JPS611805A - Blade used in gas turbine engine - Google Patents
Blade used in gas turbine engineInfo
- Publication number
- JPS611805A JPS611805A JP60106208A JP10620885A JPS611805A JP S611805 A JPS611805 A JP S611805A JP 60106208 A JP60106208 A JP 60106208A JP 10620885 A JP10620885 A JP 10620885A JP S611805 A JPS611805 A JP S611805A
- Authority
- JP
- Japan
- Prior art keywords
- rib
- passage
- leading edge
- ribs
- vane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002826 coolant Substances 0.000 claims description 36
- 238000005192 partition Methods 0.000 claims description 19
- 238000012546 transfer Methods 0.000 claims description 19
- 238000004891 communication Methods 0.000 claims description 8
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 4
- 210000003746 feather Anatomy 0.000 claims 5
- 239000007789 gas Substances 0.000 description 21
- 238000001816 cooling Methods 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 2
- 241000270295 Serpentes Species 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229910000601 superalloy Inorganic materials 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
この発明は全般的にガスタービン機関、更に具体的に云
えば、冷却可能な該機関の中空タービン羽根に関する。
ガスタービン機関の効率は、機関の燃焼器から高圧ター
ビン・ノズルを通る様に送られて、タービン羽根の上を
流れることが出来るタービン・ガスの温度に正比例4−
る。例えば、比較的大形のタービン羽根、例えば根元か
ら先端までの寸法が約1.5111より大ぎい羽根を持
つガスタービン機関では、ターじン・ガスの温度は2.
700°Fに近いのが典型的である。この様な比較的高
いガス温度に耐える為、こういう大形の羽根は、公知の
高級材料で製造されており、典型的には従来の公知の形
式の冷却技術を取入れている。
タービン羽根は圧縮機のm−高空気の様な冷却剤を用い
て冷却するのが典型的である。この吐出空気は、タービ
ン羽根の境膜冷却、衝突冷却並びに/′又は対流冷却を
行う為に、種々の構造要素に利用されている。典型的に
は、羽根は蛇行冷却剤通路と、乱流促進リブ、即ち、羽
根の側壁から約00010吋だけ蛇行通路に入り込む乱
流器の様な冷部用の種々の特徴とを持っている。一般f
内に、円柱形のビンを利用することが出来、それ/、+
<蛇(1通路内で羽根の向い合う側壁の間を;♂中まで
′又This invention relates generally to gas turbine engines and, more particularly, to coolable hollow turbine blades of such engines. The efficiency of a gas turbine engine is directly proportional to the temperature of the turbine gas that is routed from the engine's combustor through the high-pressure turbine nozzle and allowed to flow over the turbine blades.
Ru. For example, in a gas turbine engine with relatively large turbine blades, such as blades having a root-to-tip dimension greater than about 1.5111 mm, the temperature of the turbine gas is 2.5 mm.
Close to 700°F is typical. To withstand these relatively high gas temperatures, these large vanes are constructed of known high-grade materials and typically incorporate conventional, known types of cooling techniques. Turbine blades are typically cooled using a coolant such as m-high air from a compressor. This discharged air is utilized by various structural elements to provide film, impingement and/or convective cooling of the turbine blades. Typically, the vanes have serpentine coolant passages and various features for the cold section, such as turbulence-enhancing ribs, i.e., turbulators that enter the serpentine passages approximately 0.0010 inches from the sidewalls of the vanes. . General f
Inside, you can use a cylindrical bottle, which/,+
<Snake (in one passage, between the opposite side walls of the wings; until the middle of the male)
【よ完全に伸びていてよい1、
典型的には、羽根の前縁が最も重数な部分であり、比較
的複雑な特別の冷却用の特徴が使才つれる。
例えば、前縁は前縁冷部間口を持って(するの1)XI
Jl!型的であり、こういう冷却開口が境躾冷B1をイ
1う作用がある。或いは前縁の所で蛇行通路に削突月】
挿着体を設けて、冷却作用を強めることが出来る。
或いは前縁の所で蛇行通路に熱伝達を改善する為の乱流
器及びピンを段りることが出来る。
根元から先端までが例えば約1.5吋未満と(Xう様な
比較的小さいタービン羽根を持つガスタービン機関は、
その寸法が比較的小さい為に、JZ (こ述べた様な人
形羽根用の冷却の特徴の大部分を(り用することが出来
ず、その為、こういう機関(よタービン・ガス温度が約
2,300”Fに制限されていた。従って、小形のガス
タービン機関(よ、v]2゜300°F7′IJ〒約2
,700’Fの範囲内の一層高いタービン・ガス温痘に
伴う一層^い動作効率を達成することが出来ないという
ことになる。
従って、この発明の1つの目的は、新規で改良された冷
741の特徴を持つターヒじ/羽根を提供することであ
る。
この発明の別の目的は、約2.300’Fより高いター
ビンガス温度に耐える様に作用づる新規で改良された冷
却の特徴を持つ小形タービン羽根を提供することである
。
この発明の別の目的は、伝熱係数が改善された冷部の特
徴を持つ小形タービン羽根を提供することである。
この発明の別の目的は、比較的簡単で容易に製造するこ
とが出来る冷却の特徴を用いた新規で改良された小形タ
ービン羽根を提供づることである。
発 明 の 概 要
この発明の好ましい実施例のガスタービン羽根は、幅り
を持つ内部冷却剤通路と、冷却剤通路の軸線に対して略
