JPS61181598A - Anaerobic digestion treatment of organic sewage - Google Patents

Anaerobic digestion treatment of organic sewage

Info

Publication number
JPS61181598A
JPS61181598A JP60023247A JP2324785A JPS61181598A JP S61181598 A JPS61181598 A JP S61181598A JP 60023247 A JP60023247 A JP 60023247A JP 2324785 A JP2324785 A JP 2324785A JP S61181598 A JPS61181598 A JP S61181598A
Authority
JP
Japan
Prior art keywords
anaerobic digestion
methane bacteria
temp
low
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60023247A
Other languages
Japanese (ja)
Other versions
JPH0366957B2 (en
Inventor
Hidetoshi Matsuyama
松山 英俊
Yasuhiro Okubo
泰宏 大久保
Yutaka Takemoto
竹本 裕
Jun Ishida
純 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Nishihara Environment Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Nishihara Environmental Sanitation Research Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nishihara Environmental Sanitation Research Corp filed Critical Agency of Industrial Science and Technology
Priority to JP60023247A priority Critical patent/JPS61181598A/en
Publication of JPS61181598A publication Critical patent/JPS61181598A/en
Publication of JPH0366957B2 publication Critical patent/JPH0366957B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To keep the low-temp. methane bacteria as the dominant species, to enable the activity to be kept even at low temp. and to perform sufficiently the energy recovery by adding bacteriophage for middle-temp. methane bacteria to the sludge treating an organic sewage. CONSTITUTION:In case of performing the methane fermentation by introducing an organic sewage into an anaerobic digestion vessel of the temp.-nonregulation, bacteriophage for middle-temp. methane bacteria is added in the above- mentioned anaerobic digestion treating vessel and the middle-temp. methane bacteria are selectively sterilized by the bacteriolysis action and the low-temp. methane bacteria are always kept in the system as the dominant species. Thereby the activity can be kept even at low temp. and the energy recovery can be sufficiently performed and also the treatment of the low-concn. organic sewage can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野に の発明はし尿、汚泥、産業廃水、下水等の有機性汚水の
嫌気性消化処理方法に関するもので、この発明によれば
、嫌気性消化槽を加温せずに効果的なメタン発酵を行な
えるので、簡単な設備で十分なエネルギー回収ができる
[Detailed Description of the Invention] [The invention in the field of industrial application relates to a method for anaerobic digestion of organic sewage such as human waste, sludge, industrial wastewater, and sewage. Because effective methane fermentation can be performed without heating, sufficient energy can be recovered with simple equipment.

[従来の技術] 従来からし尿、汚泥等の高濃度有機性汚水の処理方法と
して、嫌気性消化処理方法が広(採用されている。
[Prior Art] Anaerobic digestion methods have been widely used as a method for treating highly concentrated organic wastewater such as human waste and sludge.

この方法では、処理の結果としてメタンガスが得られ、
エネルギーを回収できるという利点がある。そして、気
温の高い地域では、無加温のものもあるが、一般的には
処理を効果的に行なうために消化槽を30〜36℃位に
加温している。
In this method, methane gas is obtained as a result of processing,
It has the advantage of being able to recover energy. In areas with high temperatures, there are some that do not require heating, but generally the digestion tank is heated to about 30 to 36 degrees Celsius for effective processing.

[この発明が解決しようとする問題息1従来の嫌気性消
化処理は30〜36°C位の温度で活性がある中温メタ
ン菌を利用しているため、冬期消化槽内の温度が低下す
ると活性が落ち、十分な処理が行なえなかった。また、
これを解消す)ために槽内を加温することも行なわれて
いるが、圭うするとエネルギーの回収が十分に行なえな
くなる。また下水等低濃度の廃水を嫌気性消化処理する
場合、その嫌気性消化処理槽は非常に大きくなり、処理
水1当たりのガス発生量は非常に少ないので、それを加
温することは不可能である。この発明は20℃前後でも
活性のある低温メタン菌を消化槽内に優占種として保持
し、冬期も加温することなしに、十分な処理が行なえ、
低濃度の有機外汚水の処理にも適用でき、エネルギーを
効率よく回収できる有機性汚水の嫌気性消化処理方法を
提供する。
[Problem to be solved by this invention (1) Conventional anaerobic digestion uses mesophilic methane bacteria that are active at temperatures of about 30 to 36°C, so they become active when the temperature inside the digester drops in winter. fell, and sufficient processing could not be carried out. Also,
In order to solve this problem, the inside of the tank has been heated, but if this is done, energy cannot be recovered sufficiently. In addition, when anaerobically digesting low-concentration wastewater such as sewage, the anaerobic digestion tank becomes very large and the amount of gas generated per 1 liter of treated water is extremely small, making it impossible to heat it. It is. This invention maintains low-temperature methane bacteria, which are active even at around 20°C, as the dominant species in the digestion tank, and allows sufficient treatment to be carried out even in winter without heating.
To provide an anaerobic digestion method for organic wastewater that can be applied to the treatment of low-concentration non-organic wastewater and can efficiently recover energy.

