JPS61181249A - Channel switching device - Google Patents

Channel switching device

Info

Publication number
JPS61181249A
JPS61181249A JP2085485A JP2085485A JPS61181249A JP S61181249 A JPS61181249 A JP S61181249A JP 2085485 A JP2085485 A JP 2085485A JP 2085485 A JP2085485 A JP 2085485A JP S61181249 A JPS61181249 A JP S61181249A
Authority
JP
Japan
Prior art keywords
switching
standby
active
communication path
systems
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2085485A
Other languages
Japanese (ja)
Other versions
JPH07105839B2 (en
Inventor
Noriyuki Suga
菅 敬之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60020854A priority Critical patent/JPH07105839B2/en
Publication of JPS61181249A publication Critical patent/JPS61181249A/en
Publication of JPH07105839B2 publication Critical patent/JPH07105839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/24Arrangements for supervision, monitoring or testing with provision for checking the normal operation
    • H04M3/244Arrangements for supervision, monitoring or testing with provision for checking the normal operation for multiplex systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Exchanges (AREA)
  • Exchange Systems With Centralized Control (AREA)
  • Use Of Switch Circuits For Exchanges And Methods Of Control Of Multiplex Exchanges (AREA)

Abstract

PURPOSE:To decrease a talking intermission time at channel switching without provision of a crossing between channel systems by providing a channel control processor at each separate system of a duplicated system. CONSTITUTION:If a fault takes place in a talking system SW00 in the operating system SP0, a channel control processor TP0 uses the SW00 as the standby system and uses an SW01 as the operating system and brings the access mode as 'Both system write and operating system read'. Thus, the talking not related to a faulty part is not intermitted but the talking is kept. On the other hand, when a central control processor CP receives a fault notice from the TP0, the CP gives a command of the changeover of the SW and of the access mode by one system. When the talking system not in fault is changed over by SW11, SW12, the TP0 brings the access mode into the mode of one system by the SW01 according to the command from the CP.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、交換機の2重化された通話路の切替装置、特
に障害通話路の切替えに好適な通話路の切替装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a switching device for duplexed communication paths in an exchange, and particularly to a communication path switching device suitable for switching a faulty communication path.

〔従来技術〕[Prior art]

2重系には、熱予備方式と冷予備方式とがある。 Dual systems include a heat reserve system and a cold reserve system.

待機中の待機系が作動中が否かによっての区別であり、
待機中の待機系が作動中のものを熱予備方式、停止中の
ものを冷予備方式と呼ぶ。
The distinction is based on whether the standby system is in operation or not.
When the standby system is in operation, it is called the heat reserve system, and when it is stopped, it is called the cold reserve system.

熱予備方式を採用した2重化時分割通話路を持つ電子交
換システムにおいて、通話路メモリ、保持メモリ等の書
込み、読出しモード(以下アクセスモードと呼ぶ)は、
両系正常時には、「両系書込み、運用系(動作系)読出
し」として、両系メモリ内容を一致させている。
In an electronic switching system with a duplex time-division communication path that employs a thermal reserve system, the writing and reading modes (hereinafter referred to as access modes) of the communication path memory, holding memory, etc. are as follows:
When both systems are normal, the memory contents of both systems are matched by "writing on both systems and reading on the active system (operational system)."

運用系通話路に障害が発生した際、予備系を運用系とし
、障害系をシステムから切離すと同時に、アクセスモー
ドを断連用系のみの「片系書込み、片系読出し」に変更
する必要がある。
When a failure occurs in the active communication path, it is necessary to make the backup system the active system, disconnect the faulty system from the system, and at the same time change the access mode to "one-side write, one-side read" for only the disconnected system. be.

然るに、マルチプロセッサ方式、特に負荷分散形による
マルチプロセッサ方式では、通話路系はIjj数のプロ
セッサにより分割制御されており、」ニ記の障害発生時
の障害処理が障害検出プロセッサでのみ行われると、他
プロセツサが制御する通話路の運用系と異なる運用系を
選択し、通話が途絶する。
However, in a multiprocessor system, especially a load-balanced multiprocessor system, the communication path system is divided and controlled by Ijj number of processors. , selects an active system different from the active system of the communication path controlled by another processor, and the call is interrupted.