垂直に配置された、高さEを持つ縦方向に相隔たる複数
個の略真″直ぐな乱流リプとを有する。比E/Dは約0
.07乃至約0.33の範囲内であることが好ましく、
リブの高さEは約0.0101]1乃至約0.025吋
ノfl@囲内である。
この発明に特有と考えられる新規な特徴は特許請求の範
囲に記載しであるが、この発明自体とその他の目的並び
に利点は、以下図面について詳しく説明する所から明ら
かになろう。
詳 し い 記 載
第1図及び第2図に一ガスタービンl!閏に使われる1
例のタービン羽根1oが示されている。羽根10が前縁
12)後縁14と、その間を伸びる第1及び第2の側壁
16.18とを有する。第1の側壁16は全体的に輪郭
が凸であって、羽根10の吸込み側を構成する。第2の
側壁18は全体的に凹の輪郭であって羽根1oの圧力側
を構成する。
更に羽根10が羽根1oの根元22に配置された台20
を含む。羽根1oは先端24をも有する。
ガスタービン機関の燃焼器がら受取った比較的高温のタ
ービンガスが高圧タービン・ノズル(全部′示してない
)を通され、先端24がら根元22までの羽根10の上
を流れる。台2oは、タービンガスの流れの半径方向内
側の境界を定める為に設けられている。羽根1oは普通
の方法で、羽根10をガスタービン機関のロータ円板(
図に示してない)に取付ける為のほぞ26をも持ってい
る。
この発明の1実施例では、更に羽根1oが好ましくは蛇
行形の冷却剤通路28を持ち、これが第1及び第2の側
壁16.18の間に配置されていて、羽根10を冷却す
る為にその中に冷却剤を通す様に作用する。冷却剤通路
28がほぞ26内に設けられた1個の入口3oを持ち、
この入口を介してガスタービン機関の圧縮機(図に示し
てない)から受取った空気の様な冷却剤32が入り込む
。
更に羽根10が、根′元12がら先端24に向って半径
方向外向きに伸びる第1の隔壁34を含む。
第1の隔壁34は第1及び第2の側壁16.18の問を
伸びると共に、前縁12及び先端24から隔たっている
。第1の隔壁34と、第1の隔壁34並びに5前縁12
の間にある第1及び第2の側壁16.18とが、蛇行冷
却剤通路28の第1の部分□;即ち前縁通路36を構成
する。
更に羽根10が先端24から根元22に向って半径方向
内向きに伸びる第2の隔壁38を持っている。第2の隔
N38は第1及び第2の側壁16.18の間を伸び、後
縁14、第1の隔壁34及び°゛根元22から隔たって
いる。第1の隔壁34、第2の隔壁38、及び第1及び
第2の側壁16.1Bの間に冷却剤通路28の第2の部
分、即ち弦中間通路40が構成される。第2の隔壁38
、後縁14及び第1及び第2の側壁16.18の間に冷
□却剤通路28の第3の部分、即ち後縁通路42が構成
される。
第1の通路36及び第2の通路40は、第1のベント流
路44を介して互いに流れが連通ずる。
第1のベンド流路44は、先端24と第1の隔壁3′4
の半径方向外側の端34aの間、並びに第2の隔壁38
、前1i12及び側壁16.18の匍に構成される。第
2の通路4o及び第3の通路42は第2のベント流路4
6を介して互いに流れが連通ずる。第2のベンド流路4
6は根元22と第2の隔壁38の半径方向内側の端38
aの間、並びに後縁14、及び根元22にある第1の隔
W34及び第1及び第2の側壁16.18の間に構成さ
れる。
更に羽根10が、後縁14に設けられていて、後縁通路
42と流れが連通ずる複数個の後縁開口48を有する。
複数個の先端冷却開口5oが先端24に設けられていて
、第1のベンド流路44及び第3の通路44と流れが連
通する。
動作について説明すると、冷却剤32が入口30から蛇
行冷却剤通路28に入り、第1の通路36、第1のベン
ド流路44、第2の通路40.第2のベンド流路46、
第3の通路42を順次流れて、後縁開口48から出て行
く。更に具体的に云うと、入口30に入もだ冷却剤の1
00%が前縁通路36を流れる。この後、冷却剤32の
略1゜0%が引続いてjF12の通路4oを通って第3
の通路42へ流れ、後縁間口4日から出て行く。冷却剤
32の比較的小さな一部分、例えば15乃至20%が第
1のベント流路44及び第3の通路42から先端開口5
0を介して吐出され、先@24の冷却作用をよくする。
羽根10は、例えばタービンガス温度が約2゜300’
Fより高く、約2,700°Fまでの小形ガスタービン
Ja、関に使うのに有効である。根元22から先端24
までの羽根10の長さは約1.5吋未満であり、この実
施例では約1.0吋である。
羽根10は普通の高温割れ又は超合金で製造される。
この様な高温の環境内で羽根10の効果的な冷却を行う
為、この発明では、冷却剤通路28内に複数個の乱流リ
ブ52が設けられる。第1図、第2図及び第3図に示す
様に、乱流リブ52は略真直ぐであって、縦方向に隔た
っていることが好ましい。これらのリブは両方の側壁1
6.18から略垂直に外向きに伸びていて、冷却剤通路
28の縦軸線54で示した冷却剤32の流れの方向に対
して略垂直に配置される。
特に第3図に示す様に、各々のリブ52は高さEを持ち
、冷却剤通路28の側壁16.18の間の幅りに対し、
比E/Dが約0.07より大きな値を持つ。側壁16の
リブ52は側壁18のリブ52に対して互い違いであっ
て、その間に等間隔に設けられることが好ましい。
乱流リブは従来公知であるが、典型的には、従来はE
/ Dの比が約0.07より小さい。これは幾つかの理
由がある為である。例えば、乱流リブは普通知られてい
る対流による伝熱係数を高める効果があることが判って
いる。然し、乱流リブの高さEは、こういうリブを設け
た流路で起る圧力降下に正比例(る。更に、乱流リブは
熱の伝達をよくする乱流を作るが、乱流器を大きくし過
ぎると、リブの下流側で流れの剥離が生じ、それが対流
による熱伝達を大幅に小さくし又はなくす。従って、乱
流リブによる実質的な圧力降下を避けると共に、流れが
剥離する惧れを少なくする為に、従来の乱流り1は典型
的には比E/Dが約01O7未満であり、高さEが約0
.010吋のり1を用いている。
この発明では、試験結果から、高さ[が約0゜010吋
乃至約0.025吋で、比E/Dが約0゜07乃至約0
.333である乱流リブ52を使うと、対流による伝熱
係数が実質的に増加することが判った。好ましいリブ5
2は冷却剤32のかなりの部分を閉塞する(例えば第3
図の様な図面で見て、冷却剤通路28内の流れ面積の約
67%までが閉塞されることがあり、その結果、冷却剤
通路28の圧力降下が増加づ−る)が、リブ52の熱伝
達能力が改善されることは、この望ましくない特徴を補
って余りがある。
更に具体的に云うと、第2図には、この発明の乱流リブ
52によって実現し得る対流による熱伝達の増加量を示
すグラフが示されている。グラフの横軸は比E/Dであ
り、縦軸は乱流リブ52の対流による伝熱係数h(リブ
)を滑らかな壁の対流による伝熱係数h(滑らかな壁)
で除した値を示す。対流による熱伝達の比を表わす曲線
56は、第3図に示づのと同様な構成に対して行った試
験に基づいている。曲線56は0.15及び0.333
の比E/Dに対するデータ点を含んでいる隣合ったリブ
52は距離SだLt隔たっており、曲線56は5.0及
びIQ、Q(7)比S/E k:対するデータ点を含ん
でいる。曲線56は、比E/Dが0゜333である場合
、対流による熱伝達の比が約7゜5になることを示し−
Cいる。
従って、この発明に従って構成したタービン羽根10が
比較的筒中で製造し易い羽根になることが理解されよう
。羽根10は、例えば前縁境膜冷却孔を含む従来公知の
比較的複雑な構成を必要としない。羽根10は、かなり
の対流による熱伝達能力を持っていて、この能力により
、根元から先端までの長さが僅か約1.0吋の羽根でも
、羽根10に約2,300°Fより高いタービンガス温
度をかけて運転することが出来る。
第1図及び第2図に戻って説明すると、リブ52が、冷
却剤通路28内を前縁12)第1の隔壁34、第2の隔
壁38及び後縁14の間で側壁16.18の略全長に沿
って伸びていることが判る勿論、リブ52が個別の設計
条件に合せて調整され、高さEが約0.010吋から約
0.025吋まで変化すると共に、比E/Dが約0.0
7から約0.333まで変化することを承知されたい。
0.020吋の公称高さEが好ましい。これは普通の乱
流リプの人体2倍の大ぎさであるが、望ましくない流れ
の剥離を生ずることなく、熱伝達を改善する。
羽根10の前縁12が羽根10の最高温度の一部分がか
)ることが判っている重要な領域であるから、前縁通路
30内の熱伝達能力を改善したリブ52の別の好ましい
配置が、第5図及び第6図に示されている。第5図に示
す実施例の前縁通、路36では、リブ52が、第1の隔
壁34から全体的に前縁12まで第2の側壁18に沿っ
