JPS61179512A - Gas-insulated transformer - Google Patents

Gas-insulated transformer

Info

Publication number
JPS61179512A
JPS61179512A JP1871085A JP1871085A JPS61179512A JP S61179512 A JPS61179512 A JP S61179512A JP 1871085 A JP1871085 A JP 1871085A JP 1871085 A JP1871085 A JP 1871085A JP S61179512 A JPS61179512 A JP S61179512A
Authority
JP
Japan
Prior art keywords
refrigerant
motor
gas
transformer
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1871085A
Other languages
Japanese (ja)
Inventor
Hitoshi Okubo
仁 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1871085A priority Critical patent/JPS61179512A/en
Publication of JPS61179512A publication Critical patent/JPS61179512A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transformer Cooling (AREA)

Abstract

PURPOSE:To enable the circulation of a refrigerant to be reversed for preventing the accumulation of air bubbles, by providing a motor for driving a pump with a changeover switch for changing over the rotating direction of the motor or with a means for reversing the circulating direction of the refrigerant. CONSTITUTION:A motor 20 driving a pump 7 for circulating a refrigerant is provided with a changeover switch 22 for switching the rotating direction of the motor. Constructing a transformer in this manner, the rotating direction of the motor 20 can be reversed by changing over the switch 22 provided on the motor 20 for driving the pump 7, whereby the circulating direction of the refrigerant also can be reversed. Accordingly, even if microbubbles are accumulated in a refrigerant flow path or in a filter as a result of temporary over-load operation of the transformer, these microbubbles can be removed by reversing the circulating direction of the refrigerant. Therefore, the flow of the refrigerant will not be inhibited and the cooling efficiency will not be reduced.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は、箔巻変圧器等の様に、絶縁媒体としてSF6
ガス等の絶縁ガスを使用し、且つ、絶縁ガスとは分離さ
れた冷却循環系を有するガス絶縁変圧器に関するもので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention uses SF6 as an insulating medium, such as a foil-wound transformer.
The present invention relates to a gas insulated transformer that uses an insulating gas such as gas and has a cooling circulation system separated from the insulating gas.

[発明の技術的背景] 箔巻変圧器は、巻線の占積率が良く小型、軽l化ができ
る特徴がある。既にaKV、数100KVA程度の比較
的電圧の低い小容量の変圧器では実用化されている。近
年、その浸れた長所にシみ、より高電圧、大容量の例え
ば275KV、300MVA級変圧器への適用拡大が研
究されているが、最大の鍵はいかに冷却能力を向上させ
、高い絶縁能力を巻線に持たせられるかということと、
短絡事故時の半径方向機械力に対して耐えさせ得るかに
かかっている。まだ、この様な高電圧大容量変圧器は実
用化に至ってないが、第3図の如く、巻線内に冷却ダク
トを内蔵させ、この冷却ダクトに絶縁特性の浸れた冷媒
を送りこみ、巻線損失から発生する熱を冷媒の蒸発潜熱
を利用して冷却する、いわばヒートパイプ方式の箔巻変
圧器が有力である。
[Technical Background of the Invention] Foil-wound transformers have a good winding space factor and are characterized by being small and lightweight. It has already been put into practical use in relatively low voltage, small capacity transformers such as aKV and several hundred KVA. In recent years, research has been carried out to expand its application to higher voltage and larger capacity transformers, such as 275KV and 300MVA class transformers. Can the winding have it?
It depends on whether it can withstand the radial mechanical force in the event of a short circuit accident. Such high-voltage, large-capacity transformers have not yet been put to practical use, but as shown in Figure 3, a cooling duct is built into the windings, and a refrigerant with insulating properties is fed into the cooling ducts to A heat pipe type foil-wound transformer, which cools the heat generated from line loss by using the latent heat of vaporization of the refrigerant, is promising.

即ち、この箔巻変圧器は、鉄心の脚部1に、金属シート
2と絶縁シー1−3を重ねて巻いてなる低圧巻線4と高
圧巻線5が巻装され、それらの巻線内には中空状の冷却
ダクト6が内蔵されている。
That is, in this foil-wound transformer, a low-voltage winding 4 and a high-voltage winding 5, which are made by overlapping metal sheets 2 and insulating sheets 1-3, are wound around a leg 1 of an iron core, and the inside of these windings is has a built-in hollow cooling duct 6.

冷却ダクト6の中空部の薄い間隙内には、フロンR11
3やフロリナートFC75等の冷媒が封入されており、
ポンプ7により循環され巻線内の発熱を冷媒の蒸発潜熱
で奪い、その蒸気を凝縮器8内において冷却水管って冷
却させ凝縮させる様になっている。液化した冷媒は、冷
媒タンク10にためられ、更に、ポンプ7で巻線内に送
り込まれるという冷却系が構成されている。
In the thin gap in the hollow part of the cooling duct 6, fluorocarbon R11
It is filled with refrigerants such as 3 and Fluorinert FC75.
The refrigerant is circulated by a pump 7, and the heat generated in the windings is removed by the latent heat of vaporization of the refrigerant, and the vapor is cooled and condensed through a cooling water pipe in a condenser 8. A cooling system is constructed in which the liquefied refrigerant is stored in a refrigerant tank 10 and further fed into the windings by a pump 7.

冷fJI系を構成する導液管11はステンレス等の金属
でe「られており、この導液管11と冷却ダクト6とは
テフロン樹脂等の絶縁パイプ12を介して接続されてい
る。また、この導液管11は、タンク13等のアース電
位にも接続されている。一方、冷却ダクト6は、巻線内
に組みこまれている関係上、近接する巻線と同電位に電
気的に接続されている。更に、巻線各部の絶縁は、タン
ク13内に封入されたS F6ガス等の絶縁ガスにより
確保されている。
The liquid guide pipe 11 constituting the cold fJI system is made of metal such as stainless steel, and the liquid guide pipe 11 and the cooling duct 6 are connected via an insulating pipe 12 made of Teflon resin or the like. This liquid guide pipe 11 is also connected to the ground potential of the tank 13, etc. On the other hand, since the cooling duct 6 is built into the winding, it is electrically connected to the same potential as the adjacent winding. Further, insulation of each part of the winding is ensured by an insulating gas such as SF6 gas sealed in the tank 13.

[背景技術の問題点] ところで、上記の様な各種の箔巻変圧器は、薄い金属シ
ート2と絶縁シート3を重ねて巻回することにより、低
圧巻線4や高圧巻線5が形成される為、鉄心窓内の巻線
占積率が高くなる反面、次の様な問題点がある。
[Problems with Background Art] By the way, in the various foil-wound transformers as described above, the low-voltage winding 4 and the high-voltage winding 5 are formed by overlapping and winding the thin metal sheet 2 and the insulating sheet 3. As a result, the winding space factor within the core window increases, but on the other hand, there are the following problems.

即ち、上述した様な箔巻変圧器においては、冷却系を構
成する冷却ダクト6内に冷媒を循環させることにより、
対流熱伝達を利用して巻線に発生した熱を冷却する方式
を取っているので、冷却ダクト6内に気泡が発生するこ
とは無いが、変圧器    1の運転時に一時的に過負
荷運転となることがあり、その際に、微小気泡が発生す
る可能性があった。
That is, in the foil-wound transformer as described above, by circulating the refrigerant in the cooling duct 6 that constitutes the cooling system,
Since the method uses convective heat transfer to cool down the heat generated in the windings, bubbles will not be generated in the cooling duct 6, but there may be temporary overload operation when the transformer 1 is operating. At that time, there was a possibility that microbubbles could be generated.

その微小気泡が冷却ダクト6の角や導液管11の接続部
等にトラップされる可能性があり、そのために冷媒の流
動速度が遅くなり、冷却効率が著しくイル下する恐れが
あった。
There is a possibility that the microbubbles may be trapped in the corners of the cooling duct 6, the connection part of the liquid guide pipe 11, etc., and the flow rate of the refrigerant is thereby slowed down, and there is a possibility that the cooling efficiency will be significantly reduced.

また、変圧器の長1111運転によって、冷媒材料の劣
化ら生じ易く、その結果化じる生成物を、冷媒循環系に
配設したフィルタ〜やトラッパ−のみで取りのぞくこと
は非常に回動であり、冷却ダクト6の角や導液管11の
接続部等にトラップされる恐れがあった。その結果、冷
媒の循環が著しく阻害され、冷却効率の低下を引きおこ
すといった欠点があった@ なお、上述した箔巻変圧器に限らず、タンク内に封入さ
れた絶縁ガスと、巻線を冷却する冷却系とが分離されて
いる各種のガス絶縁変圧器においても、同様の問題点が
あった。
In addition, the long 1111 operation of the transformer tends to cause deterioration of the refrigerant material, and it is extremely difficult to remove the resulting products using only a filter or trapper installed in the refrigerant circulation system. Therefore, there was a risk that the particles would be trapped in the corners of the cooling duct 6, the connecting portions of the liquid guide pipes 11, and the like. As a result, the circulation of the refrigerant was significantly hindered, causing a drop in cooling efficiency. Similar problems exist in various gas insulated transformers in which the cooling system is separated.

F発明の目的] 本発明は、上述の様な従来のガス絶縁変圧器の欠点を解
消する為に提案されたもので、その目的は、変圧器の過
口荷運転時や長期運転によって気泡などが発生した場合
においても、優れた冷却性能を保持した信頼性の高いガ
ス絶縁変圧器を提供することにある。
F Purpose of the Invention The present invention was proposed in order to eliminate the drawbacks of the conventional gas insulated transformer as described above. An object of the present invention is to provide a highly reliable gas insulated transformer that maintains excellent cooling performance even when a gas insulated transformer occurs.

[発明の概要コ 本発明のガス絶縁変圧器は、ポンプを駆動させるモータ
ーに、モーターの回転方向を切替えるための切替えスイ
ッチを配設するか、或いは、巻線の上下に配設された導
液管の間に、切替えバルブを備えた2木の配管を配設す
る等、冷媒の循環方向の逆転手段を設け、冷媒を逆転し
て気泡の発生を防止できる様にしたものである。
[Summary of the Invention] The gas insulated transformer of the present invention includes a motor for driving a pump that is provided with a changeover switch for switching the direction of rotation of the motor, or a liquid guide that is provided above and below the winding. A means for reversing the circulation direction of the refrigerant is provided, such as by arranging two pipes with switching valves between the pipes, so that the refrigerant can be reversed and the generation of bubbles can be prevented.

[発明の実施例コ 以下、本発明の一実施例を第1図にもとずいて具体的に
説明する。なお、第3図の従来のガス絶縁変圧器と同一
の部分は同一符号を付し説明は省略する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be explained in detail based on FIG. Note that the same parts as those of the conventional gas insulated transformer shown in FIG. 3 are designated by the same reference numerals, and the explanation thereof will be omitted.

第1図において、冷媒を循環させる為のポンプ7を駆動
させるモーター20に、モーターの回転方向を切替える
為の切替えスイッチ22が設けられている。
In FIG. 1, a motor 20 that drives a pump 7 for circulating refrigerant is provided with a changeover switch 22 for switching the rotation direction of the motor.

この様に構成された本実施例のガス絶縁変圧器において
は、ポンプ7を駆動させるモーター20に配設された切
替えスイッチ22を切替えることにより、モーター20
の回転方向を逆転し、それによってポンプ7による冷媒
の循環方向も逆転することができる。その結果、変圧器
の一時的な過負荷運転の後に、微小気泡が冷媒の流路や
フィルター等にたまっても、冷媒の循環方向を逆転する
ことにより、それらの微小気泡を除去することができ−
るので、冷媒の流動を妨げることが無く、冷却効率を低
下させることは無い。また、変圧器の長期運転によって
冷媒の劣化や分解が起こり、その生成物が流路やフィル
ターにたまっても、同様に切替えスイッチ22を切替え
ることにより冷媒の循環方向を逆転させて取りのぞくこ
とができる。
In the gas insulated transformer of this embodiment configured in this way, by switching the changeover switch 22 disposed on the motor 20 that drives the pump 7, the motor 20
The direction of rotation of the pump 7 can be reversed, thereby also reversing the direction of circulation of the refrigerant by the pump 7. As a result, even if microbubbles accumulate in the refrigerant flow path or filter after a temporary overload operation of the transformer, these microbubbles can be removed by reversing the direction of refrigerant circulation. −
Therefore, the flow of the refrigerant is not obstructed and the cooling efficiency is not reduced. Furthermore, even if the refrigerant deteriorates or decomposes due to long-term operation of the transformer and its products accumulate in the flow path or filter, it can be removed by reversing the direction of refrigerant circulation by similarly switching the changeover switch 22. can.

なお、本発明は、上記の実施例に限定されるものではな
く、第2図に示した様に、ポンプ7は従来のままで上下
の導液管11の間に切替えバルブ30を備えた2本の配
管31.32を設けることにJ:す、冷媒の流動方向を
逆転させても良い。即ち、切替えバルブ30a及び30
bを聞き、30C及び30dを閉じると、ポンプ7より
送り出された冷媒は下側の導液管11を通って冷却ダク
ト6内を上方へ流れ、更に上側の導液@11を通って凝
縮器8へ送られる。反対に、切替えバルブ30a及び3
0bを閉じ、30G及び30dを開くと、ポンプ7より
送り出された冷媒は配管32を通って上側の導液管11
に達し、冷却ダクト6内を下方へ流れ、下側の導液管1
1及び配管3.1を通って凝縮器へ送られる。この場合
も、上述の実施例と同様に冷媒の流動方向を逆転するこ
とができるので、優れた冷却効率を保持することができ
る。
Note that the present invention is not limited to the above-mentioned embodiment, and as shown in FIG. In providing the main pipes 31 and 32, the flow direction of the refrigerant may be reversed. That is, the switching valves 30a and 30
When listening to b and closing 30C and 30d, the refrigerant sent out from the pump 7 passes through the lower liquid guide pipe 11, flows upward in the cooling duct 6, and further passes through the upper liquid guide @11 to the condenser. Sent to 8. On the contrary, the switching valves 30a and 3
When 0b is closed and 30G and 30d are opened, the refrigerant sent out from the pump 7 passes through the pipe 32 and flows into the upper liquid guide pipe 11.
, and flows downward in the cooling duct 6 to the lower liquid conduit 1.
1 and pipe 3.1 to the condenser. Also in this case, since the flow direction of the refrigerant can be reversed as in the above embodiment, excellent cooling efficiency can be maintained.

なお、冷媒の流動方向を逆転する時期は、変圧器の過負
荷運転の後でも、一定期間毎に行なってもよい。
Note that the flow direction of the refrigerant may be reversed at regular intervals even after the transformer is overloaded.

[発明の効果] 以上の通り、本発明によれば、冷媒の流動方向を逆転す
ることができる様にしたことにより、変圧器の過負荷運
転時や長期運転によって冷却効率が低下覆るのを防ぐこ
とができ、浸れた冷却性能を保持した信頼性の高いガス
絶縁変圧器を提供できる効果がある。
[Effects of the Invention] As described above, according to the present invention, by making it possible to reverse the flow direction of the refrigerant, it is possible to prevent the cooling efficiency from decreasing due to overload operation or long-term operation of the transformer. This has the effect of providing a highly reliable gas insulated transformer that maintains excellent cooling performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガス絶縁変圧器の一実施例を示す゛断
面図、第2図は本発明の他の実施例を示す断面図、第3
図は従来のガス絶縁変圧器の構成を示す断面図である。 1・・・鉄心の脚部、2・・・金属シート、3・・・絶
縁シート、4・・・低圧巻線、5・・・高圧巻線、6・
・・冷却ダク1〜.7・・・ポンプ、8・・・凝l1i
5器、9・・・冷却水管、10・・・冷媒タンク、11
・・・導液管、12・・・絶縁パイプ、13・・・タン
ク、20・・・モーター、21・・・電源、22−・・
切替えスイッチ、30a、30b、30G、30d・・
・切替えバルブ、31.32・・・配管。
FIG. 1 is a sectional view showing one embodiment of the gas insulated transformer of the present invention, FIG. 2 is a sectional view showing another embodiment of the invention, and FIG.
The figure is a sectional view showing the configuration of a conventional gas insulated transformer. DESCRIPTION OF SYMBOLS 1... Leg of iron core, 2... Metal sheet, 3... Insulating sheet, 4... Low voltage winding, 5... High voltage winding, 6...
...Cooling duct 1~. 7...Pump, 8...Coagulant l1i
5 equipment, 9... cooling water pipe, 10... refrigerant tank, 11
...Liquid pipe, 12...Insulated pipe, 13...Tank, 20...Motor, 21...Power source, 22-...
Changeover switch, 30a, 30b, 30G, 30d...
・Switching valve, 31.32...Piping.

Claims (4)

【特許請求の範囲】[Claims] (1)タンク内に巻線と鉄心とを内蔵し、絶縁媒体とし
てSF_6ガス等の絶縁ガスを封入し、前記絶縁ガスと
は分離された冷却循環系を有するガス絶縁変圧器におい
て、 前記冷却循環系に、冷媒の循環方向の逆転手段を設けた
ことを特徴とするガス絶縁変圧器。
(1) In a gas insulated transformer that has a winding and an iron core built in a tank, an insulating gas such as SF_6 gas as an insulating medium, and a cooling circulation system separated from the insulating gas, the cooling circulation A gas insulated transformer characterized in that the system is provided with means for reversing the direction of refrigerant circulation.
(2)上記巻線がシート状導体とシート状絶縁物とを重
ねて巻回した箔巻巻線であるガス絶縁変圧器。
(2) A gas insulated transformer in which the winding is a foil-wound winding in which a sheet-like conductor and a sheet-like insulator are wound in an overlapping manner.
(3)冷媒の循環方向の逆転手段が、ポンプを駆動させ
るモーターに、モーターの回転方向を切替える為の切替
えスイッチを配設したものによる特許請求の範囲第1項
又は第2項記載のガス絶縁変圧器。
(3) The gas insulation according to claim 1 or 2, wherein the means for reversing the circulation direction of the refrigerant is provided with a changeover switch for switching the rotation direction of the motor on the motor that drives the pump. transformer.
(4)冷媒の循環方向の逆転手段が、巻線の上下に配設
された導液管の間に、切替えバルブを備えた2本の配管
を配設したものによる特許請求の範囲第1項又は第2項
記載のガス絶縁変圧器。
(4) Claim 1, in which the means for reversing the circulation direction of the refrigerant is provided by two pipes each having a switching valve between the liquid guide pipes arranged above and below the windings. Or the gas insulated transformer according to item 2.
JP1871085A 1985-02-04 1985-02-04 Gas-insulated transformer Pending JPS61179512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1871085A JPS61179512A (en) 1985-02-04 1985-02-04 Gas-insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1871085A JPS61179512A (en) 1985-02-04 1985-02-04 Gas-insulated transformer

Publications (1)

Publication Number Publication Date
JPS61179512A true JPS61179512A (en) 1986-08-12

Family

ID=11979207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1871085A Pending JPS61179512A (en) 1985-02-04 1985-02-04 Gas-insulated transformer

Country Status (1)

Country Link
JP (1) JPS61179512A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3171372A4 (en) * 2014-07-17 2018-04-04 Mitsubishi Electric Corporation In-vehicle voltage-transforming device
EP3817512A1 (en) * 2019-10-29 2021-05-05 ABB Power Grids Switzerland AG Static electric induction system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3171372A4 (en) * 2014-07-17 2018-04-04 Mitsubishi Electric Corporation In-vehicle voltage-transforming device
EP3817512A1 (en) * 2019-10-29 2021-05-05 ABB Power Grids Switzerland AG Static electric induction system and method
WO2021083574A1 (en) * 2019-10-29 2021-05-06 Abb Power Grids Switzerland Ag Static electric induction system and method
CN114342018A (en) * 2019-10-29 2022-04-12 日立能源瑞士股份公司 Electrostatic induction system and method

Similar Documents

Publication Publication Date Title
CN1783608B (en) High-voltage system and high-power circuit breaker with cooling and its cooling method
CN104779548B (en) A kind of sealing switch equipment with liquid nitrogen cooling recirculation system
JPS61179512A (en) Gas-insulated transformer
JPH10285792A (en) Current limiter
US4006332A (en) Convection heating apparatus for multi-phase gas-type circuit interrupters
US2878300A (en) Bus structure
JP3148044B2 (en) Gas cooled stationary electrical equipment
JPH1022135A (en) Cooling system for stationary induction apparatus
JPH05315150A (en) Foil-wound transformer
JPH01122306A (en) Gas-insulated switching device
JP2001245410A (en) Switchgear for gas insulation
JPS61179511A (en) Foil-wound transformer
JPS61180406A (en) Separated type gas insulated foil-wound transformer
JPH0817646A (en) Gas cooling stationary electric apparatus
JPS62244112A (en) Gas insulated transformer
JP3516412B2 (en) Gas insulated stationary induction device
JPH09115738A (en) Gas insulated transformer
JPH10116737A (en) Gas insulated transformer
JPH0712006B2 (en) Foil winding transformer
JPH08250336A (en) Gas-insulated stationary electric equipment
JPH0352207A (en) Gas-insulated transformer
JPH0276208A (en) Foil-wound transformer
JPH0218907A (en) Gas-insulated transformer
JPS63289911A (en) Separate type foil-wound transformer
JPH09120916A (en) Gas-cooled stationary induction machine