この問題に対し、各通話路系を接続するシャンフタ(ス
イッチ間を接続する通話線)に交絡を設けることにより
、各通話路運用系が同一である必要をなくして対処する
ことが考えられる。ここで、交絡を設けるとは、運用系
から待機系へ、待機系から運用系への通話路を設けるこ
とを意味する。
One possible way to deal with this problem is to provide interlacing in the shunter (the communication line that connects the switches) that connects each communication path system, thereby eliminating the need for each communication path operation system to be the same. Here, providing a confound means providing a communication path from the active system to the standby system and from the standby system to the active system.

然るに、通話路系のジャンクタ交絡は、交絡がない場合
と比較して下記の如き問題がある。
However, junctor entanglement in the communication line system has the following problems compared to the case where there is no interlace.

1、 ハードウェア」二の問題点:■コネクタ数倍増に
よって実装作業が複雑となる。■選択回路(対向通話路
系に対する運用系表示機能又は両ジャンクタに運用系の
信号を乗せる機能)を追加しなければならず、パッケー
ジ増加及びフィシ1〜数の増加となること。
1. Hardware Issue 2: ■Doubling the number of connectors complicates mounting work. (2) It is necessary to add a selection circuit (a function to display the active system for the opposite communication path system or a function to put the active system signal on both junctions), resulting in an increase in the number of packages and the number of connections.

2、ソフl〜ウェア」二の問題点:ジャンクタ本数増加
によるリソース管理の複雑化。
2.Software/Software 2nd problem: Resource management becomes more complicated due to the increase in the number of junctors.

尚、2重化通話路の切替については、特開昭57−18
5787号がある。然るに、この公報記載によれば、マ
ルチプロセッサ制御における各通話路の切替の同時性に
ついて配慮されていない。
Regarding the switching of duplex communication channels, please refer to Japanese Unexamined Patent Publication No. 57-18
There is No. 5787. However, according to the description in this publication, no consideration is given to the simultaneous switching of each communication path in multiprocessor control.

〔発明の目的〕[Purpose of the invention]

本発明は、複数プロセッサによる分割制御されている通
話路系間のジャンクタ交絡を除去するため、ラフ1−ウ
ェア処理による通話途絶時間を最小にした通話路の切替
装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a communication path switching device that minimizes call interruption time due to rough 1-ware processing in order to eliminate junctor confounding between communication path systems that are divided and controlled by a plurality of processors. .

〔発明の概要〕[Summary of the invention]

本発明は、分散形で且つ2重化された熱予備形2重系通
話路系に対して、2重系の一方を運用系としてジャンク
タで連結し、他方を待機系としてジャンクタで連結し、
目、つ2重系の分散通話路系47jに通話路制御用ブロ
セyすを設けて、中央制御プロセッサとの接続をはかっ
た。この構成ではジャンクタの交絡はない。通話路制御
用プロセッサが対応する2重系の分散通話路系中の運用
系の障害検出時には、現在稼動中の運用系を一括して待
=3− 接糸とし、待機中の待機系を一括して運用系とさせる。
The present invention provides for a distributed and duplicated heat reserve dual communication line system, in which one of the duplexes is connected as an active system by a junction, and the other is connected as a standby system by a junction,
First, a communication path control block was provided in the dual distributed communication path system 47j to connect it to the central control processor. In this configuration there is no junctor confounding. When a failure is detected in the active system in the dual distributed communication path system supported by the communication path control processor, the currently operating active systems are set to standby = 3-, and the standby systems that are on standby are all set to standby. and make it operational.

尚、障害検出したプロセッサが系切替を実施してから、
他のプロセッサが系切替を実施するまでの間、通話が途
絶する可能性も皆無ではないが、アクセスモードを全プ
ロセッサ切替終了後に片系モードに遷移させることによ
り大巾に少なくすることができる。
In addition, after the processor that detected the failure performs system switching,
Although there is a possibility that the call will be interrupted until the other processors perform system switching, this can be greatly reduced by transitioning the access mode to the one-system mode after all processors are switched.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示す。通話路系全体は、2重
化された分散形の通話路系swoo、5WOI ;5W
iO,5WII ;5W20,5W21より成る。即ち
、分散数は3台であり、5WOOと5WOI、5WIO
と5WII、5W20と5W21とはそれぞれ2重系を
構成する。更に、5WOO,5WIO,5W20を運用
系トシ、5WO1,5WII、5W21を待機系とし、
この運用系全体を一括して運用通話路系SPOとして扱
い、待機系全体を一括して待機通話路系SPIとして扱
う。
FIG. 1 shows an embodiment of the invention. The entire communication path system is a duplicated distributed communication path system swooo, 5WOI; 5W.
iO, 5WII; Consists of 5W20, 5W21. That is, the number of distributed units is 3, 5WOO, 5WOI, 5WIO
and 5WII, 5W20 and 5W21 each constitute a double system. Furthermore, 5WOO, 5WIO, and 5W20 are used as active systems, and 5WO1, 5WII, and 5W21 are used as standby systems.
The entire active system is collectively handled as the active channel system SPO, and the entire standby system is collectively handled as the standby channel system SPI.