て伸びる前縁第1リブ52aを有する。前縁第2リプ5
2bが第1の隔壁34から第1リブ52aの端と出合う
まで、第1の側壁16に沿って伸びる。第1リブ52a
及び第2リブ52bは互い速いであり、或いは互いに等
間隔である。
第6図には別の実施例の前縁通路36が示されている。
前と同じく、第1リブ52aが全体的に前縁12まで伸
び、第2リブ52bも全体的に前縁12まで伸びる。前
縁第3リブ52cも設けられていて、前縁12の所で、
第1及び第2の側壁16.18の両方に沿って第1リブ
及び第2リブ52a、52bの間を伸びる。第1リブ及
び第2リブ52a、52bは互いに共通の半径の所で整
合していることが好ましく、第3リブ52cは第1リブ
及び第2リブ52a 、52bに対して互い違いであっ
て、その間に等間隔にある。
この発明の好ましい実施例と考えられるものを説明した
が、以上の説明から、当業者にはこの他の変更が考えら
れよう。例えば、第1、第2及び第3の通路36.40
.42を含む蛇行冷却剤通路28を有する羽根10を例
示したが、2つの通路だけを持つ羽根10を用いること
も出来る。第2の通路40は第2の隔壁38を使わずに
、後縁開口48と直接的に流れが連通するだけにする。
更に、第3図に示す様な互い違いのリブ52を使う場合
を説明したが、互いに半径方向に整合している側壁16
.18のリブ52も使うことが出来る!両方の側壁16
.18にリブ52を配置した場合を説明したが、一方の
□側壁だけに乱流リブ52を使っても、熱伝達能力を改
善することが出来板。勿論、この発明は小形タービン羽
根に使う場合に制約されず、−農大形の羽根にも使うこ
とが出来る。小形の羽根では、比較的簡単で製造し易い
特徴によって、改善された冷却能力を持たせることが考
えられた。 □
以上この発明を説明したが、この発明の範囲は特許請求
の範囲によって限定されることを承知されたい。[Can be fully extended1] Typically, the leading edge of the blade is the heaviest part and requires relatively complex special cooling features. For example, the leading edge has a leading edge cold frontage (1)
Jl! This type of cooling opening has the effect of improving the boundary cooling B1. Or a meandering passageway at the leading edge]
An insert can be provided to enhance the cooling effect. Alternatively, the serpentine path at the leading edge can be stepped with turbulators and pins to improve heat transfer. Gas turbine engines with relatively small turbine blades, e.g. less than about 1.5 inches from root to tip,
Because of its relatively small dimensions, it is not possible to utilize most of the cooling features of the JZ (as described above) for the puppet blades, and therefore, the turbine gas temperature is approximately 2 , 300"F. Therefore, a small gas turbine engine (Y,v)2°300°F7'IJ〒approx.
, 700'F range, resulting in an inability to achieve the higher operating efficiencies associated with higher turbine gas temperatures in the range of ,700'F. Accordingly, one object of this invention is to provide a new and improved tarhi/vane with cold 741 characteristics. Another object of this invention is to provide a compact turbine blade with new and improved cooling features that are operative to withstand turbine gas temperatures greater than about 2.300'F. Another object of the invention is to provide a compact turbine blade with cold section features that have improved heat transfer coefficients. Another object of this invention is to provide a new and improved compact turbine blade using cooling features that are relatively simple and easy to manufacture. SUMMARY OF THE INVENTION A gas turbine blade in accordance with a preferred embodiment of the present invention has an internal coolant passage having a width and a longitudinally extending inner coolant passage having a height E disposed substantially perpendicular to the axis of the coolant passage. It has a plurality of spaced apart substantially straight turbulence lips.The ratio E/D is about 0.
.. preferably within the range of 0.07 to about 0.33;
The height E of the ribs is within the range of about 0.0101]1 to about 0.025 inches. While the novel features considered unique to the invention are set forth in the claims, the invention itself as well as other objects and advantages will become apparent from the following detailed description in conjunction with the drawings. Detailed description of the gas turbine in Figures 1 and 2! used for leapfrog1
An example turbine blade 1o is shown. The vane 10 has a leading edge 12), a trailing edge 14, and first and second sidewalls 16,18 extending therebetween. The first side wall 16 is generally convex in profile and constitutes the suction side of the vane 10. The second side wall 18 has a generally concave profile and constitutes the pressure side of the vane 1o. Furthermore, a stand 20 on which the blade 10 is placed at the root 22 of the blade 1o.
including. The vane 1o also has a tip 24. Relatively hot turbine gases received from the combustor of the gas turbine engine are passed through high pressure turbine nozzles (not all shown) and flow over the blades 10 from the tip 24 to the root 22. The platform 2o is provided to define the radially inner boundary of the turbine gas flow. The blade 1o is attached to the rotor disk (
It also has a tenon 26 for attachment (not shown). In one embodiment of the invention, the vane 1o further has a preferably serpentine coolant passage 28, which is arranged between the first and second side walls 16.18, for cooling the vane 10. It acts to pass the coolant through it. The coolant passage 28 has one inlet 3o provided in the tenon 26;
Through this inlet enters a coolant 32, such as air, received from a gas turbine engine compressor (not shown). Vane 10 further includes a first partition 34 extending radially outwardly from root 12 toward tip 24 . A first septum 34 extends between the first and second sidewalls 16.18 and is spaced from the leading edge 12 and tip 24. The first partition wall 34 and the first partition wall 34 and the front edge 12
The first and second side walls 16.18 therebetween define a first portion □ of the serpentine coolant passage 28; ie, a leading edge passage 36. Additionally, the vane 10 has a second partition 38 extending radially inwardly from the tip 24 toward the root 22. A second spacing N38 extends between the first and second sidewalls 16.18 and is spaced from the trailing edge 14, the first septum 34, and the root 22. A second portion of the coolant passage 28, a mid-chord passage 40, is defined between the first bulkhead 34, the second bulkhead 38, and the first and second side walls 16.1B. Second bulkhead 38
, the trailing edge 14 and the first and second sidewalls 16.18 define a third portion of the coolant passageway 28, a trailing edge passageway 42. The first passage 36 and the second passage 40 are in flow communication with each other via a first vent passage 44 . The first bend channel 44 is formed between the tip 24 and the first partition wall 3'4.
between the radially outer ends 34a of and the second bulkhead 38
, the front 1i12 and the side walls 16.18. The second passage 4o and the third passage 42 are the second vent passage 4
The flow communicates with each other via 6. Second bend channel 4
6 is the radially inner end 38 of the root 22 and the second partition 38;
a and between the trailing edge 14 and the first spacing W34 at the root 22 and the first and second side walls 16.18. Further, the vane 10 is provided at the trailing edge 14 and has a plurality of trailing edge openings 48 in flow communication with the trailing edge passageway 42. A plurality of tip cooling openings 5o are provided in the tip 24 and are in flow communication with the first bend channel 44 and the third passage 44. In operation, coolant 32 enters serpentine coolant passage 28 through inlet 30, first passage 36, first bend passage 44, second passage 40 . a second bend flow path 46;
It sequentially flows through third passageway 42 and exits through trailing edge opening 48 . More specifically, 1 of the refrigerant entering the inlet 30
00% flows through leading edge passage 36. After this, approximately 1.0% of the coolant 32 continues to pass through the passage 4o of jF12 to the third
It flows into the passageway 42 and exits from the trailing edge frontage 4th. A relatively small portion, e.g. 15 to 20%, of the coolant 32 is transferred from the first vent passageway 44 and the third passageway 42 to the tip opening 5.
0 and improves the cooling effect of the tip @24. For example, the blade 10 has a turbine gas temperature of about 2°300'.
It is effective for use in small gas turbines with temperatures higher than 2,700°F. From the base 22 to the tip 24
The length of the vane 10 is less than about 1.5 inches, and in this embodiment is about 1.0 inches. The vanes 10 are made of conventional hot crack or superalloys. In order to effectively cool the blades 10 in such a high temperature environment, the present invention provides a plurality of turbulence ribs 52 within the coolant passages 28. As shown in FIGS. 1, 2, and 3, turbulence ribs 52 are preferably generally straight and vertically spaced. These ribs are on both side walls 1
6.18 and is disposed generally perpendicular to the direction of flow of coolant 32 as indicated by longitudinal axis 54 of coolant passageway 28 . As shown in particular in FIG. 3, each rib 52 has a height E, relative to the width between the side walls 16, 18 of the coolant passage 28.
The ratio E/D has a value greater than about 0.07. Preferably, the ribs 52 on the side wall 16 are staggered with respect to the ribs 52 on the side wall 18 and are equally spaced therebetween. Although turbulence ribs are known in the art, they typically
/D is less than about 0.07. This is due to several reasons. For example, turbulence ribs have been found to be effective in increasing the heat transfer coefficient due to commonly known convection. However, the height E of the turbulence ribs is directly proportional to the pressure drop that occurs in the flow path provided with such ribs.Furthermore, the turbulence ribs create turbulence that improves heat transfer; If made too large, flow separation occurs downstream of the ribs, which greatly reduces or eliminates convective heat transfer, thus avoiding substantial pressure drops through turbulent ribs and reducing the risk of flow separation. To reduce turbulence, conventional turbulent flow 1 typically has a ratio E/D of less than about 01O7 and a height E of about 0.
.. 010 inch glue 1 is used. In this invention, from the test results, the height [is about 0°010 inches to about 0.025 inches, and the ratio E/D is about 0°07 to about 0.
.. It has been found that the use of turbulent ribs 52 of 333 substantially increases the convective heat transfer coefficient. Preferred rib 5
2 occludes a significant portion of the coolant 32 (e.g.
As shown in the drawings, up to approximately 67% of the flow area within the coolant passages 28 may become obstructed (resulting in an increased pressure drop in the coolant passages 28). The improved heat transfer ability of the oxide film more than compensates for this undesirable characteristic. More specifically, FIG. 2 shows a graph illustrating the increase in convective heat transfer that can be achieved with the turbulence ribs 52 of the present invention. The horizontal axis of the graph is the ratio E/D, and the vertical axis is the heat transfer coefficient h due to convection of the turbulent rib 52 (rib) and the heat transfer coefficient h due to convection of the smooth wall (smooth wall).
Indicates the value divided by Curve 56 representing the ratio of convective heat transfer is based on tests performed on a configuration similar to that shown in FIG. Curve 56 is 0.15 and 0.333
Adjacent ribs 52 containing data points for the ratio E/D are separated by a distance S Lt, and the curve 56 contains data points for the ratio S/E k: 5.0 and IQ, Q (7). I'm here. Curve 56 shows that for a ratio E/D of 0°333, the ratio of convective heat transfer is approximately 7°5.
There is C. Therefore, it will be understood that the turbine blade 10 constructed according to the present invention is a blade that is relatively easy to manufacture in a cylinder. The vane 10 does not require relatively complex configurations known in the art, including, for example, leading edge film cooling holes. The blades 10 have significant convective heat transfer capabilities that allow the blades 10 to operate at temperatures greater than approximately 2,300 degrees Fahrenheit even though the blades are only about 1.0 inches long from root to tip. It can be operated by applying gas temperature. Referring back to FIGS. 1 and 2, ribs 52 extend within the coolant passageway 28 between the leading edge 12, the first bulkhead 34, the second bulkhead 38, and the trailing edge 14 of the sidewall 16.18. Of course, the ribs 52 can be adjusted to suit individual design requirements, with the height E varying from about 0.010 inches to about 0.025 inches, and the ratio E/D. is about 0.0
Note that it varies from 7 to about 0.333. A nominal height E of 0.020 inches is preferred. This is twice as large as a normal turbulent lip, but it improves heat transfer without causing undesirable flow separation. Since the leading edge 12 of the blade 10 is a critical area where some of the highest temperatures of the blade 10 are known to occur, another preferred arrangement of ribs 52 that improves heat transfer capabilities within the leading edge passageway 30 is , shown in FIGS. 5 and 6. In the example leading edge passageway 36 shown in FIG. . Leading edge 2nd lip 5
2b extends along the first side wall 16 from the first bulkhead 34 until it meets the end of the first rib 52a. First rib 52a
and the second ribs 52b are fast to each other or equally spaced from each other. An alternative embodiment of the leading edge passageway 36 is shown in FIG. As before, the first rib 52a extends generally to the leading edge 12, and the second rib 52b also extends generally to the leading edge 12. A third leading edge rib 52c is also provided, and at the leading edge 12,
It extends between the first and second ribs 52a, 52b along both the first and second sidewalls 16.18. Preferably, the first and second ribs 52a, 52b are aligned with each other at a common radius, and the third rib 52c is staggered with respect to the first and second ribs 52a, 52b, and are equally spaced. Having described what is considered a preferred embodiment of the invention, other modifications will occur to those skilled in the art from the foregoing description. For example, the first, second and third passages 36.40
.. Although vane 10 is illustrated having serpentine coolant passages 28 including 42, vanes 10 having only two passages may also be used. The second passageway 40 is in direct flow communication with the trailing edge opening 48 without the use of the second bulkhead 38. Additionally, although the use of staggered ribs 52 as shown in FIG.
.. 18 ribs 52 can also be used! both side walls 16
.. Although we have described the case where the ribs 52 are placed on the side wall 18, the heat transfer ability can be improved even if the turbulence ribs 52 are used only on one □ side wall. Of course, the present invention is not limited to use with small turbine blades, but can also be used with large agricultural blades. Smaller blades were considered to have improved cooling capacity due to their relatively simple and easy to manufacture features. □ Although this invention has been explained above, please understand that the scope of this invention is limited by the scope of the claims.
第1図はこあ発明の1実施例のガスタービン羽根の側面
断面図、第2図は第1図のタービン羽根を線2−2で切
った横断面図、第3図は第1図のタービン羽根を線3−
3で切った縦断面図、第4図は第1図に示した乱流リブ
の対流による伝熱係数と滑らかな壁の伝熱係数との比を
比E/Dに対して示したグラフ、第5図は第1図のター
ビン羽根の前縁領域を線5−5で切った断面図、第6図
は第1図のタービン羽根の別の前縁領域を線5−5で切
った断面図である。
主な符号の説明
12:yi縁
14:後縁
16.18:側壁
28:蛇行通路
52:乱流リブFIG. 1 is a side sectional view of a gas turbine blade according to an embodiment of the invention, FIG. 2 is a cross-sectional view of the turbine blade shown in FIG. 1 taken along line 2-2, and FIG. Connect the turbine blade to line 3-
Fig. 4 is a graph showing the ratio of the heat transfer coefficient due to convection of the turbulent rib shown in Fig. 1 to the heat transfer coefficient of a smooth wall against the ratio E/D, 5 is a cross-sectional view of the leading edge region of the turbine blade of FIG. 1 taken along line 5-5, and FIG. 6 is a cross-sectional view of another leading edge region of the turbine blade of FIG. 1 taken along line 5-5. It is a diagram. Explanation of main symbols 12: yi edge 14: trailing edge 16.18: side wall 28: meandering passage 52: turbulence rib
Claims (1)
と、該前縁及び後縁の間を伸びる第1及び第2の側壁と
を有し、前記側壁はその縦軸線と略平行な方向に冷却剤
を通す為の幅Dを持つ冷却剤通路を構成しており、一方
の側壁は前記冷却剤通路内に、前記縦軸線に対して略垂
直に配置された縦方向に相隔たる複数個の略真直ぐな乱
流リブを持っており、各々のリブが高さEを持っていて
、比E/Dが約0.07より大きい羽根。 2)特許請求の範囲1)に記載した羽根に於て、前記比
E/Dが約0.07乃至約0.333の範囲内である羽
根。 3)特許請求の範囲1)に記載した羽根に於て、前記高
さEが約0.010吋より大きく、前記羽根の長さが約
1.5吋未満である羽根。 4)特許請求の範囲1)に記載した羽根に於て、Eが約
0.020吋である羽根。 5)特許請求の範囲1)に記載した羽根に於て、前記リ
ブが縦方向に互いに距離Sだけ隔たっており、比S/E
が約5.0乃至約10.0の範囲内である羽根。 6)特許請求の範囲1)に記載した羽根に於て、前記リ
ブが前記冷却剤通路内の側壁の略全長に沿って伸びてい
る羽根。 7)特許請求の範囲1)に記載した羽根に於て、前記第
1及び第2の側壁の各々が複数個の乱流リブを持ってい
る羽根。 8)特許請求の範囲7)に記載した羽根に於て、第1の
側壁のリブが第2の側壁のリブに対して互い違いになっ
ている羽根。 9)特許請求の範囲2)に記載した羽根に於て、前記第
1及び第2の側壁の各々が複数個の乱流リブを持ってお
り、第1の側壁のリブが第2の側壁のリブに対して互い
違いになっている羽根。 10)特許請求の範囲1)に記載した羽根に於て、根元
及び先端を持ち、前記根元から前記先端までの羽根の長
さが約1.0吋未満である羽根。 11)特許請求の範囲1)に記載した羽根に於て、前記
冷却剤通路及び前記リブは、約2,300°Fより高い
タービン・ガス温度に羽根が耐えることが出来る様にす
る効果を持つ羽根。 12)特許請求の範囲2)に記載した羽根に於て、根元
及び該根元から伸びる第1の隔壁を持ち、前記冷却剤通
路が前記第1の隔壁及び前記側壁によって構成された蛇
行通路で構成されていて、前記前縁に沿って伸びる第1
の通路及び該第1の通路と略平行に配置されていて、そ
れと流れが連通する第2の通路を含んでおり、前記リブ
は前記第1の隔壁から前記第1及び第2の両方の側壁に
沿って前縁まで伸びている羽根。 13)特許請求の範囲12)に記載した羽根に於て、前
記第1の通路内のリブが前記第1の隔壁から前記第1の
側壁に沿って全体的に前縁まで伸びる前縁第1リブ、及
び前記第1の隔壁から前記第2の側壁に沿って前記第1
リブまで伸びる前縁第2リブで構成されており、前記第
1リブ及び第2リブが互い違いになっている羽根。 14)特許請求の範囲12)に記載した羽根に於て、前
記第1の通路内のリブが前記第1の隔壁から前記第1の
側壁に沿って全体的に前縁まで伸びる前縁第1リブ、及
び前記第1の隔壁から前記第2の側壁に沿って全体的に
前縁まで伸びる前縁第2リブで構成されており、前記前
縁で前記第1及び第2の側壁の両方に沿って前記第1リ
ブ及び第2リブの間を前縁第3リブが伸びており、前記
第1リブ及び第2リブが互いに整合し、前記第3リブが
前記第1リブ及び第2リブに対して互い違いになってい
る羽根。 15)特許請求の範囲12)に記載した羽根に於て、前
記第1の通路がその中を流れ得る冷却剤の略100%を
前記第2の通路に送る様に作用する羽根。 16)特許請求の範囲12)に記載した羽根に於て、先
端及び該先端から伸びる第2の隔壁を持ち、前記蛇行通
路が、前記第2の隔壁及び前記側壁によって構成されて
いて、前記前縁と略平行に配置され且つ前記第2の通路
と流れが連通する第3の通路を有し、前記第2の通路が
前記第1及び第2の隔壁及び前記側壁によって構成され
ている羽根。 17)特許請求の範囲16)に記載した羽根に於て、後
縁開口を有し、前記第1及び第2の通路が、その中を流
れ得る冷却剤の略100%を前記第2の通路に送り、前
記後縁開口から送出す様に作用する羽根。 18)特許請求の範囲17)に記載した羽根に於て、前
記先端が前記第2及び第3の通路と流れが連通する先端
開口を持っている羽根。 19)ガスタービン機関に使われる羽根に於て、前縁及
び後縁と、該前縁及び後縁の間を伸びる相隔たる第1及
び第2の側壁と、根元と、先端と、前記根元から前記先
端に向って前記側壁の間を伸びる第1の隔壁と、前記先
端から前記根元に向って前記側壁の間を伸びる第2の隔
壁とを有し、前記第1及び第2の隔壁は互いに隔たると
共に前記前縁及び後縁からも隔たっていて蛇行冷却剤通
路を構成し、該蛇行冷却剤通路は、前記前縁に沿って伸
びる第1の通路、前記第1及び第2の隔壁の間を伸びて
いて、前記第1の通路と流れが連通する第2の通路及び
前記第2の隔壁及び後縁の間に配置されていて前記第2
の通路と流れが連通する第3の通路を持ち、前記蛇行通
路が幅D及び縦軸線を持っていて、該縦軸線と略平行な
方向に冷却剤を通す様に作用し、前記第1及び第2の側
壁には何れも縦方向に相隔たる複数個の略真直ぐな乱流
リブが前記蛇行通路内で前記縦軸線に対して略垂直に配
置されており、各々のリブは高さEを持っていて、比E
/Dが約0.07乃至約0.333の範囲内である羽根
。 20)特許請求の範囲19)に記載した羽根に於て、前
記第1、第2及び第3の通路が何れも前記側壁からその
中を伸びるリブを持っている羽根。 21)特許請求の範囲20)に記載した羽根に於て、前
記第1の通路内に配置されたリブが前記第1の隔壁から
前記前縁まで前記第1及び第2の側壁の両方に沿って伸
びている羽根。 22)特許請求の範囲19)に記載した羽根に於て、前
記第1の側壁のリブが前記第2の側壁のリブと互い違い
になっている羽根。 23)特許請求の範囲19)に記載した羽根に於て、前
記第1の通路内に配置されたリブが、前記第1の隔壁か
ら全体的に前記前縁まで前記第1の側壁に沿って伸びる
前縁第1リブ、及び前記第1の隔壁から前記第1リブま
で前記第2の側壁に沿って伸びる前縁第2リブを有し、
前記第1リブ及び第2リブが互い違いになっている羽根
。 24)特許請求の範囲19)に記載した羽根に於て、前
記根元から前記先端までの羽根の距離が約1吋である羽
根。 25)特許請求の範囲19)に記載した羽根に於て、前
記高さEが約0.020吋であり、前記リブが縦方向に
互いに隔たる距離をSとすると、比S/Eが約5.0乃
至約10.0の範囲内である羽根。[Claims] 1) A blade for use in a gas turbine engine, comprising a leading edge, a trailing edge, and first and second side walls extending between the leading edge and the trailing edge, the side wall being A coolant passage has a width D for passing the coolant in a direction substantially parallel to the longitudinal axis thereof, and one side wall is disposed within the coolant passage substantially perpendicular to the longitudinal axis. a plurality of longitudinally spaced substantially straight turbulence ribs, each rib having a height E, and having a ratio E/D greater than about 0.07. 2) The blade according to claim 1), wherein the ratio E/D is within a range of about 0.07 to about 0.333. 3) The vane of claim 1), wherein said height E is greater than about 0.010 inches and said vane length is less than about 1.5 inches. 4) The blade according to claim 1), wherein E is about 0.020 inches. 5) In the blade according to claim 1), the ribs are spaced apart from each other by a distance S in the longitudinal direction, and have a ratio S/E.
is within the range of about 5.0 to about 10.0. 6) The vane according to claim 1), wherein the rib extends along substantially the entire length of the side wall within the coolant passage. 7) The blade according to claim 1), wherein each of the first and second side walls has a plurality of turbulence ribs. 8) The blade according to claim 7), wherein the ribs on the first side wall are alternated with the ribs on the second side wall. 9) In the blade according to claim 2), each of the first and second side walls has a plurality of turbulent flow ribs, and the ribs on the first side wall are connected to the ribs on the second side wall. Feathers that are staggered against the ribs. 10) The blade of claim 1), having a root and a tip, the blade length from the root to the tip being less than about 1.0 inches. 11) In the vane of claim 1), the coolant passages and the ribs have the effect of enabling the vane to withstand turbine gas temperatures greater than about 2,300°F. Feather. 12) The blade according to claim 2) has a root and a first partition wall extending from the root, and the coolant passage is constituted by a meandering passage constituted by the first partition wall and the side wall. and extending along the leading edge.
and a second passageway disposed substantially parallel to and in flow communication with the first passageway, the rib extending from the first bulkhead to both the first and second sidewalls. A feather that extends along the leading edge. 13) The vane according to claim 12), wherein the rib in the first passage extends from the first bulkhead along the first sidewall generally to the leading edge. a rib, and the first partition wall along the second side wall from the first partition wall.
