JPS61181259A - Contact type image sensor - Google Patents
Contact type image sensorInfo
- Publication number
- JPS61181259A JPS61181259A JP1989485A JP1989485A JPS61181259A JP S61181259 A JPS61181259 A JP S61181259A JP 1989485 A JP1989485 A JP 1989485A JP 1989485 A JP1989485 A JP 1989485A JP S61181259 A JPS61181259 A JP S61181259A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- image sensor
- photoelectric conversion
- contact type
- scanning direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Image Processing (AREA)
- Facsimile Heads (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、ファクシミリや光学的文字読取装置に用いら
れ、原稿に密着して原稿上の文字や図形を読みをるため
のイメージ七ンサ装置に係り、特に、限られた画素数の
一次元密着型イメージセンサを用いて解像度の高い像を
得るように構成した密着型イメージセンサ装置に関する
。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an image sensor device used in facsimiles and optical character reading devices to read characters and figures on a document in close contact with the document. In particular, the present invention relates to a contact image sensor device configured to obtain a high-resolution image using a one-dimensional contact image sensor having a limited number of pixels.
ファクシミリや光学的文字読取装置などの光学的読取に
使用されるものに光電変換素子がある。Photoelectric conversion elements are used for optical reading in facsimile machines, optical character reading devices, and the like.
従来、この種の読取装置に使用される光電変換素子とし
ては、CCDフォトダイオードアレイ等の半導体イメー
ジセンサが主であった。しかしこれらの装置においては
、通常縮小光学系を用いるため、光路長が長くなり、小
型化を図ることが難しかった。このため、最近では装置
の小型化を図るため、光電変換素子として非晶質シリコ
ンを金属電極および透明電極で挟持した密着型イメージ
センサが提案されている。Conventionally, semiconductor image sensors such as CCD photodiode arrays have been the main photoelectric conversion elements used in this type of reading device. However, since these devices usually use a reduction optical system, the optical path length becomes long, making it difficult to achieve miniaturization. For this reason, recently, in order to reduce the size of the device, a contact type image sensor in which amorphous silicon is sandwiched between a metal electrode and a transparent electrode as a photoelectric conversion element has been proposed.
この密着型イメージセンサを用いた装置の従来例を笛5
図に示す、同図において、該装置は、基台1上に取り付
けられた基板2上に形成された光電変換素子(密着型ラ
インセンサ)3と、原稿4を照射するL E D等によ
る光源5と、光源5によって照射した原稿4の反射光を
受けるレンズアレイ6とから構成さね、該光電変換素子
3がレンズアレイ6からの入射光を受けて光電変換を行
なう。A conventional example of a device using this close-contact image sensor is Whistle 5.
In the figure, the device includes a photoelectric conversion element (contact line sensor) 3 formed on a substrate 2 mounted on a base 1, and a light source such as an LED that illuminates a document 4. 5 and a lens array 6 that receives reflected light from the original 4 irradiated by the light source 5. The photoelectric conversion element 3 receives the incident light from the lens array 6 and performs photoelectric conversion.
7は主走査方向、8は副走査方向である。7 is the main scanning direction, and 8 is the sub-scanning direction.
一般に密着型イメージセンサ装置の解像度は、基板2+
に形成された光電変換素子3の画素数によって決まるが
、基板2上に形威し得る画素数は、大面積のフォトリソ
グラフィーという微細加工技術により制限されるため、
形成できる光電変換素子数に限界があり、高解像度の密
着型イメージセンサを得ることは困難であった。Generally, the resolution of a contact type image sensor device is 2+
The number of pixels that can be formed on the substrate 2 is determined by the number of pixels of the photoelectric conversion element 3 formed on the substrate 2, but the number of pixels that can be formed on the substrate 2 is limited by the fine processing technology of large area photolithography.
There is a limit to the number of photoelectric conversion elements that can be formed, making it difficult to obtain a high-resolution contact type image sensor.
本発明は、上記の問題点に鑑みてかされたもので、その
目的は、従来の密着型イメージセンサ(光電変換素子)
を用いて、高解像度の密着型イメージセ/ザ装置を提供
することにある。The present invention has been made in view of the above-mentioned problems, and its purpose is to replace the conventional contact type image sensor (photoelectric conversion element).