分散通話路系対応に通話路制御用プロセッサTPO,T
Pl、、TP2を設けた。この3台のプロセッサは、い
わゆる分散設置形のマルチプロセッサを構成する。
Communication path control processors TPO and T support distributed communication path systems.
Pl, TP2 were provided. These three processors constitute a so-called distributed multiprocessor.

3台の通話路制御用プロセラサゴPO,TP1.。Three communication path control Procerasago PO, TP1. .

TP2を制御管理する役割を持たせるべく中央制御用プ
ロセッサCPを設けた。
A central control processor CP is provided to have the role of controlling and managing TP2.

運用通話路系spoでは、swooと5WIO。In the operational communication path system spo, swooo and 5WIO.

5WIOと5W20,5W20とswooとの間で相互
に交信できるように、ジャンクタ(線路)で接続をはか
った。同様に、待機通話路系S P 1では、SWo 
1−と5WII、SWl、1と5W21゜SW21とS
WO1との間でジャンクタ、■により相互の接続をはか
った。
5WIO and 5W20, and 5W20 and swooo were connected by a junctor (line) so that they could communicate with each other. Similarly, in the standby channel system S P 1, SWo
1- and 5WII, SWl, 1 and 5W21゜SW21 and S
A mutual connection was made with WO1 using a junctor (■).

かかる相互接続は、交絡ではない。交絡とは、swoo
と5WII、5WOOと5W21とかの如く運用系と待
機系との間にジャンクタを設けることを云う。上記実施
例では、運用系相互の接続。
Such interconnections are not confounding. Confounding is swooo
This refers to the provision of a junctor between the active system and the standby system, such as 5WII, 5WOO, and 5W21. In the above embodiment, the connection between the active systems.

待機系相互の接続であり、交絡を意味しない。This is a mutual connection between standby systems and does not mean confounding.

第1図の構成の動作を第2図、第3図、第4図を用いて
説明する。
The operation of the configuration shown in FIG. 1 will be explained using FIGS. 2, 3, and 4.

障害の発生のない正常状態にあっては、5W00,5W
iO,5W20は運用系として働き、5WOI、5WI
I、5W21は待機系として働く。
Under normal conditions with no failures, 5W00,5W
iO, 5W20 works as an operational system, 5WOI, 5WI
I, 5W21 works as a standby system.

この指示は、swooと5WO1に対してはTPO,5
WIOとSWl、]−に対してはTPI、5W20とS
W21に対してはTP2が行う。この際のアクセス内容
は、書込みは運用系と待機系の両者に対して行い、読取
りは運用系のみを対象とする。
This instruction is TPO, 5 for swooo and 5WO1.
WIO and SWl, ]- for TPI, 5W20 and S
TP2 performs this for W21. In this case, the contents of the access are such that writing is performed on both the active system and the standby system, and reading is performed only on the active system.

さて、第2図に示す如く、運用系SPO中の通話路系s
wooに障害発生したとする。この障害をプロセッサT
POが検出する。障害検出したTPOの処理を第3図に
示す。障害検出(Fl)するとTPOは運用系swoo
を待機系とし、待機系5WO1を運用系へと切替える(
F2)。次に障害検出をした旨の表示(フラグ)を設定
する。(F3)。
Now, as shown in Figure 2, the communication path system s in the operational SPO
Suppose that a failure occurs in woo. Processor T
PO detects. FIG. 3 shows the processing of a TPO in which a failure has been detected. When a failure is detected (Fl), the TPO switches to the active system swoo
as the standby system, and switch the standby system 5WO1 to the active system (
F2). Next, an indication (flag) indicating that a failure has been detected is set. (F3).

次に、TPOは、CPに自己が障害検出した旨の通知を
出す(F4)。この際、TPOでのアクセスモードは、
「両系書込み、運用系読取り」のままとしておく。従っ
て、5WOO,5WO1共に、同じデータが書込まれ、
障害部分に関係しない通話は途絶せず、保たれる。
Next, the TPO issues a notification to the CP that it has detected a failure (F4). At this time, the access mode in TPO is
Leave it as "Write on both systems, read on the active system". Therefore, the same data is written to both 5WOO and 5WO1,
Calls not related to the faulty part will not be interrupted and will be maintained.