[問題を解決するための手段1 この発明では、20℃前後の低温において活性を持つ特
定のメタン菌(以下低温メタン菌と呼ぶ)を用いる。こ
の低温メタン菌としては、メタン細菌8−G(徽工研菌
寄7873号)、メタン細菌8−N4(徽工研菌寄第7
874号)、メタン細菌8−1P(微工研菌寄@ 78
75号)、メタン細菌16−11−L(微工研菌寄第7
876号)等の細菌が利用される。そして、この低温メ
タン菌を用いれば冬期も無加温でメタン発酵が行なえる
ため、エネルギー回収が効果的に行なえる。ところが、
この低温メタン菌は、30℃前後では中温メタン菌と活
性度がほぼ同程度であり、それ以上の温度では中温メタ
ン菌より活性度が落ちる。このため、夏期に消化槽内の
温度が30℃以上で運転していると、中温メタン菌が低
温メタン菌に変わって優占種となってしまう。そして、
そのまま運転を続けると冬期に十分な処理が行なえなく
なる。
[Means for solving the problem 1] In this invention, a specific methane bacteria (hereinafter referred to as low-temperature methane bacteria) that is active at a low temperature of around 20° C. is used. These low-temperature methane bacteria include Methanobacterium 8-G (Huikoken Bacteria No. 7873), Methanobacter 8-N4 (Huikoken Bacteria No. 7).
No. 874), Methane Bacteria 8-1P (Feikoken Bacteria @ 78
No. 75), Methanobacterium 16-11-L (Feikoken Bacteria No. 7)
Bacteria such as No. 876) are used. By using this low-temperature methane bacteria, methane fermentation can be carried out without heating even in winter, making it possible to effectively recover energy. However,
The activity of this low-temperature methane bacteria is almost the same as that of mesophilic methane bacteria at around 30°C, and the activity is lower than that of mesophilic methane bacteria at temperatures higher than that. For this reason, if the digester is operated at a temperature of 30° C. or higher in the summer, mesophilic methane bacteria will change to low-temperature methane bacteria and become the dominant species. and,
If the operation continues as it is, sufficient treatment will not be possible in the winter.

そこで、本願では嫌気性消化処理系内にある汚泥に中温
メタン菌に対するバクテリオ77−ノを4加し、中温メ
タン菌をその溶菌作用で選択的に構菌し、低温メタン菌
を常時優占種として系内に4持する。
Therefore, in this application, 4 Bacterio 77-no against mesophilic methane bacteria is added to the sludge in the anaerobic digestion treatment system, and the mesophilic methane bacteria are selectively assembled with its lytic action, and the low-temperature methane bacteria are always the dominant species. As a result, there are 4 in the system.

[実施例1の構成1 :の発明の実施例について図面を参照して説明十入。[Configuration 1 of Example 1 10 descriptions of embodiments of the invention with reference to drawings.

