JP2854443B2 - High-temperature superconducting conductor - Google Patents

High-temperature superconducting conductor

Info

Publication number
JP2854443B2
JP2854443B2 JP3254651A JP25465191A JP2854443B2 JP 2854443 B2 JP2854443 B2 JP 2854443B2 JP 3254651 A JP3254651 A JP 3254651A JP 25465191 A JP25465191 A JP 25465191A JP 2854443 B2 JP2854443 B2 JP 2854443B2
Authority
JP
Japan
Prior art keywords
critical current
superconductor
superconducting
cross
current density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3254651A
Other languages
Japanese (ja)
Other versions
JPH0562532A (en
Inventor
次教 長谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP3254651A priority Critical patent/JP2854443B2/en
Publication of JPH0562532A publication Critical patent/JPH0562532A/en
Application granted granted Critical
Publication of JP2854443B2 publication Critical patent/JP2854443B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高臨界電流密度特性を有
する高温超電導導体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature superconductor having high critical current density characteristics.

【0002】[0002]

【従来の技術】酸化物超電導体は液体窒素温度程度の比
較的高温度域で超電導状態を呈するため、超電導装置に
電力を提供する電流リード等への応用が期待されてい
る。大電流を給電するには、大電流が流れても超電導状
態を保つことができる臨界電流値の大きい超電導体が必
要である。そこで、臨界電流値を大きくとるために、種
々の手段が行われている。
2. Description of the Related Art Since an oxide superconductor exhibits a superconducting state in a relatively high temperature range such as liquid nitrogen temperature, it is expected to be applied to a current lead for supplying power to a superconducting device. To supply a large current, a superconductor having a large critical current value that can maintain a superconducting state even when a large current flows is required. Therefore, various means have been used to increase the critical current value.

【0003】超電導電流リードとしては一般には中実の
円柱形のものが用いられるが、中空の円筒形も考えられ
ている。中実の円柱形の超電導体の場合は、その直径を
大きくすることにより電流の流れる断面積を大きくと
り、臨界電流値を増加させている。中空の円筒形の超電
導体は、臨界電流が電流の流れる断面の周囲長に比例す
ることを利用して、直径が大きくかつ薄肉のものとする
ことにより、同径の中実の円柱形の超電導体よりも臨界
電流値を増加させることができる。
As the superconducting current lead, a solid cylindrical lead is generally used, but a hollow cylindrical lead is also considered. In the case of a solid cylindrical superconductor, the diameter of the superconductor is increased to increase the cross-sectional area through which current flows, thereby increasing the critical current value. The hollow cylindrical superconductor has a large diameter and a thin wall, making use of the fact that the critical current is proportional to the perimeter of the cross section in which the current flows. The critical current value can be increased more than the body.

【0004】また、超電導体を製作する工程で、成形時
や中間加圧時に冷間静水圧プレスを施して、緻密で成形
密度にむらのない超電導体とすることも臨界電流値を増
加させる助けとなっている。とくに、中間加圧処理とし
て、一次焼結後に加圧と焼結を数度繰り返すと臨界電流
密度を大きくすることができ、臨界電流を増加させる。
加える圧力は大きいほど臨界電流密度を増やすことがで
きる。
[0004] In the process of manufacturing a superconductor, cold isostatic pressing is performed at the time of molding or intermediate pressurization to obtain a superconductor that is dense and has no uneven molding density. It has become. In particular, when the pressurization and sintering are repeated several times after the primary sintering as the intermediate pressure treatment, the critical current density can be increased, and the critical current increases.
The larger the applied pressure, the more the critical current density can be increased.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記の
ような方法で臨界電流値を増加させるには以下のような
問題点がある。中空の超電導体を大直径、薄肉とする
と、臨界電流値を大きくすることはできるが、中空の円
筒体は成形、取扱いが難しく、電極形成も容易ではな
い。酸化物超電導体が脆性を有するため、薄肉であれば
さらに破損し易い。
However, increasing the critical current value by the above-described method has the following problems. If the hollow superconductor has a large diameter and a small thickness, the critical current value can be increased, but the hollow cylinder is difficult to form and handle, and the electrodes are not easily formed. Since the oxide superconductor has brittleness, if it is thin, it is more easily damaged.

【0006】中実円柱形超電導体の臨界電流を増加させ
るために、直径を大きくして断面積を増やしていくと、
臨界電流値が断面積の増加に比例しては増加しなくな
る。このように中実円柱形超電導体の断面積を大きくし
ていくと、臨界電流密度の減少が見られる。
In order to increase the critical current of a solid cylindrical superconductor, the diameter is increased and the cross-sectional area is increased.
The critical current value does not increase in proportion to the increase in the cross-sectional area. As described above, when the cross-sectional area of the solid cylindrical superconductor is increased, the critical current density decreases.

【0007】これは成形、中間加圧として冷間静水圧プ
レスにより超電導体の構造を緻密化する場合、大型で肉
厚の超電導体では圧力が深部まで行きわたらず、内部に
密度むらができるためである。大型で肉厚の超電導体の
深部に電流密度の小さい部分が形成されるため、臨界電
流値の増加を妨げている。超電導体に加える圧力が大き
ければ臨界電流密度が改善されるが、冷間静水圧プレス
では圧力を大きくすることは装置上限度がある。例え
ば、一軸加圧で104A/cm2以上の臨界電流密度が得
られるような大きな圧力を与えることは困難である。
[0007] This is because when the structure of the superconductor is densified by cold isostatic pressing as molding and intermediate pressurization, the pressure does not reach a deep portion with a large and thick superconductor, and density unevenness can occur inside. It is. Since a portion having a small current density is formed in a deep portion of a large and thick superconductor, an increase in a critical current value is prevented. If the pressure applied to the superconductor is large, the critical current density is improved, but in a cold isostatic press, increasing the pressure has an upper limit of the apparatus. For example, it is difficult to apply such a large pressure that a critical current density of 10 4 A / cm 2 or more can be obtained by uniaxial pressing.

【0008】本発明は中間加圧法によって作られる超電
導導体の内部に生じる成形密度のむらを解消し、臨界電
流密度が大きく、臨界電流値を増加させることができる
高温超電導導体を得ることを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-temperature superconductor having a large critical current density and capable of increasing the critical current value by eliminating irregularities in the molding density generated inside the superconductor produced by the intermediate pressing method. .

【0009】[0009]

【課題を解決するための手段】本発明は上記の課題を解
決するために、超電導導体形成のための型中に、冷間静
水圧プレスの加圧が行き届かない深部に、予め一軸プレ
スによる中間加圧法によって大きな臨界電流密度特性を
備えた酸化物超電導バルク材を1本ないし複数本埋め込
み、超電導粉末を充填後、成形、加圧−焼結を適宜施し
て超電導導体とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method for forming a superconducting conductor by using a uniaxial press in advance in a deep portion where the pressure of a cold isostatic press cannot be sufficiently reached. One or a plurality of oxide superconducting bulk materials having a large critical current density characteristic are buried by an intermediate pressing method, and after filling with a superconducting powder, molding, pressing and sintering are appropriately performed to obtain a superconducting conductor.

【0010】充填する酸化物超電導粉末はバルク材料と
同じものや、臨界電流密度特性の近いもの等が考えられ
る。作製に際しては、冷間静水圧プレスの効果を考慮し
てバルクの本数、形状、埋め込む位置を決め、圧力が効
率よく超電導体全体に行きわたるようにする。埋め込む
バルクは大きい臨界電流密度特性と強度を有することが
必要である。例えば一軸プレスの中間加圧法により作製
するのであれば、金型成形、50kgf/mm2以上の
圧力で作製されたものがよい。
[0010] The oxide superconducting powder to be filled may be the same as the bulk material, or may be one having close critical current density characteristics. At the time of fabrication, the number, shape, and embedding position of the bulk are determined in consideration of the effect of the cold isostatic pressing, so that the pressure efficiently spreads over the entire superconductor. The buried bulk needs to have a large critical current density characteristic and strength. For example, if it is manufactured by an intermediate pressing method of a uniaxial press, it is preferable to use a mold formed and manufactured at a pressure of 50 kgf / mm 2 or more.

【0011】予め作製された酸化物超電導バルクを埋め
込んで超電導導体を作製すると、加圧時、表面から加え
られた圧力が内部で予め作製されたバルクにより分散さ
れ、全体に等しく加圧される。また、加圧が届きにくい
箇所を予め作製されたバルクで置き換えることにより、
成形密度のむらが小さくなり、全体として臨界電流密度
が大きくなるので、断面積が同じまま臨界電流値が増加
する。また断面積を増やしても臨界電流密度の低下が起
こらず、臨界電流値を増加させることができる。
When a superconducting conductor is produced by embedding a previously produced oxide superconducting bulk, at the time of pressurization, the pressure applied from the surface is dispersed internally by the previously produced bulk, and the whole is equally pressed. In addition, by replacing the hard-to-reach places with pre-made bulk,
Since the unevenness of the molding density is reduced and the critical current density is increased as a whole, the critical current value increases while the cross-sectional area remains the same. Even if the cross-sectional area is increased, the critical current density does not decrease, and the critical current value can be increased.

【0012】[0012]

【実施例】本発明の実施例を図面とともに説明する。図
1および図2は本発明の実施例の超電導体の横断面図、
および縦断面図である。高臨界電流密度を有する、断面
が矩形状の酸化物超電導バルク2を中央に埋め込み、そ
の周囲に酸化物超電導バルク2を作成したときと同じ粉
末を充填した周辺充填部3を設けて、焼結、中間加圧を
繰り返して中実の超電導導体1を作成する。あらかじ
め、埋め込むバルク2は金型成形、50kgf/mm2
以上の圧力の一軸プレスの中間加圧法によって作製した
ものである。
An embodiment of the present invention will be described with reference to the drawings. 1 and 2 are cross-sectional views of a superconductor according to an embodiment of the present invention.
FIG. An oxide superconducting bulk 2 having a high critical current density and a rectangular cross section is embedded in the center, and a peripheral filling portion 3 filled with the same powder as when the oxide superconducting bulk 2 was formed is provided around the bulk. By repeating the intermediate pressurization, a solid superconducting conductor 1 is formed. In advance, the bulk 2 to be embedded is molded by a mold, 50 kgf / mm 2
It was produced by an intermediate pressing method of a uniaxial press at the above pressure.

【0013】図3は本発明の他の実施例を示す図であ
る。高臨界電流密度を有する中実丸棒の超電導バルク5
を計20本、円筒の金型の周に配列して、超電導粉末を
充填して、焼結、中間加圧を繰り返して作製した中空の
超電導導体4の断面図である。20本の超電導バルク5
により、作製時に加えられた圧力が分散し、高臨界電流
密度が得られる。また、強度の面でも、従来の中空円筒
形よりも向上させることができる。
FIG. 3 shows another embodiment of the present invention. Superconducting bulk of solid round bar with high critical current density 5
FIG. 2 is a cross-sectional view of a hollow superconducting conductor 4 produced by arranging a total of 20 pieces on the periphery of a cylindrical mold, filling the superconducting powder, repeating sintering and intermediate pressing. 20 superconducting bulks 5
Thereby, the pressure applied during the production is dispersed, and a high critical current density can be obtained. Further, the strength can be improved as compared with the conventional hollow cylindrical shape.

【0014】以上の実施例では、埋め込むバルクの断面
は矩形と円形の例を示したが、これに限るものではな
く、だ円形等の他の断面形状も考えられる。また、最終
的な超電導体の形状についても円柱、円筒形以外の形状
に成形する事も可能である。
In the above embodiment, the example of the cross section of the bulk to be embedded is rectangular and circular. However, the present invention is not limited to this, and other cross sectional shapes such as an elliptical shape can be considered. Also, the final superconductor can be formed into a shape other than a cylinder and a cylinder.

【0015】[0015]

【発明の効果】上記のように、あらかじめ作製した高臨
界電流密度の超電導バルクを埋め込んで超電導導体を作
ることにより、加圧が全体に行き届き、断面積を大きく
しても成形密度にむらは生じず、臨界電流密度の低下が
起こらない。そのため断面積を大きくすれば、断面積相
応の値を持つ臨界電流を得ることができる。また従来に
比して断面積は小さくても大きな臨界電流値を得ること
ができる。
As described above, by forming a superconducting conductor by embedding a superconducting bulk having a high critical current density prepared in advance, pressure can be applied to the whole, and unevenness in the molding density occurs even if the cross-sectional area is increased. And the critical current density does not decrease. Therefore, if the cross-sectional area is increased, a critical current having a value corresponding to the cross-sectional area can be obtained. Also, a larger critical current value can be obtained even if the cross-sectional area is smaller than in the past.