CPでは、第4図に示す如<TPOからの通知を受取(
F5)ると、全TPに刻しSWの切替及びアクセスモー
ドの片系化を指示する(F6)。
The CP receives the notification from the TPO (as shown in Figure 4).
F5), it instructs all TPs to switch the SW and change the access mode to one system (F6).

CPからの切替指示(Fl)を受けたTPでの処理を第
5図に示す。TPI、TP2では、F8で点検をし、障
害検出中のTPでないため、切替指示を受けると直ちに
通話路系をSWl、0−+5W11.5W20→SW2
1−へと切替える(F9)。即ち、5WiO,5W20
を待機系、5W11.、SW2]を運用系とする。次に
、アクセスモードを5W11.、SW2]−の片系用と
する(Fl、0)。
FIG. 5 shows the processing at the TP upon receiving the switching instruction (Fl) from the CP. TPI and TP2 are inspected with F8, and since the TP is not detecting a fault, immediately upon receiving a switching instruction, the communication path system is changed to SW1, 0-+5W11.5W20→SW2.
Switch to 1- (F9). That is, 5WiO, 5W20
standby system, 5W11. , SW2] is the active system. Next, change the access mode to 5W11. , SW2]- (Fl, 0).

一方、CPからの指示を受けたTPOは、自己が障害検
出時のTPであることを障害検出表示フラグをみてわか
る。このフラグが立っていれば切替えはすでに完了して
いることがわかり、系切替えは行わない。アクセスモー
ドについてswo]の片系切替のみを行う。
On the other hand, the TPO that has received the instruction from the CP knows that it is the TP at the time of failure detection by looking at the failure detection display flag. If this flag is set, it is known that switching has already been completed, and system switching will not be performed. Regarding the access mode, only one-side switching of swo] is performed.

TPOと、TPI(及びTP2)とでは、通話路系切替
処理時間の差(10数ナノ秒)、cpからの通信の所要
時間の差(数ミリ秒以下)、プロセッサの輻較度による
実行時間の差(数ミリ秒以下)等の多少のずれの可能性
はあるが、はぼいっせいにアクセスモー1〜をSPI片
系指定に切替える。この時点で、障害通話路系swoo
を含むSPOがシステムより切離されたことになる。
The difference between TPO and TPI (and TP2) is the difference in communication path system switching processing time (10-odd nanoseconds), the difference in the time required for communication from CP (several milliseconds or less), and the execution time due to the degree of convergence of the processor. Although there is a possibility that there is a slight deviation such as a difference in the number of seconds (several milliseconds or less), access modes 1 to 1 are switched to SPI single system designation all at once. At this point, the faulty channel system swoo
This means that the SPO containing the SPO has been disconnected from the system.

本実施によれば、通話路系の系交絡が存在しなくとも全
TPにおいて通話路系のアクセスモードをほぼいっせい
に切替えることにより、通話路系切替の際の通話途絶時
間を最小限におさえることができる。
According to this implementation, even if there is no system confounding in the communication path system, by switching the access mode of the communication path system almost simultaneously in all TPs, it is possible to minimize the call interruption time when switching the communication path system. can.

尚、本実施例では、上位プロセッサが存在し、プロセッ
サ間バスを介しての通信を用いた例であるが、この他に
(1)」三位プロセッサの機能を障害検出プロセッサに
持たせるやり方、(2)プロセッサ間バス通信の代りに
共通メモリを用いるやり方、もある。また、分散数3台
の事例には限定されなし1゜ 〔発明の効果〕 一8= 本発明によれば、通話系間に交絡を設けずに、通話途絶
時間を小さくおさえた通話路系切替えが実施できるので
、系交絡による選択回路の増加、運用系表示機能の変更
、ソフトウェアのリソース管理の複雑化等の問題点を除
去でき、保守性の向上価額の減少等の効果がある。
In this embodiment, there is a higher-level processor and communication is used via an inter-processor bus; however, there are other methods (1) to provide the fault detection processor with the functions of a third-level processor; (2) There is also a method of using a common memory instead of inter-processor bus communication. Furthermore, the present invention is not limited to the case where the number of distributed devices is 3.1゜[Effects of the Invention] 18= According to the present invention, communication path system switching can be performed to reduce call interruption time without creating confounding between communication systems. Since this can be implemented, problems such as an increase in the number of selection circuits due to system confounding, changes in the display function of the operating system, and complication of software resource management can be eliminated, and there are effects such as improvement in maintainability and reduction in costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例図、第2図は動作流れを一部含
めた実施例図、第3図〜第5図は処理フロー図である。 cp・・・中央制御用プロセッサ、TPO−TP2・・
通話路制御用プロセッサ、SPO・・・運用通話路系、
SPI・・・待機通話路系、swoo〜SW22・・通
話路系。
FIG. 1 is an embodiment diagram of the present invention, FIG. 2 is an embodiment diagram including a part of the operation flow, and FIGS. 3 to 5 are processing flow diagrams. cp...Central control processor, TPO-TP2...
Processor for communication path control, SPO... operational communication path system,
SPI: Standby communication path system, swooo~SW22: Communication path system.

