JPH0352207A - Gas-insulated transformer - Google Patents

Gas-insulated transformer

Info

Publication number
JPH0352207A
JPH0352207A JP18595889A JP18595889A JPH0352207A JP H0352207 A JPH0352207 A JP H0352207A JP 18595889 A JP18595889 A JP 18595889A JP 18595889 A JP18595889 A JP 18595889A JP H0352207 A JPH0352207 A JP H0352207A
Authority
JP
Japan
Prior art keywords
winding
windings
main
gas
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18595889A
Other languages
Japanese (ja)
Inventor
Katsutoshi Toda
戸田 克敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18595889A priority Critical patent/JPH0352207A/en
Publication of JPH0352207A publication Critical patent/JPH0352207A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F2027/348Preventing eddy currents

Abstract

PURPOSE:To reduce eddy-current loss occurring in a winding and to prevent local overheating without making the winding and a tank of a transformer large in size, by a method wherein a linear winding causing little occurrence of the eddy-current loss is disposed either inside or outside of a main winding. CONSTITUTION:A low-tension winding 4 and a high-tension winding 5 which are main windings are constructed of sheet-shaped conductors, and a tertiary winding 20 disposed inside of the low-tension winding 4 and a tap winding 21 disposed outside of the high-tension winding 5 are constructed of linear conductors formed by winding a flat-type linear conductor round respectively. These linear windings 20 and 21 are disposed at least either inside or outside of the main windings 4 and 5. By this method, an eddy-current loss occurring in the windings is reduced and local overheating can be prevented without making the windings and a tank of a transformer large in size, and a gas- insulated transformer having high performances and high quality and being compact and inexpensive can be obtained.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は、低圧巻線・高圧巻線等の主巻線と、3次巻線
、安定巻線、タップ巻線等の主巻線より容量の小さい巻
線とを、同一タンク内に収納したガス絶縁変圧器に関す
るものである。
[Detailed Description of the Invention] [Purpose of the Invention (Field of Industrial Application) The present invention relates to main windings such as low voltage windings and high voltage windings, tertiary windings, stable windings, tap windings, etc. This relates to a gas insulated transformer in which a main winding and a winding having a smaller capacity than the main winding are housed in the same tank.

(従来の技術) 近年、変圧器は、不燃化・軽量化・現地据付工事と保守
の簡素化の要請から、油人変圧器に代ってS F6ガス
等のガス絶縁媒体を使用したガス絶縁変圧器が多く採用
されるようになっている。
(Conventional technology) In recent years, due to demands for nonflammability, weight reduction, and simplification of on-site installation and maintenance, transformers have been replaced by gas-insulated transformers using gas insulating media such as SF6 gas. Transformers are increasingly being used.

この様なガス絶縁変圧器に使用される封入ガスとしては
、絶縁性に優れていることから、ガス密閉形開閉装置に
も使用されているS F6ガスを用いるのが一般的であ
る。しかし、S F6ガスは絶縁性には優れているもの
の、絶縁油と比較すると、冷却性能が劣り、従来のガス
絶縁変圧器は数10MVAまでの中小容量の変圧器に限
られていた。
As the filler gas used in such gas-insulated transformers, SF6 gas, which is also used in gas-sealed switchgears, is generally used because it has excellent insulation properties. However, although SF6 gas has excellent insulating properties, its cooling performance is inferior to that of insulating oil, and conventional gas insulated transformers have been limited to medium- and small-capacity transformers of up to several tens of MVA.

しかし、より高電圧・大容量の変圧器を実現させるため
には、巻線に対する冷却能率をさらに向上させ、且つ、
高い絶縁能力を巻線に持たせることが不可欠となってお
り、巻線占積率に優れ、冷却特性が良く、電位分布特性
が良好のため、高い絶縁耐力を有するシート状巻線を用
いることが考えられている。
However, in order to realize higher voltage and larger capacity transformers, it is necessary to further improve the cooling efficiency of the windings, and
It is essential to provide the winding with high insulation capacity, and sheet-like winding with high dielectric strength is used because it has an excellent winding space factor, good cooling characteristics, and good potential distribution characteristics. is considered.

この種の変圧器としては、例えば特開昭54−1 68
6 1 3号公報に示されたものが知られている。即ち
、第4図に示した様に、鉄心脚1の周囲に金属シ一ト2
と絶縁シ一ト3を重ねて巻回して巻線が構成されている
。また、前記巻線は低圧巻線4と高圧巻線5とからなり
、これらの各巻線内には環状の冷却パネル6が内蔵され
ている。なお、この冷却パネル6は、冷媒が流れるため
の狭い間隙をおいて重ねた2枚の金属板の周囲を、溶接
等で封じたものである。そして、この隙間にフロンR−
113やフロリナートFC−75等の冷媒をポンプ7で
常時流し込み、冷媒に巻線内で発生した熱を奪い取らせ
ることで冷却を行っている。また、熱を吸収した冷媒は
、導出ノズルにより巻線の外部に送り出され、タンク8
の外部に設けられた冷却器9内で冷却され、再度冷却パ
ネル6内に送り込まれる。
Examples of this type of transformer include JP-A-54-168
The one shown in Publication No. 613 is known. That is, as shown in FIG. 4, a metal sheet 2 is placed around the core leg 1.
The winding wire is constructed by overlapping and winding the insulating sheet 3 and the insulating sheet 3. Further, the windings include a low voltage winding 4 and a high voltage winding 5, and an annular cooling panel 6 is built in each of these windings. The cooling panel 6 is constructed by welding or the like to seal two metal plates stacked one on top of the other with a narrow gap for the coolant to flow. Then, in this gap, Freon R-
Cooling is performed by constantly flowing a refrigerant such as 113 or Fluorinert FC-75 with a pump 7 and allowing the refrigerant to remove the heat generated within the windings. In addition, the refrigerant that has absorbed the heat is sent out to the outside of the winding by the outlet nozzle, and is sent to the tank 8.
It is cooled in a cooler 9 provided outside of the cooling panel 6 and fed into the cooling panel 6 again.

なお、冷媒は冷却パネル6に送り込まれる前に、一旦集
液管10に集められるが、この果液管10はタンク8な
どと同電位のアース電位を保持しているため、金属シ一
ト2と同電位を有する冷却パネル6との接続は、絶縁パ
イプ11を介して行なわれている。また、冷却バネル6
は金属シ一ト2を熱伝導により冷却するため、金属シー
ト2あるいは絶縁シ一ト3に接触しており、さらに巻線
内に巻き込まれているため、冷却パネル6にもほぼ同電
圧が印加され、この金属シ一ト2や冷却パネル6と外部
との絶縁は、タンク8内に封入されたS F6ガスなど
の絶縁ガスによってなされている。
Note that before the refrigerant is sent to the cooling panel 6, it is once collected in the liquid collecting pipe 10, but since this liquid collecting pipe 10 maintains the same ground potential as the tank 8, etc., the metal sheet 2 The connection to the cooling panel 6 having the same potential as that is made through an insulating pipe 11. In addition, the cooling panel 6
In order to cool the metal sheet 2 by thermal conduction, it is in contact with the metal sheet 2 or the insulating sheet 3, and is further wound in the winding, so almost the same voltage is applied to the cooling panel 6. The metal sheet 2 and the cooling panel 6 are insulated from the outside by an insulating gas such as SF6 gas sealed in the tank 8.

以上説明l2たガス絶縁変圧器は、従来の平角線状の導
体を用いたガス絶縁変圧器に比較して、大幅な小形・軽
量・大容量・高電圧化が可能で、絶縁信頼性が高いなど
の利点を有している。
The gas insulated transformer described above can be significantly smaller, lighter, larger in capacity, and higher in voltage than conventional gas insulated transformers using rectangular wire conductors, and has high insulation reliability. It has the following advantages.

(発明が解決しようとする課題) しかしながら、上述した様な構成を有するガス絶縁変圧
器においては、以下に述べる様な解決すべき課題があっ
た。即ち、変圧器の容量が大きくなると、巻線4.5か
らの漏れ磁束量が大きくなり、巻線4,5自身に大きな
渦電流損を発生させ、局部過熱を引き起こすことが知ら
れているが、巻線4,5から発生した漏れ磁束12は、
第5図に示した様に、巻線から絶縁空間13及び鉄心1
、あるいは絶縁空間13及びタンク8を介してループを
作る。このとき、漏れ磁束12は金属シ一ト2を横切っ
て、最短の磁路(磁気エネルギーが最小)で、ループを
形戊しようとするが、金属シ一ト2の上下方向の幅が大
きいため、金属シ一ト2内に漏れ磁束12の半径方向へ
の漏れを打消す向きに渦電流が流れる。この渦電流は、
特に金属シ一ト2の土下端に集中して流れ、大きな損失
を発生させる。また、この渦電流損失は、第6図に示し
た様に、鉄心脚に近い程、あるいはタンク壁に近い程大
きくなるという特徴を有している。さらに、この様な現
象は、従来の平角線状の導体を用いた変圧器に比べて、
シート状導体を用いた変圧器において、導体の幅が広い
分、顕著に現われる。
(Problems to be Solved by the Invention) However, in the gas insulated transformer having the configuration as described above, there are problems to be solved as described below. That is, it is known that as the capacity of the transformer increases, the amount of leakage magnetic flux from the windings 4.5 increases, causing large eddy current loss in the windings 4 and 5 themselves, causing local overheating. , the leakage magnetic flux 12 generated from the windings 4 and 5 is
As shown in Figure 5, from the winding to the insulation space 13 and the iron core 1.
, or create a loop via the insulating space 13 and the tank 8. At this time, the leakage magnetic flux 12 crosses the metal sheet 2 and tries to form a loop through the shortest magnetic path (minimum magnetic energy), but since the vertical width of the metal sheet 2 is large, , an eddy current flows in the metal sheet 2 in a direction that cancels the leakage of the leakage magnetic flux 12 in the radial direction. This eddy current is
The flow is particularly concentrated at the bottom end of the metal sheet 2, causing large losses. Furthermore, as shown in FIG. 6, this eddy current loss has the characteristic that it becomes larger the closer it is to the core legs or the tank wall. Furthermore, this phenomenon occurs compared to transformers using conventional rectangular wire conductors.
In a transformer using a sheet-like conductor, this problem is more noticeable because the width of the conductor is wider.

ところで、変圧器は一般に、低圧巻線及び高圧巻線等か
ら構成される主巻線の他に、タップ巻線や3次巻線等の
様に、主巻線に比べて容量が小さく電圧の低い巻線を主
巻線と組合せて用いることが多い。即ち、第7図に示し
た様に、鉄心脚1のまわりに、内側から順に、3次巻線
14、主巻線である低圧巻線4及び高圧巻線5、さらに
タップ巻線15が巻回されている。そして、これらの各
巻線がシート状巻線から構成されている場合、変圧器の
容量が大きくなると、前述した様に、各巻線14.4.
5.15からの漏れ磁束が大きくなり、各巻線に大きな
渦電流損を発生させる。また、この渦電流損は、第8図
に示した様に、鉄心脚1に最も近い3次巻線14とタン
ク壁に最も近いタップ巻線15において大きくなる。そ
のため、巻線容量の小さい3次巻線14やタップ巻線1
5等において過大な損失が発生することになり、巻線に
局部過熱を起こす危険性があるばかりでなく、主巻線以
外の巻線を冷却する必要が生じ、冷却パネルの枚数を増
加させなければならず、コストが増大し、また、巻線の
大形化を招いていた。さらに、この様な欠点を解決する
ために、鉄心脚と巻線、あるいは巻線とタンク壁との距
離を拡大し、漏れ磁束の磁路長をのばすことによって、
シート状巻線に発生する損失を抑制することも考えられ
るが、変圧器の巻線及びタンクの大形化を招き、コスト
アップとなるという欠点があった。
By the way, a transformer generally has a main winding consisting of a low-voltage winding, a high-voltage winding, etc., as well as tap windings, tertiary windings, etc., which have a smaller capacity and lower voltage than the main winding. A low winding is often used in combination with the main winding. That is, as shown in FIG. 7, a tertiary winding 14, a low voltage winding 4 and a high voltage winding 5, which are main windings, and a tap winding 15 are wound around the core leg 1 in order from the inside. It's being passed around. When each of these windings is composed of sheet-shaped windings, when the capacity of the transformer increases, each winding 14.4.
The leakage magnetic flux from 5.15 becomes large, causing large eddy current loss in each winding. Moreover, as shown in FIG. 8, this eddy current loss becomes large in the tertiary winding 14 closest to the core leg 1 and in the tap winding 15 closest to the tank wall. Therefore, the tertiary winding 14 and tap winding 1 with small winding capacity are
Excessive loss will occur in the windings, etc., and there is a risk of local overheating of the windings, as well as the need to cool windings other than the main winding, which will require an increase in the number of cooling panels. This inevitably increases costs and increases the size of the winding. Furthermore, in order to solve these drawbacks, by increasing the distance between the core leg and the winding, or between the winding and the tank wall, and increasing the magnetic path length of the leakage magnetic flux,
Although it is possible to suppress the loss occurring in the sheet-shaped winding, there is a drawback that the winding and tank of the transformer are increased in size, resulting in an increase in cost.

本発明は以上の欠点を解消するために提案されたもので
、その目的は、変圧器の巻線及びタンクを大形化するこ
となく、巻線に発生する渦電流損失を低減し、局部過熱
防止を計った、高性能、高品質、コンパクトで安価なガ
ス絶縁変圧器を提供することにある。
The present invention was proposed to eliminate the above-mentioned drawbacks, and its purpose is to reduce eddy current loss occurring in the windings and reduce local overheating without increasing the size of the transformer windings and tank. Our goal is to provide high-performance, high-quality, compact, and inexpensive gas-insulated transformers that are designed for prevention.

[発明の構戊] (課題を解決するための手段) 本発明は、鉄心脚に低圧巻線、高圧巻線等の主巻線と、
3次巻線、安定巻線、タップ巻線等の主巻線より容量の
小さい巻線とを巻回し、同一タンク内に収納したガス絶
縁変圧器において、主巻線を金属シートと絶縁シートを
重ね合せて巻回したシート状巻線から構成し、また、主
巻線以外の巻線を平角線状の導体を巻回した線状巻線か
ら構成し、これらの線状巻線を主巻線の内側あるいは外
側の少なくともいずれか一方に配設したことを特徴とす
るものである。
[Structure of the Invention] (Means for Solving the Problem) The present invention provides a main winding such as a low voltage winding and a high voltage winding on an iron core leg,
In gas-insulated transformers, which are wound with windings with a smaller capacity than the main winding, such as tertiary windings, stabilizing windings, and tap windings, and housed in the same tank, the main winding is made of metal sheets and insulating sheets. It is composed of sheet-like windings wound on top of each other, and the windings other than the main winding are composed of wire-like windings in which rectangular wire-like conductors are wound. It is characterized in that it is arranged at least either inside or outside the line.

(作用) 本発明のガス絶縁変圧器によれば、シート状巻線に比べ
て渦電流損失の発生が少ない線状巻線を、主巻線の内側
あるいは外側の少なくともいずれか一方に配設すること
によって、漏れ磁束による渦電流損失を抑制することが
できる。また、主巻線に発生する渦電流損失も、その内
側あるいは外側の少なくともいずれか一方に配設される
線状巻線によって、鉄心あるいはタンク壁との距離を保
持されるため、低減することができる。
(Function) According to the gas insulated transformer of the present invention, the wire winding, which generates less eddy current loss than the sheet winding, is arranged at least on either the inside or outside of the main winding. This makes it possible to suppress eddy current loss due to leakage magnetic flux. In addition, the eddy current loss generated in the main winding can be reduced because the distance from the iron core or tank wall is maintained by the wire winding arranged on at least one of the inside and outside of the main winding. can.

(実施例) 以下、本発明の一実施例を第1図乃至第3図に基づいて
具体的に説明する。なお、第4図乃至第8図に示した従
来型と同一の部材には同一の符号を付して、説明は省略
する。
(Example) Hereinafter, an example of the present invention will be specifically described based on FIGS. 1 to 3. Note that the same members as those of the conventional type shown in FIGS. 4 to 8 are designated by the same reference numerals, and explanations thereof will be omitted.

本実施例においては、第1図及び第2図に示した様に、
主巻線である低圧巻線4及び高圧巻線5がシート状導体
から構成され、また、低圧巻線4の内側に配設される3
次巻線20及び高圧巻線5の外側に配設されるタップ巻
線21が、平角線状の導体を巻回して構成された線状導
体から構戊されている。
In this embodiment, as shown in FIGS. 1 and 2,
The low-voltage winding 4 and the high-voltage winding 5, which are the main windings, are composed of sheet-like conductors.
The tap winding 21 disposed outside the secondary winding 20 and the high voltage winding 5 is constructed from a linear conductor formed by winding a rectangular wire conductor.

この様な構戊を有する本実施例のガス絶縁変圧器におい
ては、鉄心脚及びタンク壁に最も近い部分の巻線を線状
巻線で構成したことにより、第3図に示した様に、巻線
に発生する渦電流損失を大幅に低減することができる。
In the gas insulated transformer of this embodiment having such a structure, the windings closest to the core legs and the tank wall are constructed of linear windings, as shown in FIG. Eddy current loss generated in the windings can be significantly reduced.

また、その結果、局部過熱が防止できるので、冷却パネ
ルの配設個数を削減することが可能となり、また、巻線
と鉄心あるいは巻線とタンク壁との間隔をあける必要も
ないので、巻線の寸法も縮小することができる。
In addition, as a result, local overheating can be prevented, making it possible to reduce the number of cooling panels installed.Also, since there is no need to leave a gap between the winding and the iron core or between the winding and the tank wall, the winding The dimensions of can also be reduced.

一方、シート状巻線を用いた主巻線4.5においては、
その内側及び外側に配設される3次巻線20及びタップ
巻線21によって、鉄心1あるいはタンク8との距離を
確保されることになるため、巻線の寸法を大きくするこ
となく、渦電流損失を低減することができる。
On the other hand, in main winding 4.5 using sheet-like winding,
The tertiary winding 20 and the tap winding 21 arranged inside and outside of the tertiary winding 20 and the tap winding 21 ensure a distance from the iron core 1 or the tank 8, so the eddy current can be avoided without increasing the dimensions of the winding. Loss can be reduced.

なお、本発明は上述した実施例に限定されるものではな
く、シート状巻線から戊る主巻線の内側あるいは外側に
配設される巻線は、線状巻線であれば、3次巻線、安定
巻線、タップ巻線等、いずれでも良く、また、主巻線の
内側及び外側に配設される巻線が同一の巻線から構成さ
れていても同様の効果が得られる。
Note that the present invention is not limited to the above-described embodiments, and if the winding is a linear winding, the winding disposed inside or outside the main winding separated from the sheet winding is a tertiary winding. It may be a winding, a stable winding, a tap winding, etc., and the same effect can be obtained even if the windings arranged inside and outside the main winding are made of the same winding.

[発明の効果] 以上述べた様に、本発明によれば、低圧巻線及び高圧巻
線などの主巻線をシート状巻線から構戊し、また、主巻
線以外の巻線を平角線状の導体を巻回した線状巻線から
構威し、これらの線状巻線を主巻線の内側あるいは外側
の少なくともいずれか一方に配設するという簡単な手段
によって、変圧器の巻線及びタンクを大形化することな
く、巻線に発生する渦電流損失を低減し、局部過熱防止
を計った、高性能、高品質、コンパクトで安価なガス絶
縁変圧器を提供することができる。
[Effects of the Invention] As described above, according to the present invention, the main windings such as the low-voltage winding and the high-voltage winding are constructed from sheet-shaped windings, and the windings other than the main windings are constructed by rectangular windings. The windings of a transformer are constructed by a wire winding wound around a wire conductor, and these wire windings are arranged inside or at least outside the main winding. It is possible to provide a high-performance, high-quality, compact, and inexpensive gas-insulated transformer that reduces eddy current loss generated in the windings and prevents local overheating without increasing the size of the wires and tank. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のガス絶縁変圧器の一実施例を示す断面
図、第2図はその要部拡大断面図、第3図は本発明の作
用を示すためのもので、渦電流損の半径方向分布図、第
4図は従来のガス絶縁変圧器の構成を示す断面図、第5
図は巻線に発生する漏れ磁束を示す断面図、第6図は第
4図に示した従来のガス絶縁変圧器における渦電流損の
半径方向分布図、第7図は従来のガス絶縁変圧器の構成
を示す断面図、第8図はその渦電流損の半径方向分布図
である。 1・・・鉄心脚、2・・・金属シート、3・・・絶縁シ
ート、4・・・低圧巻線、5・・・高圧巻線、6・・・
冷却パネル、7・・・ポンプ、8・・・タンク、9・・
・冷却器、10・・・果液管、11・・・絶縁パイプ、
12・・・漏れ磁束、14・・・3次巻線、15・・・
タップ巻線、20・・・3次巻線、21・・・タップ巻
線。
Fig. 1 is a sectional view showing an embodiment of the gas insulated transformer of the present invention, Fig. 2 is an enlarged sectional view of the main part thereof, and Fig. 3 is a diagram showing the operation of the present invention, and shows eddy current loss. Fig. 4 is a radial distribution diagram; Fig. 4 is a sectional view showing the configuration of a conventional gas insulated transformer;
The figure is a cross-sectional view showing the leakage magnetic flux generated in the winding, Figure 6 is a radial distribution diagram of eddy current loss in the conventional gas insulated transformer shown in Figure 4, and Figure 7 is a diagram of the conventional gas insulated transformer. FIG. 8 is a radial distribution diagram of the eddy current loss. DESCRIPTION OF SYMBOLS 1... Iron core leg, 2... Metal sheet, 3... Insulating sheet, 4... Low voltage winding, 5... High voltage winding, 6...
Cooling panel, 7...pump, 8...tank, 9...
・Cooler, 10... Fruit tube, 11... Insulated pipe,
12... Leakage magnetic flux, 14... Tertiary winding, 15...
Tap winding, 20... tertiary winding, 21... tap winding.

Claims (1)

【特許請求の範囲】 鉄心脚に低圧巻線、高圧巻線等の主巻線と、3次巻線、
安定巻線、タップ巻線等の主巻線より容量の小さい巻線
とを巻回し、同一タンク内に収納したガス絶縁変圧器に
おいて、 前記主巻線を金属シートと絶縁シートを重ね合せて巻回
したシート状巻線から構成し、また、前記主巻線以外の
巻線を平角線状の導体を巻回した線状巻線から構成し、
これらの線状巻線を前記主巻線の内側あるいは外側の少
なくともいずれか一方に配設したことを特徴とするガス
絶縁変圧器。
[Claims] Main windings such as low voltage windings and high voltage windings, tertiary windings,
In a gas insulated transformer in which a winding with a smaller capacity than the main winding, such as a stable winding or a tap winding, is wound and housed in the same tank, the main winding is wound with a metal sheet and an insulating sheet overlapped. It is composed of a rolled sheet-like winding, and the windings other than the main winding are composed of a wire-shaped winding in which a rectangular wire-shaped conductor is wound,
A gas insulated transformer characterized in that these linear windings are arranged at least either inside or outside the main winding.
JP18595889A 1989-07-20 1989-07-20 Gas-insulated transformer Pending JPH0352207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18595889A JPH0352207A (en) 1989-07-20 1989-07-20 Gas-insulated transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18595889A JPH0352207A (en) 1989-07-20 1989-07-20 Gas-insulated transformer

Publications (1)

Publication Number Publication Date
JPH0352207A true JPH0352207A (en) 1991-03-06

Family

ID=16179853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18595889A Pending JPH0352207A (en) 1989-07-20 1989-07-20 Gas-insulated transformer

Country Status (1)

Country Link
JP (1) JPH0352207A (en)

Similar Documents

Publication Publication Date Title
US4338657A (en) High-voltage transformer-rectifier device
JPH0225009A (en) Foil-wound transformer
JPH0352207A (en) Gas-insulated transformer
US3984756A (en) Power source for supplying stabilized current to electrical installations
JP3709767B2 (en) Static induction machine
CN217719270U (en) Transformer device
JPS63289804A (en) Foil wound transformer
JPH04123411A (en) Transformer windings
JPH02123712A (en) Foil-wound transformer
KR20000016097A (en) Direct current transformer and reactor
JPH0669048A (en) Transformer connecting-lead-wire device
JPH0218912A (en) Foil wound transformer
JPS60241204A (en) Foil-wound transformer
JPH02159705A (en) Foil-wound transformer
JPS62244113A (en) Separate type foil-wound transformer core
KR980011535A (en) Transformers
JPS61188915A (en) Foil wound transformer
JPS61179512A (en) Gas-insulated transformer
JPH01129405A (en) Gas insulation stationary induction electrical equipment
JPH03245509A (en) Gas-insulated transformer
WO1997030498A1 (en) Internal transformer chimney
JPH02144903A (en) Foil-wound transformer
JPH03120804A (en) Gas-insulated transformer
JPH03159212A (en) Gas-insulated transformer
Kelsall Special Transformers