An object of the present invention is to provide a high-resolution contact type image sensor/device using the above.
上記目的を達成するため、本発明は、基板上に光電変換
素子を直線状に配し、光源により照射された光が原稿に
反射して、この反射光がレンズアレイを通して前記光電
変換素子により読みとられる密着型イメージセンサ装置
において、主走査方向に振動する圧電変位素子を備えた
支持体上に前記基板を股げ、この基板上の主走査方向に
、換言すれば、圧電変位素子の振動方向に平行に前記光
電変換素子な直線状に設けた構成1(シてあり、光電変
換素子列を圧電変位素子の作用により主走査方向に変位
せしめて読耳ンリ、読取ピッチを隣接する光電変換素子
のピッチより小さくして高@度読取を可能にしたことを
特徴としている。In order to achieve the above object, the present invention arranges photoelectric conversion elements in a straight line on a substrate, the light irradiated by a light source is reflected on the document, and this reflected light passes through a lens array and is read by the photoelectric conversion element. In the contact type image sensor device, the substrate is straddled on a support having a piezoelectric displacement element that vibrates in the main scanning direction, and the vibration direction of the piezoelectric displacement element on this substrate is straddled in the main scanning direction. Structure 1 in which the photoelectric conversion elements are arranged in a straight line parallel to The feature is that the pitch is smaller than the pitch of , enabling high-level reading.
以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.
第1図は、本発明の実施例に係る密着型イメージセンサ
装置の概要を示す斜視図である。同図において、密着型
イメージセンサ装置は、光電変換素子(密着型ラインセ
ンザ)3と、原稿4を照射する光源5と、光源5によっ
て照射したgt f$ 4の反射光を受けるレンズアレ
イ6とを備えた絶縁性の基板2と、基台1+に設けられ
た基板2の支持体9とから主に構成さ才1ている。FIG. 1 is a perspective view showing an outline of a contact type image sensor device according to an embodiment of the present invention. In the figure, the contact type image sensor device includes a photoelectric conversion element (contact type line sensor) 3, a light source 5 that irradiates a document 4, and a lens array 6 that receives reflected light of gt f$ 4 irradiated by the light source 5. The device is mainly composed of an insulating substrate 2 and a support 9 for the substrate 2 provided on a base 1+.
支持体9は、圧電変位素子10.バネ材11およびバネ
材11を支承する支承体12とからなり、基板2の両端
部に配設さねている。この支持体9は、二本の支承体1
2間にバネ材11を張設し、このバネ月11の両面に圧
電性薄板を電極を介して複数枚積層して形成された積層
型の圧電素子により構成されている。この積層型圧電素
子にあっては、隣接する圧電性薄板は同一方向で互いに
逆の向きに分極処理が施され、を極は一個おきに共通に
接続されて1群の電極としてまとめられており、該1群
の電極間に駆動電圧を印加することにより、個々の圧電
性薄板に駆動電圧が印加され、この電圧の印加方向、す
なわち圧電性薄膜内における電界方向に変位が生じる。The support body 9 supports the piezoelectric displacement element 10. It consists of a spring material 11 and a support body 12 that supports the spring material 11, and is arranged at both ends of the substrate 2. This support 9 consists of two supports 1
A spring material 11 is stretched between the spring members 11, and a stacked piezoelectric element is formed by stacking a plurality of piezoelectric thin plates on both sides of the spring member 11 via electrodes. In this stacked piezoelectric element, adjacent piezoelectric thin plates are polarized in the same direction but in opposite directions, and every other pole is connected in common to form one group of electrodes. By applying a driving voltage between the group of electrodes, the driving voltage is applied to each piezoelectric thin plate, and displacement occurs in the direction of application of this voltage, that is, in the direction of the electric field within the piezoelectric thin film.
そして、この変位が積層枚数分加算されて基板2を所定
量偏向させる。基板2は、この支持体9の積層した圧電
変位素子10の側面上に図の如く阜り付けられており、
このとき、圧電変位素子10の振動方向と主走査方向7
および基板2上の光電変換素子3の配列方向とが等しく
なるように設定さねでいる。この場合、光電変換素子3
の配設位置が、圧電変位素子10の最大振幅位置(腹)
にあたるように基板2を取り付けることが望ましい。ま
た、光源5オ6よびレンズアレイ6は、光学的に位置合
せを行なった状態で該基板2上に固定されており、該光
電変換素子3はこのレンズアレイ6の下に配設されるこ
ととなる。Then, this displacement is added up by the number of laminated sheets to deflect the substrate 2 by a predetermined amount. The substrate 2 is attached to the side surface of the laminated piezoelectric displacement element 10 of the support 9 as shown in the figure.
At this time, the vibration direction of the piezoelectric displacement element 10 and the main scanning direction 7
and the arrangement direction of the photoelectric conversion elements 3 on the substrate 2 are set to be equal to each other. In this case, the photoelectric conversion element 3
The arrangement position is the maximum amplitude position (antinode) of the piezoelectric displacement element 10
It is desirable to attach the substrate 2 so that the Further, the light sources 5 and 6 and the lens array 6 are fixed on the substrate 2 in an optically aligned state, and the photoelectric conversion element 3 is disposed below the lens array 6. becomes.
光電変換素子3からの電極の取り出しは、本実施例の場
合、前記絶縁性の基板2上の導電パターン(図示せず)
とフレキシブルプリント基板13上の導電パターン(図
示せず)とを、例えばはんだを用いて接続することによ
り行なう。このフレキシブルプリント基板13は、往復
動する基板2に接続されているため、例えば切欠部など
を形成して該基板2の偏向を妨げることのないように工
夫しておくことが望ましい。In this embodiment, the electrodes are taken out from the photoelectric conversion element 3 using a conductive pattern (not shown) on the insulating substrate 2.
This is done by connecting the conductive pattern (not shown) on the flexible printed circuit board 13 using, for example, solder. Since the flexible printed circuit board 13 is connected to the reciprocating board 2, it is desirable to form a notch, for example, so as not to hinder the deflection of the board 2.
次に、上記構成の密着型イメージセンサ装置の動作につ
いて説明する。Next, the operation of the contact type image sensor device having the above configuration will be explained.
圧電変位素子10が変位する原理は、既に述べたように
、圧電性薄板に駆動電圧を印加して、この電圧印加方向
に変位を生じさせるものであるが、圧電変位素子10と
して、厚さ0.05mの圧電性薄板をAg−Pd系、P
i−Pd、7等の電極を介して300枚積層上たものを
用いた場合には、変位感度は20μm/1ooVしがな
く、光学読取り装置に用いる変位感度としては不充分で
ある。As already mentioned, the principle of displacement of the piezoelectric displacement element 10 is to apply a drive voltage to a piezoelectric thin plate and cause displacement in the direction of this voltage application. .05m piezoelectric thin plate is made of Ag-Pd system, P
When 300 sheets of i-Pd, 7, etc. are laminated with electrodes interposed therebetween, the displacement sensitivity is only 20 μm/1ooV, which is insufficient for displacement sensitivity used in an optical reading device.
こ才1に対し、前記のような薄い板状のバネ材11の側
面にこわど同様の圧電性薄膜と電極とを300枚楯崩し
て圧電変位素子10を形成した場合には、第2図に示す
ような変位感度特性を示す支持体9が得られる。したが
って当該支持体9上に取り付けられた基板2および光電
変換素子3等は、第2図に示した特性で変位可能である
。In contrast to Kosai 1, when the piezoelectric displacement element 10 is formed by breaking 300 similar piezoelectric thin films and electrodes on the side surface of the thin plate-shaped spring material 11 as described above, the piezoelectric displacement element 10 is formed as shown in FIG. A support 9 is obtained which exhibits displacement sensitivity characteristics as shown in FIG. Therefore, the substrate 2, photoelectric conversion element 3, etc. mounted on the support 9 can be displaced with the characteristics shown in FIG.
この変位(偏向)の例を第3図に示す。第3図(a)は
、光電変換素子3の受光部3日がピッチPの間隔をもっ
て直線状に配設さ第1た例で、例えば、受光部3aで画
像信号を得た後、圧電変位素子10に所定の電圧(第2
図の特性図から得もねた電圧)を1印加して、P /
2だけ圧電素子10を変位させると基板2および前記受
光部3aがPi2だけ変位して3bの位置にくる。そし
てこの位置で受光部3 a Kよりレンズアレイ6から
の反射光を読み取る。このように受光部3aをPi2だ
け移動させて読み取ると、読み取り密度が2倍になり、
実質的に画素数を2倍に形成したものと同じ高細密な画
像を得ることが可能となる。An example of this displacement (deflection) is shown in FIG. FIG. 3(a) shows a first example in which the light receiving sections 3 of the photoelectric conversion element 3 are arranged in a straight line with an interval of pitch P. For example, after obtaining an image signal at the light receiving section 3a, the piezoelectric displacement A predetermined voltage (second
By applying 1 voltage (which was obtained from the characteristic diagram in the figure), P/
When the piezoelectric element 10 is displaced by Pi2, the substrate 2 and the light receiving section 3a are displaced by Pi2 and come to the position 3b. At this position, the light receiving section 3aK reads the reflected light from the lens array 6. If the light receiving part 3a is moved by Pi2 and read in this way, the reading density will be doubled,
It becomes possible to obtain a highly detailed image that is substantially the same as an image formed with twice the number of pixels.
したがって、とわを実際の読み取り装置に適用すれば、
主走査の外に原稿の送りとして副走査が加味さね、第3
図(b)に示すように原稿の送り(副走査)をPとする
と、例えばE1位置で原稿を読み取った後、圧電変位素
子10に電圧を印加してPi2だけ基板2および受光部
3aを変位させると同時に原稿なPだけ送ってE2位置
で読み取り、さらに圧電変位素子10の電圧印加を解い
て原位置に基板2と受光部3aをPi2だけ戻すと同時
に原稿をPだゆ送り再びE1位置で読み取る、という動
作を繰り返すことにより、従来の2倍の読取密度で読み
取ることが可能となる。この場合、例えば原稿の送りを
Pi2とすると、副走査方向の読み取り密度も2倍とな
り、結局4倍の読み増り密度のものが得られる。Therefore, if Towa is applied to an actual reading device,
In addition to main scanning, sub-scanning is added to feed the document, and the third
Assuming that the document feeding (sub-scanning) is P as shown in FIG. At the same time, the original is fed by P and read at the E2 position, and then the voltage application to the piezoelectric displacement element 10 is released and the substrate 2 and light receiving section 3a are returned to their original positions by Pi2.At the same time, the original is fed by P and read again at the E1 position. By repeating the reading operation, it becomes possible to read at twice the reading density of the conventional method. In this case, for example, if the document feed rate is Pi2, the reading density in the sub-scanning direction will also be doubled, resulting in an increased reading density of 4 times.
このような読取動作を行なう際の動作制御方法を第4図
に示す。第4図(II)は圧電変位素子10の振幅と受
光位置の関係を示す駅切回、第4図(1))は圧電変位
素子10を変位させる場合の印加電圧の波形を示す欣切
回、第4図(C)は副走査(原稿送り)時間を示す欽、
切回である。El、 E、はそれぞれ第3図(b)の
蛍光部3aの位置を示し、圧電変位素子10への印加電
圧がOvのとき、受光部3aはElで示される位置にあ
り、■1■印加したとき、圧電変位素子10がPi2だ
け図において右側に変位し、これに同期して副走査が行
なわれLだけ送られる。FIG. 4 shows an operation control method for performing such a reading operation. FIG. 4 (II) shows the relationship between the amplitude of the piezoelectric displacement element 10 and the light receiving position, and FIG. 4 (1)) shows the waveform of the applied voltage when displacing the piezoelectric displacement element 10. , FIG. 4(C) shows the sub-scanning (original feeding) time;
It's a cut. El and E respectively indicate the position of the fluorescent part 3a in FIG. At this time, the piezoelectric displacement element 10 is displaced to the right in the figure by Pi2, and in synchronization with this, sub-scanning is performed and the piezoelectric displacement element 10 is moved by L.
副走査量りは任意ではあるが、圧電変位素子10の変位
r−に合わせて通常L=PもしくはL=P/。Although the sub-scanning scale is optional, it is usually L=P or L=P/ in accordance with the displacement r- of the piezoelectric displacement element 10.
が選択されることが多い。圧電変位素子10の変位量は
、第2図に示すように印加電圧に比例するので、この変
位量を制御するには、印加電圧を所定の変位幅に応じて
設定し、振幅と同期するような波形の電圧を印加して行
なえばよく、例えば第4図示したように同期をとると、
基準電圧ば倒ボルトにとってもよい。is often selected. The amount of displacement of the piezoelectric displacement element 10 is proportional to the applied voltage as shown in FIG. This can be done by applying a voltage with a suitable waveform. For example, if synchronization is achieved as shown in Figure 4,
It may also be used as a reference voltage.
なお、本実施例においては、受光部3aの変位量−をP
i2にとった例について説明しているが、例えばPi3
.2 Pi3と2回に分けてとり、都合3分割にとって
主走査方向を3倍の密度で読み取ることも可能であり、
副走査密度も主走査密度との兼合いで種々選択可能であ
ることはいうまでもない。In addition, in this embodiment, the amount of displacement of the light receiving portion 3a is expressed as P
An example taken for i2 is explained, but for example, for Pi3
.. It is also possible to read the main scanning direction at three times the density by dividing it into three parts by dividing it into 2 Pi3.
It goes without saying that the sub-scanning density can also be selected from various options in consideration of the main-scanning density.
以上の説明から明らかなように、本発明によれば、光電
変換素子、レンズアレイ、光源等を備えた基板を印加電
圧によって制御可能な圧電変換素子−トに取り付け、受
光部を主走査方向に変位させて主走査方向の読み取り密
度を高くすることにより、従来の密着型イメージセンサ
を用いて難しいとされていた読取密度を高くすることか
できる効果があり、この読取密度を必要に応じて選択で
き、極めて汎用性に富む密着型イメージセンサ装置を提
供できる。As is clear from the above description, according to the present invention, a substrate equipped with a photoelectric conversion element, a lens array, a light source, etc. is attached to a piezoelectric conversion element that can be controlled by an applied voltage, and the light receiving part is moved in the main scanning direction. By increasing the reading density in the main scanning direction by displacing the sensor, it is possible to increase the reading density, which was considered difficult using conventional contact type image sensors, and this reading density can be selected as needed. Therefore, it is possible to provide an extremely versatile contact type image sensor device.
第1図ないし第4図は本発明の実施例に係る密着型イメ
ージセンサ装置の説明のためのもので、第1図は木製的
の全体の概要を示す余1祝図、第2図は圧′市変位素仔
の印加電圧と変位匍の関係を示すグラフ、第3図は光電
変換素子の受光部の動作を示す訝、切回で、第3閉1(
a)は圧電変位素子の作用による変イζ・状態を示す説
明図、第3図(b)は上6[シ変位に副走査が加味され
た実際の読取動作を示す説明図、第4図は圧電変位素子
および副走査の駆動波形を示す説明図で、第4図(a)
は圧電変位素子の振幅と時間の関係を示すグラフ、第4
図(b)は圧電変もシ累了への印加霜、圧と時間の関係
を示すグラフ、第4し1(C)は副走査(原和送り搦)
と時間の関係を示すグラフ、第5図は従来の密着型イメ
ージセンサ装置の概、要を示す斜視図である。
1・・・基台、2・ ・基板、3・・・・・光電変換素
子、3a・・・・・受光窓、4・・・・原稿、5・・・
・・光源、6・・・・・・レンメアンイ、7・・・主走
査方向、8・・・・・副走査方向、9 ・・・支持体、
10・・・・・圧電変位素子、11 ・・−バネ材、1
2・・・・・・支承体、13・・・・・・フレ第2図
rP力ロ電圧 (V)
第3図
(a)
(b)
第4
(a) (b)EIE2E
IE2
0 /) ピヅ+r7)/ Ot(C)
(油楊刀もり−I)Figures 1 to 4 are for explaining the contact type image sensor device according to the embodiment of the present invention. Figure 3 is a graph showing the relationship between the applied voltage and the displacement of the displacement element.
Figure 3(b) is an explanatory diagram showing the actual reading operation in which sub-scanning is taken into account in the upper 6 displacement. is an explanatory diagram showing the drive waveform of the piezoelectric displacement element and sub-scanning, and FIG. 4(a)
is a graph showing the relationship between the amplitude and time of the piezoelectric displacement element, the fourth
Figure (b) is a graph showing the relationship between frost applied to the piezoelectric transformer and pressure and time, and the fourth and first (C) are sub-scanning (original speed)
FIG. 5 is a perspective view showing an overview of a conventional contact type image sensor device. 1...Base, 2...Substrate, 3...Photoelectric conversion element, 3a...Light receiving window, 4...Original, 5...
..Light source, 6..Length, 7.Main scanning direction, 8..Sub-scanning direction, 9..Support,
10...Piezoelectric displacement element, 11...-Spring material, 1
2...Support, 13...Frame Figure 2 rP force voltage (V) Figure 3 (a) (b) 4 (a) (b) EIE2E
IE2 0/) Pizu+r7)/Ot(C) (Yuyang Tomori-I)
Claims (1)
された光を原稿に反射させてこの反射光をレンズアレイ
を通して各光電変換素子により読み取る密着型イメージ
センサ装置において、主走査方向に振動する圧電変位素
子を備えた支持体上に前記基板を設けるとともに、この
主走査方向に該光電変換素子を配設したことを特徴とす
る密着型イメージセンサ装置。In a contact image sensor device, photoelectric conversion elements are arranged linearly on a substrate, light irradiated by a light source is reflected on a document, and the reflected light is read by each photoelectric conversion element through a lens array. A contact type image sensor device, characterized in that the substrate is provided on a support body having a piezoelectric displacement element, and the photoelectric conversion element is arranged in the main scanning direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989485A JPS61181259A (en) | 1985-02-06 | 1985-02-06 | Contact type image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989485A JPS61181259A (en) | 1985-02-06 | 1985-02-06 | Contact type image sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61181259A true JPS61181259A (en) | 1986-08-13 |
Family
ID=12011898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1989485A Pending JPS61181259A (en) | 1985-02-06 | 1985-02-06 | Contact type image sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61181259A (en) |
-
1985
- 1985-02-06 JP JP1989485A patent/JPS61181259A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5335091A (en) | Apparatus for mechanically dithering a CCD array | |
JPH0394572A (en) | Optical sensor improved with correction means for signal correction, picture reader and picture reading method | |
JPS61181259A (en) | Contact type image sensor | |
JPS6096067A (en) | Original reader | |
JPH0519352B2 (en) | ||
JP3273670B2 (en) | Solid-state imaging device | |
CN1191980A (en) | Optical waveguide reduction optical image sensor | |
JPH02202056A (en) | Close contact type image sensor | |
JPS62292070A (en) | Contact type image sensor and its production | |
JPH0324856A (en) | Image reader | |
JPH04354372A (en) | Manufacture of electronic device | |
JPS63133757A (en) | Image sensor | |
JPS63234766A (en) | Scanning optical system | |
JPH0568130A (en) | Contact type image sensor | |
JPS60218968A (en) | Optical reader | |
JPS63205950A (en) | Fixation of chip for image sensor | |
JPS60206061A (en) | Image sensor | |
JPH03120948A (en) | Close contact type image sensor | |
JPH0534770U (en) | Contact image sensor | |
JPH01144678A (en) | Reader | |
JPH054675U (en) | Solid-state imaging device | |
JPH0257057A (en) | Image sensor | |
JPH05303058A (en) | Optical fiber array substrate and complete-contact type image sensor using optical fiber array substrate | |
JPH056968U (en) | Contact image sensor | |
JPH0257361A (en) | Optically integrated printer |