第1図はこの発明の第1の実施例を示す模式図である。FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

1はし尿、汚泥、家畜ふん尿、産業廃水、下水等の有機
性汚水を嫌、気性消化槽2に導入する流入管である。3
は消化槽2内の中央底部に設けられた散気装置3である
64は嫌気性消化槽内で発生したメタンガスはガスタン
ク(図示せず)へ導くガス排出管である。5は消化処理
液の導出管で沈殿槽6に連絡されている。7は処理水排
出管で、沈殿槽6の上澄液を排出する。8は汚泥返送管
で、沈殿槽6の底部に接続され、沈殿槽6の沈殿汚泥を
嫌気性消化槽2へ返送する。9は余剰汚泥排出管で、汚
泥返送管8内の返送汚泥の一部を余剰汚泥として処理系
外へ排出する。10はバクテリオファージ導入管で、バ
クテリオファージを嫌気性消化槽2へ添加する。
1 is an inflow pipe that introduces organic wastewater such as human waste, sludge, livestock manure, industrial wastewater, and sewage into the pneumatic digestion tank 2; 3
64 is a gas diffuser 3 provided at the center bottom of the digestion tank 2, and a gas discharge pipe 64 leads the methane gas generated in the anaerobic digestion tank to a gas tank (not shown). Reference numeral 5 is a drainage pipe for the digestion liquid, which is connected to the sedimentation tank 6. 7 is a treated water discharge pipe for discharging the supernatant liquid from the settling tank 6. A sludge return pipe 8 is connected to the bottom of the settling tank 6 and returns the settled sludge in the settling tank 6 to the anaerobic digestion tank 2. Reference numeral 9 denotes a surplus sludge discharge pipe, which discharges a portion of the returned sludge in the sludge return pipe 8 as surplus sludge to the outside of the treatment system. 10 is a bacteriophage introduction tube for adding bacteriophage to the anaerobic digestion tank 2.

[実施例1の作用1 有機性汚水は流入管1より消化槽2内に導入される。こ
の嫌気性消化槽2内は散気装置3から噴出されるガスに
よっ℃攪はんされており、流入した汚水とメタン菌を含
む汚泥の接触が行なわれる。
[Effect 1 of Example 1 Organic wastewater is introduced into the digestion tank 2 through the inflow pipe 1. The inside of this anaerobic digestion tank 2 is agitated by the gas ejected from the aeration device 3, and the inflowing sewage and sludge containing methane bacteria come into contact with each other.

そして、流入した汚水中の有機物をメタン菌を含む嫌気
性細菌の作用によって、メタンガス、炭酸ガス等に分解
する嫌気性消化処理が行なわれる。
Then, an anaerobic digestion process is performed in which the organic matter in the inflowing wastewater is decomposed into methane gas, carbon dioxide gas, etc. by the action of anaerobic bacteria including methane bacteria.

ここで、嫌気性消化槽2内には酸素を導入してはならな
いので、散気装置3へは嫌気性消化槽2で発生したガス
の一部が循環使用される。また、ここで発生したガスは
ガス排出管4を通じガスタンクへ導入され、燃焼させて
エネルギーが回収される。この嫌気性消化槽2の滞留時
間は通常20日程度である。なお、槽内の攪はんば、こ
の実施例のガス攪はんだけでなく、機械攪はん等適宜手
段で行なわれる。 ここで、嫌気性消化槽2内には低温
メタン菌が優占的に存在しており、槽内の加温手段がな
くても、常時効果的な嫌気性消化処理が行なわれている
。そして、嫌気性消化処理液は導出管5により沈殿槽6
に導入され、ここで固液分離されて上澄液は処理水とし
て処理水排出管7より排出される。  また、沈殿汚泥
は種汚泥として汚泥返送管8を通じ嫌気性消化槽2へ返
送されろ。
Here, since oxygen must not be introduced into the anaerobic digestion tank 2, a part of the gas generated in the anaerobic digestion tank 2 is circulated and used in the aeration device 3. Further, the gas generated here is introduced into the gas tank through the gas exhaust pipe 4, and is combusted to recover energy. The residence time in this anaerobic digestion tank 2 is usually about 20 days. In addition to the stirring bar in the tank and the gas stirring in this embodiment, the stirring may be carried out by any suitable means such as mechanical stirring. Here, low-temperature methane bacteria are predominantly present in the anaerobic digestion tank 2, and effective anaerobic digestion is always performed even without heating means in the tank. The anaerobic digestion solution is then transferred to a sedimentation tank 6 through a discharge pipe 5.
The solid-liquid is separated here, and the supernatant liquid is discharged from the treated water discharge pipe 7 as treated water. Further, the settled sludge is returned to the anaerobic digestion tank 2 through the sludge return pipe 8 as seed sludge.

沈殿汚泥の1部は余剰汚泥排出管9より余剰汚泥として
系外へ排出され、別途処理されるこの発明では、嫌気性
消化槽2にバクテリオファージ導入管10から中温メタ
ン菌に対するバクテリオ7アージが添加される。添加さ
れたバクテリオ7アー)はすでにしられている溶菌作用
によって、汚泥中の中温メタン菌を溶菌する。この溶菌
作用は、バクテリオ77−ノが細菌の細胞膜を破壊して
その内部に侵入し、バクテリオ77−ノの遺伝子と細菌
の原形質とから約100〜200の固体数のバクテリオ
77−ノを複製するという形で行なわれる。この現象は
バクテリオファージの再生産と呼ばれ、再生産に要する
時間は30分〜3時間位である。従って嫌気性消化槽2
に一部バクテリオファージを導入すれば、嫌気性消化槽
内で複製されるので、新たにバクテリオファージを導入
する必要はない。特に、冬期は中温メタン菌の活性が低
いため、通常は夏期(槽内温度が25°C位になったと
き)に一度バクテリオファージを導入すれば良い。
A part of the settled sludge is discharged out of the system as surplus sludge from the surplus sludge discharge pipe 9 and is treated separately. In this invention, Bacteriophage 7age against mesophilic methane bacteria is added to the anaerobic digestion tank 2 from the bacteriophage introduction pipe 10. be done. The added bacterium 7ar) lyses mesophilic methanogens in the sludge by its already known bacteriolytic action. This bacteriolytic action is caused by Bacterio 77-no destroying the bacterial cell membrane and invading the inside of the cell, and replicating approximately 100 to 200 individual Bacterio 77-no from the Bacterio 77-no gene and bacterial protoplasm. It is done in the form of This phenomenon is called bacteriophage reproduction, and the time required for reproduction is about 30 minutes to 3 hours. Therefore, anaerobic digester 2
If some bacteriophages are introduced into the anaerobic digester, they will be replicated within the anaerobic digester, so there is no need to introduce new bacteriophages. In particular, the activity of mesophilic methane bacteria is low in the winter, so it is usually sufficient to introduce the bacteriophage once in the summer (when the temperature inside the tank reaches about 25°C).

このため、消化槽内の温度が高くても、中温メタン菌は
増殖できず、嫌気性消化槽2内に低温メタン菌を優占種
として保持できる。
Therefore, even if the temperature inside the digestion tank is high, mesophilic methane bacteria cannot proliferate, and low-temperature methane bacteria can be maintained as a dominant species in the anaerobic digestion tank 2.

そして、冬期に入って槽内の温度が低下しても、処理機
能はそれほど落ちず、十分な処理、十分なメタン発酵を
維持出来、有効なエネルギー回収が行なえる。
Even when the temperature inside the tank drops during the winter, the processing function does not deteriorate significantly, and sufficient processing and methane fermentation can be maintained, allowing effective energy recovery.

なお、バクテリオファージが細菌に付着する際、カルシ
ウムイオンなどの因子が必要な場合もあり、また付着す
る宿主菌である中温メタン菌の種類や濃度、温度、多重
感染度などの因子が影響を与えると考えられるが、これ
らの条件は当業者であれば容易に見出だし得るので、詳
細な説明は省略する。
Furthermore, when bacteriophages attach to bacteria, factors such as calcium ions may be necessary, and factors such as the type and concentration of mesophilic methanogens that are attached to the host bacteria, temperature, and degree of multiinfection have an effect. However, since these conditions can be easily found by those skilled in the art, detailed explanation will be omitted.

ここで、BOD 12,000mg/lのし尿の嫌気性
消化処理を30℃、30日滞留で行なった。その時のガ
ス発生率は投入し尿の約8倍であった。
Here, human waste with a BOD of 12,000 mg/l was subjected to anaerobic digestion treatment at 30° C. and retained for 30 days. The gas generation rate at that time was about 8 times that of input human urine.

次に、この処理槽の温度を25°Cとして運転したとこ
ろ、ガス発生率6倍となった。さらに、温度を20°C
としたところガス発生率はどんどん減少し、メタン発酵
は起こらなくなり、処理不能となった。
Next, when the treatment tank was operated at a temperature of 25°C, the gas generation rate increased six times. Furthermore, increase the temperature to 20°C
As a result, the gas generation rate steadily decreased, methane fermentation no longer occurred, and treatment became impossible.

これに対し、当初に上記の低温メタン菌を種付けし、こ
れに中温メタン菌に対するバクテリオファージを添加し
たこの発明の方法では、30°Cで1力月運転したあと
20℃に温度を下げても、8倍のガス発生率を維持し、
良好な処理が行なえた。
On the other hand, in the method of the present invention, in which the above-mentioned low-temperature methane bacteria is initially seeded and a bacteriophage against mesophilic methane bacteria is added thereto, the temperature can be lowered to 20 °C after operating at 30 °C for one month. , maintains 8 times the gas generation rate,
Good processing was performed.

なお、バクテリオファージ゛は返送汚泥に添加しても、
汚水に添加しでもよい。
Furthermore, even if bacteriophage is added to the returned sludge,
May be added to wastewater.

[実施例2の構成1 第2図〜第4図はこの発明の第2の実施例を示す模式図
である。第2図において、21は有機性汚水を嫌気性消
化槽22に導入する流入管である。
[Configuration 1 of Embodiment 2 FIGS. 2 to 4 are schematic diagrams showing a second embodiment of the present invention. In FIG. 2, 21 is an inflow pipe that introduces organic wastewater into an anaerobic digestion tank 22.

23は嫌気性消化槽22内に設置された接触ろ材で、後
述するような構成を有している。この例では、槽内に攪
はん手段を設けていないが、接触ろ材23内にガス供給
によって上昇流を生起するがスリット管等を配し、槽内
液を循環できるようにしてもよい。
Reference numeral 23 denotes a contact filter medium installed in the anaerobic digestion tank 22, and has a configuration as described below. In this example, stirring means is not provided in the tank, but gas is supplied into the contact filter medium 23 to generate an upward flow, but a slit pipe or the like may be provided to circulate the liquid in the tank.

嫌気性消化槽22の上部にはガス排出管24が接続され
、ホッパー状の底部には余剰汚泥排出管25が接続され
ている。接触ろ材23の一部には処理水排出路26が形
成され、その上部は処理水排出管27が接続されている
A gas discharge pipe 24 is connected to the top of the anaerobic digestion tank 22, and an excess sludge discharge pipe 25 is connected to the hopper-shaped bottom. A treated water discharge passage 26 is formed in a part of the contact filter medium 23, and a treated water discharge pipe 27 is connected to the upper part of the treated water discharge passage 26.

そして、各種にはバクテリオ77−)を槽内に導入する
バクテリオファージ導入管28が設けられている。
Each type is provided with a bacteriophage introduction tube 28 for introducing bacteriophage 77-) into the tank.

第3図、第4図は接触ろ材23の一例を示すものである
。この例では接触ろ材23は板状の植毛繊布30を複数
互いに間隔をおいて垂直方向で平行ている。植毛繊布3
0は板状の基布32とそれに植え付けられ突出した無数
の短i維33がら成っている。なお、植毛繊布30は市
販の人工芝のようなものでもよいが、市川毛織(株)販
売の商品名ロンメツシュのように長さの違う(数a+m
〜数Qm位)短繊維が植え付けられたものがとくに適し
ている。
3 and 4 show an example of the contact filter medium 23. FIG. In this example, the contact filter medium 23 includes a plurality of plate-shaped flocked fiber cloths 30 arranged in parallel in the vertical direction and spaced apart from each other. Flocked fabric 3
0 consists of a plate-shaped base cloth 32 and countless short i-fibers 33 planted therein and protruding. The flocked fabric 30 may be made of commercially available artificial turf, but it can be made with different lengths (several meters +
Those in which short fibers (~several Qm) are planted are particularly suitable.

[実施例2の作用1 有機性汚水は流入管21より消化槽22内に上部から導
入される。汚水は接触ろ材23内を通過し、接触ろ材2
3に保持されたメタン菌等と接触し、処理をうける。こ
れによって含有する有機物を分解処理された処理水は処
理水排出路26を通り処理水排出管27から排出される
。槽内で発生するメタンガスはガス排出管24がら排出
されエネルギー回収される。また余剰の汚泥は余剰汚泥
排出管25から排出される。ここで、汚水は複数の槽に
分流して連続的に供給してもよいが、各種に順次供給し
てもよい。また、槽内に循環手段を設けた方が接触がよ
く行なわれ、短絡の危険が少かどatffilf−)−
プよ自傷市入五fI−、+7.亜19L−yiERが付
着するのが防げる。
[Effect 1 of Embodiment 2 Organic wastewater is introduced from the upper part into the digestion tank 22 through the inflow pipe 21. The sewage passes through the contact filter medium 23 and the contact filter medium 2
It comes into contact with methane bacteria etc. held in 3 and undergoes treatment. The treated water, in which the organic matter contained therein has been decomposed, passes through the treated water discharge path 26 and is discharged from the treated water discharge pipe 27. Methane gas generated within the tank is exhausted through the gas exhaust pipe 24 and energy is recovered. Further, surplus sludge is discharged from the surplus sludge discharge pipe 25. Here, the wastewater may be divided into a plurality of tanks and supplied continuously, or may be sequentially supplied to each type. Also, if a circulation means is provided in the tank, the contact will be better and the risk of short circuit will be reduced.
Puyo self-harm city entry 5 fI-, +7. It can prevent sub-19L-yiER from adhering.

接触ろ材として、板状植毛繊布を用いるとメタン菌を有
効に保持できる。メタン菌は好気性細菌と違いろ材等に
付着しにくい。このため、この例のようなメタン菌を狭
い間隙内に確実に保持できるものがよい。また、接触ろ
材は発生したガスが上方に抜けることができる必要があ
る。この例のような形状であれば、ガスが上方に容易に
抜けられる。また、短繊維は図示のような斜め上方を向
いたものの方がメタン菌を効果的に保持できる。
Methane bacteria can be effectively retained by using a plate-like flocked fiber cloth as a contact filter medium. Unlike aerobic bacteria, methane bacteria do not easily adhere to filter media. For this reason, it is preferable to use one that can reliably hold methane bacteria within a narrow gap, such as in this example. In addition, the contact filter medium must allow the generated gas to escape upward. With a shape like this example, gas can easily escape upward. Furthermore, short fibers that are oriented diagonally upward as shown in the figure can more effectively retain methane bacteria.

そして、槽内にはバクテリオファージ導入管より中温メ
タン菌に対するバクテリオ7アージが添加され、これに
よって実施例1と同様の作用で中温メタン菌の増殖が抑
制され、低温メタン菌が優占種として保持される。
Then, Bacterio 7age against mesophilic methane bacteria was added into the tank from the bacteriophage introduction tube, and this suppressed the growth of mesophilic methane bacteria with the same effect as in Example 1, maintaining the low-temperature methane bacteria as the dominant species. be done.

そして、冬期温度が下がっても無加温でも効果的なメタ
ン発酵が行なわれる。
Even when winter temperatures drop, effective methane fermentation can occur without heating.

なお、この例では滞留時間を実施例1の173、つまり
10日としても十分処理が可能であった。
In this example, sufficient treatment was possible even if the residence time was set to 173 as in Example 1, that is, 10 days.

なお、バクテリオ77−ノは流入汚水に添加しても良い
6 [発明の効果1 以上のように、この発明によれば、有機性汚水を処理す
る汚泥に中温メタン菌に対するバクテリオファージを添
加することにより、低温メタン菌を優占種として保持し
、低温でも活性を維持でき、十分なエネルギー回収が行
なえ、また低濃度有機性汚水の処理も行なえる。
In addition, Bacterio 77-no may be added to inflowing sewage.6 [Effect of the invention 1 As described above, according to the present invention, bacteriophage against mesophilic methane bacteria can be added to sludge for treating organic sewage. As a result, low-temperature methane bacteria can be maintained as the dominant species, activity can be maintained even at low temperatures, sufficient energy can be recovered, and low-concentration organic wastewater can be treated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す模式図、第2図は他
の実施例を示す模式図、第3図および第4図は第2図の
接触ろ材の一例を示す拡大図である。 2・・・・・・・・・嫌気性消化槽、6・・・・・・・
沈殿槽、10.28・・・・・・・バクテリオ7アー)
導入管、23・・・・・・・接触ろ材
Fig. 1 is a schematic diagram showing one embodiment of the present invention, Fig. 2 is a schematic diagram showing another embodiment, and Figs. 3 and 4 are enlarged views showing an example of the contact filter medium in Fig. 2. . 2... Anaerobic digestion tank, 6...
Sedimentation tank, 10.28...Bacterio7ar)
Introductory tube, 23...Contact filter material