A vane comprising a leading edge second rib extending to the rib, said first rib and said second rib being alternating. 14) The vane according to claim 12), wherein the rib in the first passage extends generally from the first partition wall to the leading edge along the first sidewall. a rib, and a leading edge second rib extending from the first bulkhead generally along the second sidewall to a leading edge, the leading edge extending along both the first and second sidewalls at the leading edge. a leading edge third rib extends between the first rib and the second rib, the first rib and the second rib are aligned with each other, and the third rib is aligned with the first rib and the second rib. The feathers are staggered against each other. 15) The vane of claim 12), wherein the vane is operative to direct substantially 100% of the coolant that can flow through the first passageway to the second passageway. 16) The blade according to claim 12) has a tip and a second partition extending from the tip, the meandering passage is constituted by the second partition and the side wall, and the blade has a tip and a second partition extending from the tip; A vane having a third passage arranged substantially parallel to an edge and in flow communication with the second passage, the second passage being defined by the first and second partition walls and the side wall. 17) A vane according to claim 16), having a trailing edge opening, wherein the first and second passages transfer approximately 100% of the coolant that may flow therethrough to the second passage. and a vane that acts to send the air to the rear edge opening. 18) The blade according to claim 17, wherein the tip has a tip opening through which flow communicates with the second and third passages. 19) In a blade used in a gas turbine engine, a leading edge and a trailing edge, first and second side walls separated from each other extending between the leading edge and the trailing edge, a root, a tip, and from the root a first partition wall extending between the side walls toward the tip; and a second partition wall extending between the side walls from the tip toward the base, and the first and second partition walls are mutually connected. spaced apart from the leading edge and the trailing edge to define a serpentine coolant passageway, the serpentine coolant passageway including a first passageway extending along the leading edge, the first and second bulkheads; a second passage extending between and in flow communication with the first passage; and a second passage disposed between the second bulkhead and the trailing edge;
a third passage in flow communication with the first and second passages, said serpentine passage having a width D and a longitudinal axis, and acting to pass the coolant in a direction substantially parallel to said longitudinal axis; A plurality of substantially straight turbulent flow ribs, each of which is vertically spaced from the second side wall, are arranged substantially perpendicular to the longitudinal axis within the meandering passage, each rib having a height E. I have it, ratio E
/D is within the range of about 0.07 to about 0.333. 20) The vane of claim 19, wherein each of said first, second and third passages has a rib extending therein from said side wall. 21) In the blade according to claim 20, a rib disposed in the first passage extends along both the first and second side walls from the first partition wall to the leading edge. The feathers are growing. 22) The blade according to claim 19, wherein the ribs on the first side wall alternate with the ribs on the second side wall. 23) The vane according to claim 19), wherein a rib disposed within the first passage extends along the first sidewall from the first bulkhead generally to the leading edge. a leading edge first rib that extends; and a leading edge second rib that extends along the second sidewall from the first bulkhead to the first rib;
A blade in which the first rib and the second rib are alternated. 24) The blade according to claim 19), wherein the distance of the blade from the root to the tip is about 1 inch. 25) In the blade according to claim 19), when the height E is about 0.020 inches and the distance between the ribs in the longitudinal direction is S, the ratio S/E is about A vane that is within the range of 5.0 to about 10.0.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61354384A | 1984-05-24 | 1984-05-24 | |
US613543 | 1984-05-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS611805A true JPS611805A (en) | 1986-01-07 |
Family
ID=24457714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60106208A Pending JPS611805A (en) | 1984-05-24 | 1985-05-20 | Blade used in gas turbine engine |
Country Status (7)
Country | Link |
---|---|
JP (1) | JPS611805A (en) |
CA (1) | CA1211052A (en) |
DE (1) | DE3518314A1 (en) |
FR (1) | FR2564896B1 (en) |
GB (1) | GB2159585B (en) |
IT (1) | IT1183653B (en) |
SE (1) | SE468358B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0510101A (en) * | 1991-07-04 | 1993-01-19 | Hitachi Ltd | Member having cooling passage therein |
JP2004316654A (en) * | 2003-04-15 | 2004-11-11 | General Electric Co <Ge> | Complementary cooling type turbine nozzle |
JP2007313562A (en) * | 2006-05-10 | 2007-12-06 | Snecma | Manufacturing process of ceramic core for turbomachine blade |
JP2008002464A (en) * | 2006-06-22 | 2008-01-10 | United Technol Corp <Utc> | Turbine engine component |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2672003B1 (en) * | 1991-01-30 | 1993-04-09 | Snecma | PROCESS FOR PRODUCING COMPLEX CERAMIC CORES FOR FOUNDRY. |
FR2672338B1 (en) * | 1991-02-06 | 1993-04-16 | Snecma | TURBINE BLADE PROVIDED WITH A COOLING SYSTEM. |
US5288207A (en) * | 1992-11-24 | 1994-02-22 | United Technologies Corporation | Internally cooled turbine airfoil |
US5368441A (en) * | 1992-11-24 | 1994-11-29 | United Technologies Corporation | Turbine airfoil including diffusing trailing edge pedestals |
US5431537A (en) * | 1994-04-19 | 1995-07-11 | United Technologies Corporation | Cooled gas turbine blade |
US5759012A (en) * | 1996-12-13 | 1998-06-02 | Caterpillar Inc. | Turbine disc ingress prevention method and apparatus |
