JPS6118115A - Magnetic substrate having heat stress absorbing section - Google Patents

Magnetic substrate having heat stress absorbing section

Info

Publication number
JPS6118115A
JPS6118115A JP13838084A JP13838084A JPS6118115A JP S6118115 A JPS6118115 A JP S6118115A JP 13838084 A JP13838084 A JP 13838084A JP 13838084 A JP13838084 A JP 13838084A JP S6118115 A JPS6118115 A JP S6118115A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
cracks
application
magnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13838084A
Other languages
Japanese (ja)
Inventor
Tadayoshi Karasawa
柄沢 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magune Co Ltd
Original Assignee
Magune Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magune Co Ltd filed Critical Magune Co Ltd
Priority to JP13838084A priority Critical patent/JPS6118115A/en
Publication of JPS6118115A publication Critical patent/JPS6118115A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide magnetic member which does not result in cracks when sintering it even at a magnetic orientation rate of 100%, by forming air gaps on a circumference being approximately middle between the inner and outer circumferences of a cylinder, going through the cylinder in the longitudinal direction. CONSTITUTION:When ferrite magnetic powder is compressed and molded in magnetic field, one or more of air gaps pi or R are formed on an approximate middle position of magnetic member thickness in the direction applying the magnetic field, and in a plane rectangular to the magnetic field applying direction. Thus, distortion which may result from the sintering of the molding can be absorbed in the air gaps so as to reduce cracks.

Description

【発明の詳細な説明】 円筒形フェライト磁性体は円筒の長さが長い程及び肉厚
が薄い程成形が困難となり、成形歪が大きくなる。この
成形体はグリーンの状態ですでに歪があると焼結中に割
れ又は曲り等の不都合が生ずる。
DETAILED DESCRIPTION OF THE INVENTION The longer the cylinder length and the thinner the wall thickness of the cylindrical ferrite magnetic material, the more difficult it becomes to mold and the larger the molding distortion. If this molded body is already distorted in its green state, problems such as cracking or bending will occur during sintering.

更に又磁界の分布の不均一により粉体が偏在することも
成形体に歪を与える。第1図口に焼結後の歪の状態を示
した。しかしこれらの諸現象を解決した場合でも更に第
二のII関に遭遇する。即ち円筒の円周の中心線より放
射状に磁界を与えて成形したものは焼結により、内、外
周の表面層が異方性磁性体特有の強い引っばり歪を生ず
る。
Furthermore, uneven distribution of powder due to non-uniform distribution of the magnetic field also causes distortion in the compact. The state of strain after sintering is shown in the opening of Figure 1. However, even if these phenomena are solved, the second problem will still be encountered. That is, when a cylinder is molded by applying a magnetic field radially from the center line of its circumference, sintering causes the inner and outer surface layers to undergo strong tensile strain characteristic of anisotropic magnetic materials.

この歪は外周において特に大きく、磁気配向度の100
%のものは、焼結に次ぐ冷却時にほとんど割れる。第1
図Oにそれを示した。もし等方性磁石体であれば急冷状
態になってもほとんど割れることはない。
This strain is particularly large at the outer periphery, and is 100% of the magnetic orientation degree.
% cracks during cooling following sintering. 1st
This is shown in Figure O. If the magnet is isotropic, it will hardly break even if it is rapidly cooled.

このことから当然配向度を調節すれば割れの発生しない
適当な配向度があることは容易に理解できる。
From this, it is easy to understand that if the degree of orientation is adjusted, there is an appropriate degree of orientation in which cracks do not occur.

その値は一般的には70〜80%の配向度である。Its value is generally a degree of orientation of 70-80%.

本発明者はこの配向度を100%でも全く割れない!I
ll!造法として第2図に示すように円筒の内周と外周
のほぼ中間の円周上(こ、且はば磁界の方向に対して直
角の面内に空隙、又はその痕跡、あるいは両者の中間状
態を、円筒の長さ方向に一部又lよ貫通させて設ける方
法を考案した。
The inventor of the present invention does not break the orientation at all even if the degree of orientation is 100%! I
ll! As shown in Figure 2, the construction method is to create a gap on the circumference approximately halfway between the inner circumference and the outer circumference of the cylinder (in a plane perpendicular to the direction of the magnetic field, or a trace thereof, or a gap between the two). A method was devised to provide the state by partially penetrating the cylinder in the length direction.