Claims (1)

【特許請求の範囲】[Claims] 有機性汚水を温度無調整の嫌気性消化槽に導入し、ここ
でメタン発酵させるにあたり、上記嫌気性消化処理槽に
中温メタン菌に対するバクテリオファージを添加し、槽
内に低温メタン菌を優占種として保持することを特徴と
する有機性汚水の嫌気性消化処理方法
Organic sewage is introduced into an anaerobic digestion tank with no temperature control, and methane is fermented there. Bacteriophage against mesophilic methane bacteria is added to the anaerobic digestion tank, and low-temperature methane bacteria are the dominant species in the tank. A method for anaerobic digestion of organic wastewater, characterized by retaining it as
JP60023247A 1985-02-07 1985-02-07 Anaerobic digestion treatment of organic sewage Granted JPS61181598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60023247A JPS61181598A (en) 1985-02-07 1985-02-07 Anaerobic digestion treatment of organic sewage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60023247A JPS61181598A (en) 1985-02-07 1985-02-07 Anaerobic digestion treatment of organic sewage

Publications (2)

Publication Number Publication Date
JPS61181598A true JPS61181598A (en) 1986-08-14
JPH0366957B2 JPH0366957B2 (en) 1991-10-21

Family

ID=12105266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60023247A Granted JPS61181598A (en) 1985-02-07 1985-02-07 Anaerobic digestion treatment of organic sewage

Country Status (1)

Country Link
JP (1) JPS61181598A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795239A (en) * 1985-08-29 1989-01-03 Canon Kabushiki Kaisha Method of driving a display panel
JP2011050910A (en) * 2009-09-03 2011-03-17 Sumitomo Heavy Industries Environment Co Ltd Method and apparatus for biological wastewater treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795239A (en) * 1985-08-29 1989-01-03 Canon Kabushiki Kaisha Method of driving a display panel
JP2011050910A (en) * 2009-09-03 2011-03-17 Sumitomo Heavy Industries Environment Co Ltd Method and apparatus for biological wastewater treatment

Also Published As

Publication number Publication date
JPH0366957B2 (en) 1991-10-21

Similar Documents

Publication Publication Date Title
US6500340B1 (en) Pasteurizing sludge to exceptional quality
KR101369718B1 (en) Manufacturing Apparatus and Method for Organic Carbon Source using Food Waste Water
CN102168054A (en) Sphingomonas strain and application thereof in water treatment
JP3048889B2 (en) Activated sludge treatment method and activated sludge treatment apparatus therefor
CN105174622A (en) System and method suitable for treating high concentration organic wastewater
JP4092592B2 (en) Heating carrier, method for producing the same, and environmental purification method using heating carrier
JPS61181598A (en) Anaerobic digestion treatment of organic sewage
JP2003053309A (en) Method of treating organic solid waste
JP3614515B2 (en) Anaerobic digestion treatment method of high concentration organic wastewater and treatment apparatus therefor
JP4993109B2 (en) Cultivation method and apparatus, and wastewater treatment method and apparatus
CN113860482A (en) Method for treating livestock and poultry wastewater by coupling constructed wetland with microbial cell
CN209442737U (en) A kind of Inner electrolysis submerged plant bed apparatus
JPH0366956B2 (en)
JP2001232388A (en) Method and apparatus for treating waste liquor
JPS6167474A (en) Filter-type bioreactor immobilized with anaerobic microorganism
CN113185005B (en) Method for on-line regeneration of activated carbon adsorption carrier by biological method
JPH0691285A (en) Method for treating highly concentrated organic drainage
CN113415896B (en) Composite functional microbial agent for on-line regeneration of activated carbon adsorption carrier by anoxic culture biological method and application thereof
WO2004028983A1 (en) A method of processing organic wastewater
JPH04277096A (en) Method for treating organic waste water by photosynthesized microorganism
JP3991691B2 (en) Immobilization carrier and environmental purification method using immobilization carrier
JPH06142685A (en) Method and device for treating waste fluid containing organic nitrogen
JPH0217676Y2 (en)
JP2023176527A (en) Water treatment method and water treatment apparatus
JP3697533B2 (en) Method and apparatus for solubilizing sludge