例示したが、こ
れが非対称であっても又2室が独立した容器であっても
同じように液体原料の逆流を防ぐことが可能である。
The examples are not intended to limit the invention. In other words, in this example, a container with two storage chambers provided symmetrically was illustrated, but even if the container is asymmetrical or the two chambers are independent, it is possible to prevent backflow of the liquid raw material in the same way. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す断面図である。 1・・・容器本体、2,3・・・液体原料収容室、4・
・・ガス導入口、5・・・ガス放出口、6・・・バブル
用ガス導入口。
FIG. 1 is a sectional view showing one embodiment of the present invention. 1... Container body, 2, 3... Liquid raw material storage chamber, 4.
...Gas inlet, 5...Gas discharge port, 6...Bubble gas inlet.

Claims (1)

【特許請求の範囲】[Claims] (1)液体原料中に輸送ガスを供給し、これを泡立たせ
て半導体気相成長等の工程に気化された原料を送出する
液体原料容器において、容器内をすくなくとも2室に区
画し、前記2室の一部を下部で連通させ、各室の上部に
ガス導入口又はガス放出口の少くとも一つを設けたこと
を特徴とする液体原料容器。
(1) In a liquid raw material container that supplies a transport gas into a liquid raw material, bubbles the gas, and sends the vaporized raw material to a process such as semiconductor vapor phase growth, the inside of the container is divided into at least two chambers, and the container is divided into at least two chambers, A liquid raw material container characterized in that a portion of the chambers are communicated at the lower part, and at least one of a gas inlet or a gas outlet is provided in the upper part of each chamber.
JP2245585A 1985-02-07 1985-02-07 Vessel for liquid starting material Pending JPS61183195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2245585A JPS61183195A (en) 1985-02-07 1985-02-07 Vessel for liquid starting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2245585A JPS61183195A (en) 1985-02-07 1985-02-07 Vessel for liquid starting material

Publications (1)

Publication Number Publication Date
JPS61183195A true JPS61183195A (en) 1986-08-15

Family

ID=12083182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2245585A Pending JPS61183195A (en) 1985-02-07 1985-02-07 Vessel for liquid starting material

Country Status (1)

Country Link
JP (1) JPS61183195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170404B2 (en) 2004-05-20 2012-05-01 Akzo Nobel N.V. Bubbler for constant vapor delivery of a solid chemical

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629951B2 (en) * 1977-07-30 1981-07-11

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5629951B2 (en) * 1977-07-30 1981-07-11

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8170404B2 (en) 2004-05-20 2012-05-01 Akzo Nobel N.V. Bubbler for constant vapor delivery of a solid chemical

Similar Documents

Publication Publication Date Title
KR101076518B1 (en) Apparatus and methods for chemical vapor deposition
US6444038B1 (en) Dual fritted bubbler
JP4696561B2 (en) Vaporizer and processing device
US6868869B2 (en) Sub-atmospheric pressure delivery of liquids, solids and low vapor pressure gases
EP2496733B1 (en) Method for evaporation
KR910001925B1 (en) Process for saturating organic metallic compound
TW200535278A (en) Source gas delivery
EP1079001B1 (en) Dual fritted bubbler
US7584942B2 (en) Ampoules for producing a reaction gas and systems for depositing materials onto microfeature workpieces in reaction chambers
JPS61183195A (en) Vessel for liquid starting material
JPH0927455A (en) Manufacture of semiconductor substrate and material gas supplying apparatus
WO2006009872A1 (en) Direct injection chemical vapor deposition method
EP0143611B1 (en) Bubbling evaporator
JP2796975B2 (en) Liquid raw material vaporizer
KR101219438B1 (en) Canister for producing semiconductor
CN211412037U (en) Precursor conveying device suitable for chemical vapor deposition method
JPS62128519A (en) Vaporizer for liquid
JPH062142A (en) Feeder for liquid vapor raw materials
EP3610052A1 (en) Aerosol-free vessel for bubbling chemical precursors in a deposition process
JP2002220669A (en) Vaporization vessel for liquid raw material
JPH0499312A (en) Organometallic vapor growth apparatus
TWI388688B (en) Apparatus and methods for chemical vapor deposition
JPH04177826A (en) Chemical vessel for manufacturing semiconductor device
KR100476788B1 (en) Metal Organic Chemical Vapor Deposition System
JP2004296614A (en) Liquid material vaporization/supply device