この空隙は第2図8に示す様に磁界に対して直角となる
π方式又は併行となるR方式でもよく又第2図すの子方
式、あるv)+iこれらの混成方式でもよい。
This air gap may be of the π type, which is perpendicular to the magnetic field, or the R type, which is parallel to the magnetic field, as shown in FIG.

しかしながら一般にπ方式は磁石にした場合若干特性が
劣化するのでR方式が好ましい。又円筒状の上下両部分
に空隙を設けこれらの異方性磁性体はヒビ割れが少ない
。これは歪が板の端末で吸収される場合である。しかし
形状が大きく且厚みのあるものではヒビ割れが生じ易く
なる。このような場合は第3図の8のように印加磁界と
併行に空隙を設ける。又同図すのように低温で揮発し易
い物質を成形体内部に埋めて成形する方法もよい方法で
ある。この埋込用材質としては、プラスチック、紙、木
材、竹等の細片、又は薄片を埋め込んでもよい。この埋
め込まれた物質は加熱昇温と共に蒸発又は焼失して実質
的に空隙を造無がわからないという特徴もある。
However, in general, when the π method is used as a magnet, the characteristics deteriorate slightly, so the R method is preferable. In addition, these anisotropic magnetic materials are less prone to cracking by providing air gaps in both the upper and lower portions of the cylindrical shape. This is the case when the strain is absorbed at the ends of the plate. However, if the shape is large and thick, cracks are likely to occur. In such a case, an air gap is provided parallel to the applied magnetic field as shown in 8 in FIG. Another good method is to fill the molded body with a substance that easily evaporates at low temperatures as shown in the figure. As the embedding material, strips or thin pieces of plastic, paper, wood, bamboo, etc. may be embedded. Another feature is that this embedded material evaporates or burns away as the temperature rises, creating virtually no voids.

以上各個に示したような成形物を焼成すると、焼結の進
行と共に成形体の表面部分が収縮し、収縮時に発生する
歪が空隙部の両壁を圧接し、焼結の進行と共に痕跡状態
にまで焼結が進む。
When the molded products shown above are fired, the surface of the molded product contracts as sintering progresses, and the strain generated during shrinkage presses both walls of the cavity, resulting in a trace state as sintering progresses. Sintering progresses until

又、この痕跡状態のキズが磁界と平行になっている場合
は、磁気特性の劣化は僅少で実用的には全く問題がない
ものである。
Further, if the scratches in the trace state are parallel to the magnetic field, the deterioration of the magnetic properties is slight and there is no problem at all in practice.

以上のように空隙部分が痕跡状態にまで焼結する理由は
、磁性体の磁化方向(厚さ方向)に対し23%収縮する
のに対し、その直角方向は11〜13%であるという特
異な現象によるものである。したがってその差額の約1
0%相当分の空隙を磁性体の厚さの中間部に且磁性体の
全体に分散するとよい。
As mentioned above, the reason why the void part sinters to a trace state is due to the unique fact that the magnetic material shrinks by 23% in the direction of magnetization (thickness direction), while in the direction perpendicular to it, it shrinks by 11-13%. This is due to a phenomenon. Therefore, the difference is approximately 1
It is preferable to disperse voids equivalent to 0% in the middle part of the thickness of the magnetic material and throughout the magnetic material.

本発明の採用によれば100%配向品の100%不良の
場合でも全品良品に転換することは容易である。
By employing the present invention, even in the case of 100% defective products with 100% orientation, it is easy to convert all the products into non-defective products.

【図面の簡単な説明】[Brief explanation of the drawing]

けた物をR型として示した。同5bは+4.同図側面に
はUSp。 として一部に設けた場合を示す。 第3図は平板状成形体に空隙部を付した場合を示しであ
る。 ネ:S−1目
The structure is shown as R type. 5b is +4. USp is on the side of the same figure. This shows the case where it is provided in some parts. FIG. 3 shows a case in which a void portion is attached to a flat plate-shaped molded body. Ne: S-1st

Claims (1)

【特許請求の範囲】 1)フェライト磁性粉を磁界中で圧縮成形するに当り、
磁界の印加方向における磁性体の厚さのほぼ中間の位置
で、且磁界印加方向の直角の面内に、一個所又は複数の
個所に空隙を設けて成形し、該成形体の焼結時に発生す
る歪を前記空隙部に吸収させ、ヒビ、ワレを減少させた
異方性磁性体。 2)フェライト磁性粉を磁界中で圧縮成形するに当り、
磁界の印加方向における磁性体の厚さのほぼ中間の位置
で、且磁界印加方向の直角の面内に、一個所又は複数の
個所に空隙を設けて成形し、該成形体の焼結時に発生す
る歪を前記空隙部に吸取させ、ヒビ、ワレを減少させた
異方性磁性体の製造法。 3)特許請求第1項の条件を具備する円筒状磁性体。 4)特許請求第1項の空隙部分に融薬を付加し、磁性体
の焼結収縮時に融薬の余剰分が融出可能ならしめた融薬
強化磁性体。 5)特許請求範囲第1項の空隙部に相当する部分を加熱
により消失する物質を埋めて代替した特許請求第1項の
磁性体。
[Claims] 1) In compression molding ferrite magnetic powder in a magnetic field,
A gap is formed at one or more locations at a position approximately in the middle of the thickness of the magnetic body in the direction of application of the magnetic field, and in a plane perpendicular to the direction of application of the magnetic field. An anisotropic magnetic material that reduces cracks and cracks by absorbing the strain caused by the voids. 2) When compression molding ferrite magnetic powder in a magnetic field,
A gap is formed at one or more locations at a position approximately in the middle of the thickness of the magnetic body in the direction of application of the magnetic field, and in a plane perpendicular to the direction of application of the magnetic field. A method for producing an anisotropic magnetic material in which the strain absorbed by the void is absorbed to reduce cracks and cracks. 3) A cylindrical magnetic body that satisfies the conditions set forth in claim 1. 4) A flux-strengthened magnetic material according to claim 1, in which a flux is added to the gap portion so that an excess amount of the flux can be melted out during sintering and shrinkage of the magnetic material. 5) The magnetic material according to claim 1, in which a portion corresponding to the void portion according to claim 1 is filled with a substance that disappears upon heating.
JP13838084A 1984-07-04 1984-07-04 Magnetic substrate having heat stress absorbing section Pending JPS6118115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13838084A JPS6118115A (en) 1984-07-04 1984-07-04 Magnetic substrate having heat stress absorbing section

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13838084A JPS6118115A (en) 1984-07-04 1984-07-04 Magnetic substrate having heat stress absorbing section

Publications (1)

Publication Number Publication Date
JPS6118115A true JPS6118115A (en) 1986-01-27

Family

ID=15220577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13838084A Pending JPS6118115A (en) 1984-07-04 1984-07-04 Magnetic substrate having heat stress absorbing section

Country Status (1)

Country Link
JP (1) JPS6118115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152314A (en) * 1989-11-07 1991-06-28 Ohbayashi Corp Heater device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03152314A (en) * 1989-11-07 1991-06-28 Ohbayashi Corp Heater device

Similar Documents

Publication Publication Date Title
JPS5982142A (en) Ceramic mold and its manufacture
US2683766A (en) Method of casting electrical device and article produced thereby
JP3612028B2 (en) Coil parts manufacturing method
US6190589B1 (en) Fabrication of molded magnetic article
JPS6118115A (en) Magnetic substrate having heat stress absorbing section
US3751803A (en) Method of making a magnetic head
JPH0361322B2 (en)
JPH05239505A (en) Magnetic-field press die of ferrite magnet for micromotor
JP2553916B2 (en) Method for manufacturing cast ceramic body
JP2864311B2 (en) Manufacturing method of molten metal gutter
JPH0557394A (en) Manufacture of shell core
JPS62207615A (en) Mold for resin sealing
DE3012320A1 (en) Laminated cores for inductive components - where laminations are sepd. from each other by silica grains to form gaps filled with casting resin
JP2854443B2 (en) High-temperature superconducting conductor
JPH0199767A (en) Complex of ceramic and metal and its manufacture
JPS5849671A (en) Manufacture of ferrite core
JPH0522370B2 (en)
JPH03265447A (en) Core-coil assembly for linear motor and molding method therefor
US987867A (en) Art or process of casting thin strips of metal.
JPH0477095A (en) Diaphragm for speaker
JPH10211622A (en) Production of mold
JPH02100000A (en) Sound absorbing material
JPH04342924A (en) Manufacture of deflecting yoke core
FR2499060A1 (en) Refractory moulding materials - for use with heating resistors based on fibrous, globular and crystalline alumina
JPS5964965U (en) Mold for molding composite materials