EP0892149B1 (en) * | 1997-07-14 | 2003-01-22 | ALSTOM (Switzerland) Ltd | Cooling system for the leading edge of a hollow blade for a gas turbine engine |
DE19846332A1 (en) | 1998-10-08 | 2000-04-13 | Asea Brown Boveri | Cooling channel of a thermally highly stressed component |
IT1319140B1 (en) * | 2000-11-28 | 2003-09-23 | Nuovo Pignone Spa | REFRIGERATION SYSTEM FOR STATIC GAS TURBINE NOZZLES |
DE10248548A1 (en) * | 2002-10-18 | 2004-04-29 | Alstom (Switzerland) Ltd. | Coolable component |
US6997675B2 (en) * | 2004-02-09 | 2006-02-14 | United Technologies Corporation | Turbulated hole configurations for turbine blades |
US7114916B2 (en) * | 2004-02-09 | 2006-10-03 | United Technologies Corporation | Tailored turbulation for turbine blades |
US7207775B2 (en) * | 2004-06-03 | 2007-04-24 | General Electric Company | Turbine bucket with optimized cooling circuit |
DE102005012803A1 (en) * | 2005-03-19 | 2006-09-21 | Alstom Technology Ltd. | Rotor blade for gas turbine stage, has whirling effect producing structures, which are formed as elevated sections on inner wall surfaces of coolant duct and enclose narrow gap, where duct is defined by side walls of blade sheet |
GB0813839D0 (en) * | 2008-07-30 | 2008-09-03 | Rolls Royce Plc | An aerofoil and method for making an aerofoil |
RU2691868C1 (en) * | 2018-07-05 | 2019-06-18 | Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") | High-pressure turbine rotor of a gas turbine engine (versions) |
RU2684298C1 (en) * | 2018-07-05 | 2019-04-05 | Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") | Method of cooling the rotor of a high pressure turbine (hpt) of gas turbine engine (gte), hpt rotor and hpt rotor blade cooled by this method, knot of the device of twisting of air of hpt rotor |
RU2691867C1 (en) * | 2018-07-05 | 2019-06-18 | Публичное акционерное общество "ОДК-Уфимское моторостроительное производственное объединение" (ПАО "ОДК-УМПО") | Method for cooling turbine blade of low-pressure turbine (lpt) of gas turbine engine and rotor blade of lpt, cooled by this method |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1374159A (en) * | 1962-12-05 | 1964-10-02 | Gen Motors Corp | Turbine blade |
FR1405746A (en) * | 1963-08-30 | 1965-07-09 | Gen Electric | Hollow blade for turbine or compressor |
US3628885A (en) * | 1969-10-01 | 1971-12-21 | Gen Electric | Fluid-cooled airfoil |
GB1410014A (en) * | 1971-12-14 | 1975-10-15 | Rolls Royce | Gas turbine engine blade |
US4416585A (en) * | 1980-01-17 | 1983-11-22 | Pratt & Whitney Aircraft Of Canada Limited | Blade cooling for gas turbine engine |
US4775296A (en) * | 1981-12-28 | 1988-10-04 | United Technologies Corporation | Coolable airfoil for a rotary machine |
US4515526A (en) * | 1981-12-28 | 1985-05-07 | United Technologies Corporation | Coolable airfoil for a rotary machine |
-
1985
- 1985-05-08 GB GB08511647A patent/GB2159585B/en not_active Expired
- 1985-05-10 CA CA000481264A patent/CA1211052A/en not_active Expired
- 1985-05-20 JP JP60106208A patent/JPS611805A/en active Pending
- 1985-05-21 SE SE8502495A patent/SE468358B/en not_active IP Right Cessation
- 1985-05-22 IT IT20834/85A patent/IT1183653B/en active
- 1985-05-22 DE DE19853518314 patent/DE3518314A1/en not_active Ceased
- 1985-05-24 FR FR858507928A patent/FR2564896B1/en not_active Expired
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0510101A (en) * | 1991-07-04 | 1993-01-19 | Hitachi Ltd | Member having cooling passage therein |
JP2004316654A (en) * | 2003-04-15 | 2004-11-11 | General Electric Co <Ge> | Complementary cooling type turbine nozzle |
JP4728588B2 (en) * | 2003-04-15 | 2011-07-20 | ゼネラル・エレクトリック・カンパニイ | Complementary cooling turbine nozzle |
JP2007313562A (en) * | 2006-05-10 | 2007-12-06 | Snecma | Manufacturing process of ceramic core for turbomachine blade |
JP2008002464A (en) * | 2006-06-22 | 2008-01-10 | United Technol Corp <Utc> | Turbine engine component |
Also Published As
Publication number | Publication date |
---|---|
DE3518314A1 (en) | 1985-11-28 |
SE468358B (en) | 1992-12-21 |
FR2564896A1 (en) | 1985-11-29 |
IT8520834A0 (en) | 1985-05-22 |
SE8502495D0 (en) | 1985-05-21 |
GB8511647D0 (en) | 1985-06-12 |
CA1211052A (en) | 1986-09-09 |
IT1183653B (en) | 1987-10-22 |
SE8502495L (en) | 1985-11-25 |
GB2159585A (en) | 1985-12-04 |
FR2564896B1 (en) | 1989-04-21 |
GB2159585B (en) | 1989-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS611805A (en) | Blade used in gas turbine engine | |
US5232343A (en) | Turbine blade | |
US5215431A (en) | Cooled turbine guide vane | |
JP6283462B2 (en) | Turbine airfoil | |
JP4576177B2 (en) | Converging pin cooled airfoil | |
JP4509263B2 (en) | Backflow serpentine airfoil cooling circuit with sidewall impingement cooling chamber | |
JP4063938B2 (en) | Turbulent structure of the cooling passage of the blade of a gas turbine engine | |
US5813836A (en) | Turbine blade | |
JP4801513B2 (en) | Cooling circuit for moving wing of turbomachine | |
KR100569765B1 (en) | Turbine blade | |
JP3192854B2 (en) | Turbine cooling blade | |
US7841828B2 (en) | Turbine airfoil with submerged endwall cooling channel | |
JP4659206B2 (en) | Turbine nozzle with graded film cooling | |
US6132174A (en) | Turbine blade cooling | |
US7189060B2 (en) | Cooling system including mini channels within a turbine blade of a turbine engine | |
CN107429568B (en) | For the airfoil in turbogenerator with the inner cooling system of shrinkage expansion outlet slot in rear cooling duct | |
US9631499B2 (en) | Turbine airfoil cooling system for bow vane | |
WO2009088031A1 (en) | Cooling structure of turbine blade | |
US20180230815A1 (en) | Turbine airfoil with thin trailing edge cooling circuit | |
WO2012005324A1 (en) | Turbine blade and engine component | |
US20100221121A1 (en) | Turbine airfoil cooling system with near wall pin fin cooling chambers | |
JPH0370084B2 (en) | ||
EP2738350B1 (en) | Turbine blade airfoils including showerhead film cooling systems, and methods for forming an improved showerhead film cooled airfoil of a turbine blade | |
JP2006077767A (en) | Offset coriolis turbulator blade | |
JP2001234702A (en) | Coriolis turbulator moving blade |