【0016】本発明の超電導導体によれば、断面積の小
さい電流リードを提供できるため、極低温システムへの
熱侵入の低減、装置の軽量化等の効果がある。
According to the superconducting conductor of the present invention, a current lead having a small cross-sectional area can be provided, so that there are effects of reducing heat intrusion into the cryogenic system and reducing the weight of the device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の超電導導体の横断面図であ
る。
FIG. 1 is a cross-sectional view of a superconducting conductor according to an embodiment of the present invention.

【図2】本発明の実施例の超電導導体の縦断面図であ
る。
FIG. 2 is a longitudinal sectional view of a superconducting conductor according to an embodiment of the present invention.

【図3】本発明の実施例の超電導導体の横断面図であ
る。
FIG. 3 is a cross-sectional view of a superconducting conductor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超電導導体 2 酸化物超電導バルク 3 周辺充填部 4 中空の超電導導体 5 超電導バルク Reference Signs List 1 superconducting conductor 2 oxide superconducting bulk 3 peripheral filling part 4 hollow superconducting conductor 5 superconducting bulk

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01B 12/00 C01G 1/00 C04B 35/00 H01F 5/08 H01F 7/22──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) H01B 12/00 C01G 1/00 C04B 35/00 H01F 5/08 H01F 7/22

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中間加圧法を用いて作成された大きな臨
界電流密度特性を備えた酸化物超電導バルク材を超電導
原料粉末中に1本または複数本埋め込んだ複合体にたい
して焼結、中間加圧を適宜施して作製したことを特徴と
する高温超電導導体。
1. Sintering and intermediate pressing of a composite in which one or a plurality of oxide superconducting bulk materials having a large critical current density characteristic prepared by using an intermediate pressing method are embedded in a superconducting raw material powder. A high-temperature superconducting conductor characterized by being appropriately applied and produced.
JP3254651A 1991-09-05 1991-09-05 High-temperature superconducting conductor Expired - Lifetime JP2854443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3254651A JP2854443B2 (en) 1991-09-05 1991-09-05 High-temperature superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254651A JP2854443B2 (en) 1991-09-05 1991-09-05 High-temperature superconducting conductor

Publications (2)

Publication Number Publication Date
JPH0562532A JPH0562532A (en) 1993-03-12
JP2854443B2 true JP2854443B2 (en) 1999-02-03

Family

ID=17267977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254651A Expired - Lifetime JP2854443B2 (en) 1991-09-05 1991-09-05 High-temperature superconducting conductor

Country Status (1)

Country Link
JP (1) JP2854443B2 (en)

Also Published As

Publication number Publication date
JPH0562532A (en) 1993-03-12

Similar Documents

Publication Publication Date Title
KR900701019A (en) High strength superconducting wires and cables with high current density and manufacturing method
EP0498420B1 (en) Multifilamentary oxide superconducting wires and method of manufacturing the same
EP0661763B1 (en) Method of manufacturing a superconducting ceramics elongated body
JP2854443B2 (en) High-temperature superconducting conductor
WO1994000886A1 (en) High tc superconductor and method of making
JPH01252572A (en) Production of superconductor
US5179075A (en) Method of making a low electrical resistance connection between a metal and a high tc superconducting ceramic
JPH01276516A (en) Manufacture of superconductive wire rod having high critical current density
JP2592846B2 (en) Manufacturing method of oxide superconducting conductor
US5429791A (en) Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor
JP3088830B2 (en) Reforming method of oxide superconductor molded body
JPH04329218A (en) Superconductive wire material
JPH03241722A (en) Manufacture of oxide superconducting coil
JPS63272017A (en) Manufacture of superconducting ceramic magnet
JPH05138627A (en) Production of oxide superconductor
KR0166708B1 (en) Fabricating method of high tc superconducting thick film
JPH06131927A (en) Manufacture of oxide superconducting wire rod
JPH03105809A (en) Manufacture of oxide superconductive wire material
JPS63313428A (en) Manufacture of oxide superconductive compact
JPH03122917A (en) Manufacture of ceramics superconductive conductor
JPH01304609A (en) Superconductive wire rod with high critical current density
JPH06302236A (en) Manufacture of oxide superconductor wire
JPH04155715A (en) Manufacture of ceramic superconductor
JPH02133363A (en) Production of oxide superconductor
JPH0590024A (en) Oxide superconductor current lead