Claims (1)

【特許請求の範囲】[Claims] 1、分散形の複数個の時分割通話路系を熱予備形の2重
系構成とし、2重系の中の一方を運用系、他方を待機系
としてすべての運用系をジャンクタによって相互接続し
、すべての待機系をジャンクタによって相互接続した通
話路系において、上記運用系の障害発生を検出する検出
手段と、該検出によって障害発生の運用系を待機系に切
換え、該障害発生の運用系と2重系をなす待機系を運用
系に切換える第1の切換手段と、該切換後残りの2重系
の中の正常運用系を待機系に、待機系を運用系に切換え
る第2の切換手段と、該切換後アクセスモードの切換え
を2重系すべてにわたって行う第3の切換手段と、より
成る通話路切替装置。
1. A plurality of distributed time-division communication channel systems are configured as a dual system with heat reserve, and one of the dual systems is an active system and the other is a standby system, and all active systems are interconnected by a junctor. , in a communication line system in which all standby systems are interconnected by a junctor, detecting means for detecting the occurrence of a failure in the above-mentioned active system; and upon detection, switching the active system in which the failure has occurred to the standby system; A first switching means for switching a standby system forming a dual system into an active system, and a second switching means for switching a normally operating system of the remaining dual system to a standby system and a standby system to an active system after the switching. and a third switching means for switching the access mode after switching over the entire duplex system.
JP60020854A 1985-02-07 1985-02-07 Call path switching method Expired - Fee Related JPH07105839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020854A JPH07105839B2 (en) 1985-02-07 1985-02-07 Call path switching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020854A JPH07105839B2 (en) 1985-02-07 1985-02-07 Call path switching method

Publications (2)

Publication Number Publication Date
JPS61181249A true JPS61181249A (en) 1986-08-13
JPH07105839B2 JPH07105839B2 (en) 1995-11-13

Family

ID=12038686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020854A Expired - Fee Related JPH07105839B2 (en) 1985-02-07 1985-02-07 Call path switching method

Country Status (1)

Country Link
JP (1) JPH07105839B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726955A (en) * 1980-07-25 1982-02-13 Hitachi Ltd Backup control system
JPS58225761A (en) * 1982-06-24 1983-12-27 Fujitsu Ltd Heat stand-by system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5726955A (en) * 1980-07-25 1982-02-13 Hitachi Ltd Backup control system
JPS58225761A (en) * 1982-06-24 1983-12-27 Fujitsu Ltd Heat stand-by system

Also Published As

Publication number Publication date
JPH07105839B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
CA2006489C (en) Distributed switching architecture for communication module redundancy
JP2567922B2 (en) Path control method
JPS61181249A (en) Channel switching device
JPS6347036B2 (en)
JP2774675B2 (en) Bus controller
JP3742714B2 (en) Remote monitoring and control device
JPH01145701A (en) Data link system for programmable controller
JPH0427239A (en) Control method for lan connecting device
JPH06175868A (en) Duplex computer fault monitoring method
JPH0264845A (en) Electronic computer multiplexing main control part
JPH096638A (en) Dual computer system and its switching device
JPS61224757A (en) Switching control system for communication controller
JP2869971B2 (en) Failure detection device
JPH0622020B2 (en) Peripheral bus controller in redundant information processing system
JPS6015181B2 (en) Exchange control system backup method
JPS6232739A (en) Switching control system
JPH0251950A (en) Electronic exchange duplex system
JPS638500B2 (en)
JPH04235656A (en) Channel device control system
JPH04137144A (en) Data processor
JPS61239334A (en) Information processor
JPH0267038A (en) Control system for distributed exchange system
JPH08314843A (en) Computer system
JPS62281649A (en) Transfer system for packet information
JPS6238057A (en) Duplicated center node device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees