JPS61179291A - Apparatus for continuous pyrolysis treatment of coal - Google Patents

Apparatus for continuous pyrolysis treatment of coal

Info

Publication number
JPS61179291A
JPS61179291A JP1970485A JP1970485A JPS61179291A JP S61179291 A JPS61179291 A JP S61179291A JP 1970485 A JP1970485 A JP 1970485A JP 1970485 A JP1970485 A JP 1970485A JP S61179291 A JPS61179291 A JP S61179291A
Authority
JP
Japan
Prior art keywords
coal
gas
furnace
pyrolysis
furnace body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1970485A
Other languages
Japanese (ja)
Inventor
Kunihiko Nishioka
西岡 邦彦
Kiyoshi Miura
三浦 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1970485A priority Critical patent/JPS61179291A/en
Publication of JPS61179291A publication Critical patent/JPS61179291A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remarkably improve the heat transfer from a heat-transfer tube to a coal layer, by blowing a part of a pyrolysis gas from the bottom of a vertical furnace at such a flow rate that a raw material is not fluidized. CONSTITUTION:A vertical furnace 1 is charged with a dried or preheated non- caking bituminous coal or brown coal 10 from a charging port 3 located at the top thereof. The bituminous coal or brown coal 10 is brought into contact with a heat-transfer tube 2 into which a high-temperature gas 11 is continuously fed, causing the bituminous coal or brown coal 10 to be pyrolitically decomposed. The mixture 12 of a pyrolysis gas with a tar is recovered through an extraction port 6 while a high-temperature char 13 is recovered through a discharge port 4 located at the bottom of the furnace 1. The mixture 12 is condensed using a condenser 7 to separate it into a pyrolysis gas 14 and a condensate 15. A part of the gas 14 is returned to the furnace 1 through a blowing port 5 using a blower 8. The sensible head of the high-temperature char is recovered by the gas 14 at the bottom of the furnace 1, and the heat is used for pyrolysis of the coal of the coal layer located at the top of the furnace 1.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は石炭の連続熱分解処理装置に関する。[Detailed description of the invention] Industrial applications The present invention relates to a continuous thermal decomposition treatment apparatus for coal.

更に詳しくいえば、高揮発分の非粘結性瀝青炭もしくは
褐炭を熱分解処理して熱分解ガス、タールおよびチャー
を効率よく製造する装置に関する。
More specifically, the present invention relates to an apparatus for efficiently producing pyrolysis gas, tar, and char by thermally decomposing non-caking bituminous coal or brown coal with a high volatile content.

従来の技術 高揮発分の非粘結性瀝青炭や褐炭を原料として、主に固
形無煙燃料であるチャーを製造しようとする試みが、1
900年代初頭から活発に行われ、一時期実用化された
こともあったが、規模が小さく、また経済性に難点があ
ったために永続性ある工業技術として確立されるには至
らなかった。しかしながら、1970年代になって、冶
金用コークスの原料である粘結炭の資源量に対する不安
から、特開昭53−110601号、同54−1290
02号、特開昭56−136882号、同56−136
883号、特公昭59−40185号等に見られるよう
に、原料炭種の拡大を目的とするチャー製造法に係る研
究が注目されるようになってきた。
Conventional technology Attempts to produce char, which is mainly a solid smokeless fuel, using non-caking bituminous coal or lignite with high volatile content as raw materials have been made.
It has been actively practiced since the early 1990s, and was put into practical use for a time, but it was not established as a permanent industrial technology due to its small scale and economical problems. However, in the 1970s, due to concerns about the amount of coking coal, which is a raw material for metallurgical coke,
No. 02, JP-A-56-136882, JP-A No. 56-136
As seen in Japanese Patent Publication No. 883 and Japanese Patent Publication No. 59-40185, research on char production methods aimed at expanding the variety of coking coal has begun to attract attention.

例えば、特開昭56−136882号公報発明は予め粉
For example, the invention disclosed in JP-A-56-136882 uses powder in advance.

砕された高揮発性非粘結炭を乾燥予熱し、次いで15℃
/min以下の昇温速度で、600℃以下に加熱して分
解させ、冷却することからなるチャーの製造方法を開示
しており、同56−136883号公報発明は上記チャ
ーの製造方法を実施するための装置を開示しており、該
装置は例えばバッチ式の流動層と、該流動層に原料を供
給し、かつ内部の空気を不活性ガスで置換する装置を備
えたホッパーと該流動層に、昇温パターンに応じて流量
及び流動層入口ガス温度を変えつつ流動化ガスを吹込む
ための流動化ガス供給ラインとを具備するものである。
Crushed highly volatile non-caking coal is dry preheated and then heated to 15°C.
Discloses a method for producing char, which comprises heating to 600° C. or less for decomposition and cooling at a temperature increase rate of less than /min. For example, the device includes a batch-type fluidized bed, a hopper equipped with a device for supplying raw materials to the fluidized bed, and replacing the air inside with an inert gas, and a hopper for the fluidized bed. , and a fluidizing gas supply line for blowing fluidizing gas while changing the flow rate and fluidized bed inlet gas temperature according to the temperature increase pattern.

更に、特公昭59−40185号公報発明は高揮発分非
微粘結炭を予熱機で乾燥加熱した後、複数の加熱ガス取
入口を有する外熱式二重ロータリーキルンに装入し、前
記加熱ガス取入口への加熱ガス導入量の配分を調整する
ことにより、炉内における原料炭の昇温速度を5±3℃
/minの範囲内に制御し、かつその温度が450〜6
00℃に達した後冷却することからなる高揮発分非微粘
結炭の予備処理方法を開示する。
Furthermore, in the invention disclosed in Japanese Patent Publication No. 59-40185, after drying and heating high volatile content non-slightly caking coal in a preheater, it is charged into an externally heated double rotary kiln having a plurality of heating gas intake ports, and the heated gas is By adjusting the distribution of the amount of heating gas introduced into the intake port, the heating rate of coking coal in the furnace can be adjusted to 5±3℃.
/min, and the temperature is controlled within the range of 450 to 6
A method for pre-treatment of high volatile content non-slightly caking coal is disclosed which comprises cooling after reaching 00°C.

しかしながら、これらの技術も工業化技術として確立さ
れるには至っておらず、このような時代背景をもつ石炭
の熱分解処理技術が、今なお経済性を有する大処理技術
として実用化し得ないのは、合理的な熱分解処理プロセ
スが発案されていないこと、並びに石炭を熱分解処理し
て得られる主要3成分(熱分解ガス、タールおよびチャ
ー)を高度に活用できる状態で処理する技術が提案され
ていないことに起因するものと考えられる。
However, these technologies have not yet been established as industrialized technologies, and the reason why coal pyrolysis processing technology with such historical background still cannot be put into practical use as an economical large-scale processing technology is that No rational pyrolysis process has been devised, and no technology has been proposed for processing coal in a state where the three main components (pyrolysis gas, tar, and char) obtained by pyrolysis can be utilized to a high degree. This is thought to be due to the fact that there is no

そこで、本発明者等は、工業的に有利な石炭の熱分解処
理技術を確立する上で、大きな課題とされている石炭の
熱分解処理装置につき検討した。
Therefore, the present inventors investigated a coal pyrolysis treatment apparatus, which is considered a major issue in establishing an industrially advantageous coal pyrolysis treatment technology.

従来の熱分解処理装置を大別すると、直接加熱方式と間
接加熱方式とに分類される。
Conventional pyrolysis treatment equipment can be roughly classified into direct heating type and indirect heating type.

まず、直接加熱方式では、熱源として高温ガスを用い、
流動床もしくは飛流床で熱分解する方法や固体熱媒(例
えば高温アルミナボールや高温チャー)を回転ドラムも
しくは混合機内で石炭と接触混合させて熱分解する方法
が知られている。しかしながら、前者では熱源となる高
温ガスと熱分解により発生する有用な高カロリーガスと
が混合するために、ガス量が増大し、ガス処理設備が過
大となるばかりか、混合ガスのカロリーは熱分解により
発生するガスと比較して低下し、利用価値が損なわれる
という欠点がある。また、後者の方法では、熱分解で発
生するガスのカロリー低下は避けられるものの、固体熱
媒の循環および再加熱のための動力が必要とされ、設備
自体も過大となるなどの欠点があり、やはり有利な方法
とはいえなかった。
First, the direct heating method uses high-temperature gas as a heat source.
A method of thermal decomposition in a fluidized bed or a flying bed, and a method of thermal decomposition by contacting and mixing a solid heat medium (for example, high-temperature alumina balls or high-temperature char) with coal in a rotating drum or mixer are known. However, in the former case, the high-temperature gas that serves as a heat source is mixed with the useful high-calorie gas generated by pyrolysis, which not only increases the amount of gas and makes the gas processing equipment too large, but also increases the calorie content of the mixed gas by pyrolysis. The disadvantage is that the amount of gas produced by the gas is lower than that of the gas generated by the gas, and its utility value is impaired. In addition, although the latter method avoids the loss of calories in the gas generated by pyrolysis, it requires power for circulating and reheating the solid heating medium, and has disadvantages such as the equipment itself becoming oversized. It was not an advantageous method after all.

一方間接加熱方式では、底開き式の水平式コークス炉を
用いる方法、回転ドラムを外側から加熱する方法、横型
円筒炉を外側から加熱しながら円筒炉内の石炭をスクリ
ューコンベアで移動させ、熱分解させる方法、更には上
記の特開昭56−136883号公報にみられるように
流動床内に伝熱管を配置し、流動化ガスを下部から吹込
む方法等が提案されている。しかしながら、流動床方式
を除けば伝熱速度が遅く、処理量に比較して過大の設備
が必要とされ、経済性のある熱分解処理装置とはいえず
、また流動床方式では既に述べたようにガス処理設備が
過大となる欠点が避けられなかった。
On the other hand, the indirect heating method uses a bottom-opening horizontal coke oven, a method that heats a rotating drum from the outside, and a method that heats a horizontal cylindrical furnace from the outside while moving the coal inside the cylindrical furnace with a screw conveyor. In addition, as shown in the above-mentioned Japanese Patent Application Laid-Open No. 56-136883, a method has been proposed in which heat exchanger tubes are arranged in a fluidized bed and fluidizing gas is blown from the bottom. However, with the exception of the fluidized bed method, the heat transfer rate is slow and the equipment required is too large compared to the throughput, so it cannot be said to be an economical pyrolysis treatment equipment. However, the disadvantage of having excessive gas processing equipment was unavoidable.

このように従来提案された石炭の熱分解処理装置は直接
加熱方式においても間接加熱方式においても、夫々固有
の課題が残されており、工業化装置として完成されたも
のとは言えなかった。
As described above, both the direct heating method and the indirect heating method of coal pyrolysis treatment devices proposed in the past have their own problems, and cannot be said to have been completed as industrialized devices.

そこで、本発明の目的はこのような従来法の欠点を解決
し、工業的に実用化し得る石炭の熱分解処理装置を提供
することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve these drawbacks of the conventional method and provide a coal pyrolysis treatment apparatus that can be put to practical use industrially.

問題点を解決するための手段 本発明者等は、石炭の熱分解処理により生成する熱分解
生成物を高度に活用し得る状態で回収するために、基本
的には間接加熱方式の充填層による熱分解処理装置とす
ることにより、上記従来法の諸欠点が解決し得ることを
見出し、本発明を完成した。
Means for Solving the Problems In order to recover the pyrolysis products produced by the pyrolysis treatment of coal in a highly usable state, the present inventors basically developed a method using a packed bed using an indirect heating method. The present invention was completed based on the discovery that the various drawbacks of the conventional methods described above can be overcome by using a thermal decomposition treatment apparatus.

即ち、本発明の石炭の熱分解処理装置は、乾燥または予
熱された非粘結性瀝青炭もしくは褐炭を熱分解ガス、タ
ールおよびチャーに熱分解処理する装置であって、高温
ガス流通用伝熱管を内蔵する竪形炉本体と、該炉本体上
部に設けられた石炭の装入口と、下部に排出口を有し、
かつ上記炉本体下部から前記熱分解ガスの一部を石炭が
流動化しない程度に循環送風することのできる吹込口と
、前記炉本体の側部に設けられた上記熱分解ガスおよび
クールの抽出口とを有することを特徴とする。
That is, the coal pyrolysis treatment apparatus of the present invention is an apparatus for pyrolysis treatment of dry or preheated non-caking bituminous coal or lignite into pyrolysis gas, tar and char, and includes a heat exchanger tube for high temperature gas distribution. It has a built-in vertical furnace body, a coal charging port provided at the top of the furnace body, and a discharge port at the bottom,
and an inlet capable of circulating a portion of the pyrolysis gas from the lower part of the furnace body to an extent that the coal does not become fluidized, and an extraction port for the pyrolysis gas and cool provided on the side of the furnace body. It is characterized by having the following.

ここで抽出口は、炉本体の上部または中段側部に設けら
れる。
Here, the extraction port is provided at the top or middle side of the furnace body.

以下、添付第1図に示した本発明装置の好ましい1態様
に従って、本発明の石炭の熱分解処理装置を更に詳しく
説明する。第1図から明らかな如く、本発明の装置は竪
型炉本体1と、該炉本体に内蔵された高温ガス流通用伝
熱管2と、炉上部の装入口3と、下部に高温チャーを排
出するための排出口4を有し、炉本体1の下部から熱分
解ガスの一部を吹込むための吹込口5と、炉本体1の上
部または中部に設けられた、熱分解ガスとタールとを抽
出するための抽出口6とで主として構成される。
Hereinafter, the coal pyrolysis treatment apparatus of the present invention will be explained in more detail according to a preferred embodiment of the apparatus of the present invention shown in the attached FIG. 1. As is clear from FIG. 1, the apparatus of the present invention includes a vertical furnace body 1, a heat exchanger tube 2 for high-temperature gas distribution built in the furnace body, a charging port 3 in the upper part of the furnace, and a high-temperature char discharged into the lower part. It has an outlet 4 for blowing in the pyrolysis gas from the lower part of the furnace body 1, an inlet 5 for blowing in a part of the pyrolysis gas from the lower part of the furnace body 1, and an inlet 5 provided in the upper or middle part of the furnace body 1 to extract the pyrolysis gas and tar. It mainly consists of an extraction port 6 for

前記抽出口6は凝縮器7と連絡しており、ここで凝集物
が分離され、これから熱分解ガスが回収される。また、
熱分解ガスの一部が送風機8を介して炉本体下部の吹込
口5に送られるようになっている。
The extraction port 6 communicates with a condenser 7, where the agglomerates are separated and the pyrolysis gas is recovered therefrom. Also,
A portion of the pyrolysis gas is sent via a blower 8 to an inlet 5 at the bottom of the furnace body.

ここで、炉本体1は各種形状、例えば円形断面、矩形断
面構造などであり得、特に制限はない。
Here, the furnace body 1 may have various shapes, such as a circular cross-sectional structure, a rectangular cross-sectional structure, etc., and is not particularly limited.

更に、本発明の装置のもう一つの態様を第2図に示した
。この態様は、抽出ガス取出し用の抽出口6を炉本体1
の中段に設けた例を示すものである。この態様において
は、生成ガスの抽出を容易にするために石炭の荷下り方
向を調節する傾斜板9を設け、抽出口6の周囲に空間を
与えることが有利である。その他の点については第1図
と同様であり、第1図と同様の参照番号を付して説明を
省略する。
Furthermore, another embodiment of the apparatus of the present invention is shown in FIG. In this embodiment, the extraction port 6 for extracting extracted gas is connected to the furnace main body 1.
This is an example provided in the middle of the page. In this embodiment, it is advantageous to provide an inclined plate 9 for adjusting the unloading direction of the coal and to provide space around the extraction port 6 in order to facilitate the extraction of the product gas. Other points are the same as those in FIG. 1, and the same reference numerals as in FIG. 1 are given and explanations are omitted.

本発明の装置において、伝熱管2内に送られる加熱用高
温ガスとしては、本発明の装置が間接加熱式であること
から、必ずしも不活性ガスに制限されるものではなく、
酸化性雰囲気ガスであっても構わない。従って高い顕熱
を有する各種燃焼廃ガスを直接使用することも可能であ
る。
In the device of the present invention, the heating high-temperature gas sent into the heat transfer tube 2 is not necessarily limited to an inert gas, since the device of the present invention is of an indirect heating type.
It may be an oxidizing atmospheric gas. Therefore, it is also possible to directly use various combustion waste gases having high sensible heat.

更に、本発明の装置において使用する原料即ち“乾燥ま
たは予熱された非粘結性瀝青炭または褐炭”は従来公知
の任意の方法、例えば熱風乾燥炉による乾燥、コーライ
ト法と呼ばれる急速加熱法、特公昭59−40185号
公報発明の開示する方法などいずれも利用できる。
Furthermore, the raw material used in the apparatus of the present invention, that is, "dried or preheated non-caking bituminous coal or lignite" can be prepared by any conventionally known method, such as drying in a hot air drying oven, rapid heating method called Corite method, Any of the methods disclosed in the invention disclosed in No. 59-40185 can be used.

昨月 本発明の装置を動作させる場合、まず乾燥または予熱さ
れた非粘結性原料、例えば褐炭10を炉上部の装入口か
ら炉本体1に装入し、これを該炉本体1内に配置された
伝熱管2と接触させることにより該管内に連続的に供給
される高温ガス11の顕熱により熱分解させる。これに
よって熱分解ガスおよびタール混合物(抽出物)12が
抽出口6から、また高温チャー13が炉下部の排出口4
から夫々回収される。抽出物12はその後凝縮器7で凝
集され、熱分解ガス14と凝縮物15とに分離回収され
る。回収された熱分解ガス14の一部は送風器8を用い
て吹込口5から炉内に再導入され、炉下部で高温のチャ
ーの顕熱を回収し、上部充填層の石炭の熱分解のために
活用することができる。これによって従来の間接加熱方
式の欠点である伝熱速度が大巾に改善されることになる
。尚、上記抽出ガス12には熱分解ガスの他にタールや
水蒸気も含まれており、これらは凝縮器7゜によって除
去される。
When operating the apparatus of the present invention, first, dry or preheated non-caking raw material, for example lignite 10, is charged into the furnace body 1 from the charging port in the upper part of the furnace, and this is placed inside the furnace body 1. By bringing the gas into contact with the heated heat transfer tube 2, the high temperature gas 11 that is continuously supplied into the tube is thermally decomposed by sensible heat. As a result, the pyrolysis gas and tar mixture (extract) 12 are transferred from the extraction port 6, and the high-temperature char 13 is transferred to the discharge port 4 in the lower part of the furnace.
are collected from each. The extract 12 is then coagulated in a condenser 7 and separated and recovered into a pyrolysis gas 14 and a condensate 15. A part of the recovered pyrolysis gas 14 is reintroduced into the furnace from the inlet 5 using the blower 8, recovers the sensible heat of the high-temperature char in the lower part of the furnace, and causes the thermal decomposition of the coal in the upper packed bed. It can be used for This greatly improves the heat transfer rate, which is a drawback of conventional indirect heating methods. Incidentally, the extracted gas 12 contains tar and water vapor in addition to the pyrolysis gas, and these are removed by the condenser 7°.

本発明の装置では、炉上部の装入口3から原料10を装
入し、熱分解後炉下部の排出口4から残渣としての高温
チャー13を排出する、充填層での伝熱方式であるため
に、炉下部から吹込むべき熱分解ガス14の吹込み量は
、原料10が流動化されない程度の量でなければならな
い。この結果、流動床方式の伝熱方式と異り、吹込みガ
ス量は著しく少なくてすみ、大がかりなガス処理設備が
必要とされないので、本発明の装置は経済的に極めて有
利な熱分解処理装置であるといえる。
In the apparatus of the present invention, the raw material 10 is charged through the charging port 3 in the upper part of the furnace, and after pyrolysis, the high temperature char 13 as a residue is discharged from the discharge port 4 in the lower part of the furnace, using a packed bed heat transfer method. In addition, the amount of pyrolysis gas 14 to be blown from the lower part of the furnace must be such that the raw material 10 is not fluidized. As a result, unlike the fluidized bed heat transfer method, the amount of blown gas is extremely small and large-scale gas treatment equipment is not required, making the apparatus of the present invention an economically extremely advantageous pyrolysis treatment apparatus. You can say that.

更に、第2図に示したように、ガス抽出口を炉の中段に
設けた場合には、熱分解によって生成するガス中に含ま
れるタール蒸気が炉上部の低温原料によって凝縮される
恐れがないため、炉内の原料の均一な荷下りを確保し得
るという利点がある。
Furthermore, as shown in Figure 2, if the gas extraction port is provided in the middle of the furnace, there is no risk that the tar vapor contained in the gas generated by thermal decomposition will be condensed by the low-temperature raw materials in the upper part of the furnace. Therefore, there is an advantage that uniform unloading of raw materials in the furnace can be ensured.

また、本発明の装置においては可動部分がないために、
炉の構成としては断面形状が円形もしくは矩形等のいず
れの構造のものでもよく、その結実装置製作上の柔軟性
に富むという利点がありミ更に、乾燥または予熱した原
料を熱分解処理装置に装入しているので装置の小型化を
図ることも可能である。
Additionally, since there are no moving parts in the device of the present invention,
The structure of the furnace may be circular or rectangular in cross-section, and has the advantage of being highly flexible in manufacturing the fruiting equipment. It is also possible to downsize the device.

以上の説明から明らかな如く、本発明の装置によれば、
従来の石炭の熱分解処理装置においては不可能であった
、連続的な石炭の大量処理が可能であり、しかも熱分解
生成物の高価値化を達成することができるので、石炭利
用技術分野の発展に大きく貢献するものといえる。
As is clear from the above description, according to the device of the present invention,
It is possible to continuously process a large amount of coal, which was not possible with conventional coal pyrolysis treatment equipment, and it also makes it possible to increase the value of pyrolysis products, making it an excellent choice in the field of coal utilization technology. It can be said that this will greatly contribute to development.

実施例 以下、本発明の熱分解処理装置の利点を、実際の運転例
によって実証する。しかしながら、本発明の範囲は以下
の例によって何隻制限されない。
EXAMPLES Below, the advantages of the pyrolysis treatment apparatus of the present invention will be demonstrated through actual operational examples. However, the scope of the invention is not limited by the following examples.

運転例 以下の第1表に示すような組成、特性を有する非粘結性
瀝青炭を大型の熱風乾燥機を用いて乾燥し、乾燥瀝青炭
を130℃の温度で、第1図に示したような構成の内径
300mm、炉高3mの円筒形の石炭熱分解炉に50K
g/hの供給速度で連続的に装入し、炉に内蔵された外
径30mm、長さ3mのステンレス製伝熱管9本に82
0℃の温度を有する熱風炉で得られる燃焼排ガスを流量
85Nm”/hで通じ、石炭の熱分解反応を行なわせて
、熱分解ガス、タールおよび残渣としてのチャーを得た
Operation example: Non-caking bituminous coal having the composition and characteristics shown in Table 1 below is dried using a large hot air dryer, and the dry bituminous coal is heated to 130°C to produce the drying process as shown in Figure 1. 50K in a cylindrical coal pyrolysis furnace with an inner diameter of 300 mm and a furnace height of 3 m.
Continuously charged at a feed rate of 82 g/h, 82
Combustion exhaust gas obtained from a hot stove having a temperature of 0° C. was passed through at a flow rate of 85 Nm”/h to cause a thermal decomposition reaction of coal to obtain pyrolysis gas, tar, and char as a residue.

また、回収された熱分解ガスの一部を、熱分解炉の下部
から吹込み、熱分解反応を促進するに際し、吹込みガス
量を種々の量に変1で、その流量の熱分解反応速度に及
ぼす影響を調べた。その結果を第2表に示す。
In addition, when a part of the recovered pyrolysis gas is injected from the lower part of the pyrolysis furnace to promote the pyrolysis reaction, the amount of blown gas can be changed to various amounts (1) to change the pyrolysis reaction rate at that flow rate. We investigated the effect on The results are shown in Table 2.

第2表の結果から、吹込みガスを全く使用しなかったテ
ス) No、 1では、石炭の熱分解は伝熱管のみから
の加熱に依存するため、伝熱管出口の排ガス温度は53
6℃と高く、伝熱効率が悪いことを示している。この結
果、チャーの温度は420℃と低く、ガスやタールの発
生量も僅かで、十分な熱分解が達成されていないことが
認められた。一方テストNo、 2.3および4におけ
るように、吹込みガスを通じた場合には、伝熱効率が大
きく改善され、伝熱管の排ガス温度は大きく低下し、そ
の結果チャーの温度は上昇して、ガスやタールの発生量
が大巾に増加することがわかる。
From the results in Table 2, in Test No. 1 (in which no blown gas was used), the thermal decomposition of coal depends on heating only from the heat exchanger tubes, so the exhaust gas temperature at the outlet of the heat exchanger tubes is 53.
The temperature was as high as 6°C, indicating poor heat transfer efficiency. As a result, the temperature of the char was as low as 420°C, and the amount of gas and tar generated was small, indicating that sufficient thermal decomposition was not achieved. On the other hand, when blowing gas is used as in Test Nos. 2.3 and 4, the heat transfer efficiency is greatly improved, the exhaust gas temperature of the heat exchanger tube is greatly reduced, and as a result, the temperature of the char increases and the gas It can be seen that the amount of tar generated increases significantly.

即ち、熱分解炉の下部から吹込まれたガスは、ヒートキ
ャリアとして伝熱管の有する熱を有効に石炭に与える役
目を果していることを理解することができる。
That is, it can be understood that the gas blown from the lower part of the pyrolysis furnace plays the role of effectively imparting the heat of the heat exchanger tubes to the coal as a heat carrier.

しかしながら、逆にテストNo、 5にみられるように
、吹込みガス流量が大きすぎる場合には、熱分解炉内の
石炭の一部が流動化しはじめ、石炭の微粉部分は吹込み
ガスおよび熱分解ガスに同伴されて炉上部から飛散する
ために、得られるタールの量は増加するものの、キノリ
ンネ溶成分として多量の石炭粒子が混入しているため、
その商品価値は著しく低いものとなる。
However, as seen in Test No. 5, if the blown gas flow rate is too large, part of the coal in the pyrolysis furnace begins to fluidize, and the fine part of the coal is absorbed by the blown gas and pyrolyzed. Although the amount of tar obtained increases as it is entrained in the gas and scattered from the upper part of the furnace, a large amount of coal particles are mixed in as a quinolinous component.
Its commercial value will be extremely low.

このように、石炭を連続的に熱分解する装置において、
基本的には間接加熱方式の充填層による熱分解炉の形式
をとりながら、熱分解によって発生するガスの一部を、
石炭の流動化を生じない程度の流量で炉内にその下部か
ら供給することにより、大巾な伝熱速度の改善が可能と
なり、しかも得られるタールの商品価値の低下を防止す
ることができ、また当然のことながら、本運転例からも
明らかな如く、熱分解ガスを高カロリー状態で回収する
ことができる。
In this way, in a device that continuously pyrolyzes coal,
Basically, it takes the form of a pyrolysis furnace with a packed bed using an indirect heating method, and a part of the gas generated by pyrolysis is
By supplying coal from the bottom into the furnace at a flow rate that does not cause coal fluidization, it is possible to significantly improve the heat transfer rate, and also prevent a decrease in the commercial value of the resulting tar. Furthermore, as is clear from this operational example, the pyrolysis gas can be recovered in a high-calorie state.

発明の効果 以上詳しく述べたように、本発明の石炭の熱分解処理装
置によれば、熱分解炉で一旦分解生成されたガスの一部
を、炉下部から原料の流動化を生じない程度の流量で吹
込み得るような構成としたことに基き、伝熱管から石炭
層への熱伝達率を大巾に改善することができ、また、炉
下部から残渣として排出されるチャーの顕熱を回収し、
その熱エネルギーを熱分解反応に有効に再利用できる。
Effects of the Invention As described in detail above, according to the coal pyrolysis treatment apparatus of the present invention, a part of the gas once decomposed in the pyrolysis furnace is transferred from the lower part of the furnace to an extent that does not cause fluidization of the raw material. Based on the structure that allows injection at a flow rate, the heat transfer coefficient from the heat transfer tubes to the coal seam can be greatly improved, and the sensible heat of the char discharged as residue from the lower part of the furnace can be recovered. death,
The thermal energy can be effectively reused for the thermal decomposition reaction.

これによって、大巾な伝熱速度の改善が図れ、反15 
 ′ 応生成物としてのタールの商品価値も著しく高いものと
なる。
As a result, the heat transfer rate can be greatly improved, and the
' The commercial value of the tar as a reaction product is also significantly high.

このような伝熱速度の改善は熱分解装置の小型化を図る
上で極めて有利であり、また不純物の少ないタールや高
カロリーの熱分解ガスは、これらの利用価値を高めるも
のである。従って、本発明の装置は、従来に例のない優
れた石炭ガスの連続式熱分解処理装置であるといえよう
Such an improvement in the heat transfer rate is extremely advantageous in downsizing the pyrolysis apparatus, and tar and high-calorie pyrolysis gas with few impurities increase their utility value. Therefore, it can be said that the apparatus of the present invention is an unprecedented continuous thermal decomposition treatment apparatus for coal gas.

更に、生成物としての抽出ガスの抽出口を炉本体の中段
側部に設けた場合には、生成ガス中に含まれるタール蒸
気が炉上部の低温石炭により凝縮されることがないので
、炉内石炭の均一な荷下りを確保し得るという効果をも
併せて達成できる。
Furthermore, if the extraction port for the extracted gas as a product is provided in the middle side of the furnace body, the tar vapor contained in the product gas will not be condensed by the low-temperature coal in the upper part of the furnace. It is also possible to achieve the effect of ensuring uniform unloading of coal.

また、加熱用ガスとして不活性ガス以外の酸化性ガス、
例えば燃焼廃ガスなども使用できるので経済的にも有利
である。
In addition, as a heating gas, oxidizing gas other than inert gas,
For example, combustion waste gas can also be used, so it is economically advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の石炭の熱分解処理装置の好ましい一態
様を説明するための模式的な図であり、17     
              1八−第2図は本発明の
装置のもう一つの態様を説明するための第1図と同様な
図である。 (主な参照番号) 1・・炉本体、  2・・伝熱管、 3・・装入口、   4・・排出口、 5・・吹込口、   6・・抽出口、 7・・凝縮器、  8・・送風器、 9・・傾斜板、  10・・石炭、 11・・高温ガス、 12・・抽出ガス、 。 13・・チャー、  14・・熱分解ガス、15・・凝
縮物 特許出願人   住友金属工業株式会社代 理 人  
 弁理士  新居 正彦第1図 1:炉本体     8:送風機 2:イ犬幸111≧      10:イ巳コクさ−3
:上部装X口    11:高’ATj’久4:l¥出
口      12:抽出D“又5:力′°ス幌囚口 
    13:高」に+ヤー6:4由出D14:帖分蒔
ガス 第2図 1:失P本体
FIG. 1 is a schematic diagram for explaining a preferable embodiment of the coal pyrolysis treatment apparatus of the present invention.
FIG. 18-2 is a diagram similar to FIG. 1 for explaining another embodiment of the apparatus of the present invention. (Main reference numbers) 1. Furnace body, 2. Heat exchanger tube, 3. Charging port, 4. Discharge port, 5. Inlet port, 6. Extraction port, 7. Condenser, 8.・Blower, 9. Inclined plate, 10. Coal, 11. High temperature gas, 12. Extracted gas. 13... Char, 14... Pyrolysis gas, 15... Condensate Patent applicant: Sumitomo Metal Industries, Ltd. Agent
Patent Attorney Masahiko Arai Figure 1 1: Furnace body 8: Blower 2: Iinukou 111≧ 10: Imi Richness -3
:Upper mounting
13: High + Y 6: 4 origin D14: Chaplet sowing gas Figure 2 1: Lost P main body

Claims (4)

【特許請求の範囲】[Claims] (1)乾燥または予熱された非粘結性瀝青炭もしくは褐
炭を、熱分解ガス、タール、チャーに熱分解処理する装
置であって、 高温ガス流通用伝熱管を内蔵する竪型炉本体と、該炉本
体上部に設けられた石炭の装入口と、下部に排出口を有
し、かつ上記炉本体下部から前記熱分解ガスの一部を、
石炭が流動化しない程度に循環送風することのできる吹
込口と、前記炉本体側部に設けられた上記熱分解ガスお
よびタールの抽出口とを有することを特徴とする上記石
炭の熱分解処理装置。
(1) An apparatus for thermally decomposing dry or preheated non-caking bituminous coal or lignite into pyrolysis gas, tar, and char, comprising a vertical furnace body with a built-in heat exchanger tube for high-temperature gas distribution; A coal charging port provided at the top of the furnace body and a discharge port at the bottom, and a part of the pyrolysis gas from the bottom of the furnace body,
The coal pyrolysis treatment apparatus is characterized by having an inlet capable of circulating air to an extent that the coal does not become fluidized, and an extraction port for the pyrolysis gas and tar provided on the side of the furnace main body. .
(2)前記抽出口が前記炉本体の上部に設けられている
ことを特徴とする特許請求の範囲第1項記載の装置。
(2) The apparatus according to claim 1, wherein the extraction port is provided at an upper part of the furnace body.
(3)前記抽出口が前記炉本体の中段側部に設けられて
いることを特徴とする特許請求の範囲第1項記載の装置
(3) The apparatus according to claim 1, wherein the extraction port is provided at a middle side of the furnace body.
(4)前記炉本体の抽出口周辺に傾斜板を設けて、抽出
口周辺に空間を形成するようにしたことを特徴とする特
許請求の範囲第3項記載の装置。
(4) The apparatus according to claim 3, characterized in that an inclined plate is provided around the extraction port of the furnace body to form a space around the extraction port.
JP1970485A 1985-02-04 1985-02-04 Apparatus for continuous pyrolysis treatment of coal Pending JPS61179291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1970485A JPS61179291A (en) 1985-02-04 1985-02-04 Apparatus for continuous pyrolysis treatment of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1970485A JPS61179291A (en) 1985-02-04 1985-02-04 Apparatus for continuous pyrolysis treatment of coal

Publications (1)

Publication Number Publication Date
JPS61179291A true JPS61179291A (en) 1986-08-11

Family

ID=12006661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1970485A Pending JPS61179291A (en) 1985-02-04 1985-02-04 Apparatus for continuous pyrolysis treatment of coal

Country Status (1)

Country Link
JP (1) JPS61179291A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303777B6 (en) * 2011-06-29 2013-05-02 Vysoká skola chemicko-technologická Charge for producing blast furnace coke

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ303777B6 (en) * 2011-06-29 2013-05-02 Vysoká skola chemicko-technologická Charge for producing blast furnace coke

Similar Documents

Publication Publication Date Title
JP4264525B2 (en) Method for gasifying organic substances and substance mixtures
SU1731787A1 (en) Method and unit for processing high-ash and high-salt brown coals
CN104152162B (en) The pyrolysis system of broken coal pyrolysis and broken coal pyrolysis produce semicoke, the device and method of burnt oil and gas
CN102583373A (en) Method for preparing active carbon by using coal
CN104762097A (en) Rotary furnace low-order powdered coal pyrolysis upgrading method with coal gas circulation
CN104789244B (en) A kind of rotary furnace pulverized coal pyrolysis with coal gas circulation produces anthracite method
CN101289621B (en) Process for preparing carbocoal, coke tar and coal gas by treating bovey coal by suspending pyrogenation device
KR101535359B1 (en) Electrical-Heating Coal Material Decomposition Device
WO2012022058A1 (en) Decomposition equipment with single burner for coal substance
CN104745222B (en) A kind of moving bed self-heating pressurized gasification environment rich gas retort and method for destructive distillation thereof
WO2011054304A1 (en) Low-rank coal upgrading method of gaseous carrier and internal heating type
CN105273731A (en) Biomass pyrolysis gas/charcoal co-production device and process
CN110195155A (en) A kind of refractory iron ore bone coal base either shallow hydrogen metallurgical technology and its device
US4391786A (en) Production of calcium carbide
CN105713629B (en) A kind of steam thermal coupling pulverized coal pyrolysis method
US2984602A (en) Method and apparatus for stripping oil from oil shale
CN101289622B (en) Process for upgrading of bovey coal by solid thermal-loading suspending pyrogenation device of bovey coal
CN103980920B (en) A kind of inferior fuel pyrolytic process
CN210916134U (en) Iron ore coal-based hydrogen metallurgy device
CN210916204U (en) Iron ore rotary kiln coal-based hydrogen metallurgy device
US3043752A (en) Process of low and high temperature fluidized carbonization of coal
CN105907413B (en) The low temperature distillation technique of low order fine coal
CN107903924A (en) A kind of uplink heat accumulating type fine coal fast pyrogenation reaction system and method
JPS61179291A (en) Apparatus for continuous pyrolysis treatment of coal
CN103695013B (en) System and method for pyrolysis of carbon-containing solid fuel