JPS61178651A - Method for solidifying powdery specimen for fluorescent x-ray analysis - Google Patents

Method for solidifying powdery specimen for fluorescent x-ray analysis

Info

Publication number
JPS61178651A
JPS61178651A JP60020622A JP2062285A JPS61178651A JP S61178651 A JPS61178651 A JP S61178651A JP 60020622 A JP60020622 A JP 60020622A JP 2062285 A JP2062285 A JP 2062285A JP S61178651 A JPS61178651 A JP S61178651A
Authority
JP
Japan
Prior art keywords
specimen
thermosetting resin
fluorescent
powder sample
powdery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60020622A
Other languages
Japanese (ja)
Inventor
Norihiko Suzuki
敬彦 鈴木
Noboru Murase
昇 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP60020622A priority Critical patent/JPS61178651A/en
Publication of JPS61178651A publication Critical patent/JPS61178651A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2202Preparing specimens therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To easily obtain a solidified body for fluorescent analysis prevented from the peeling- off and scattering of a powdery specimen and capable of being preserved for a long period of time after molding, by uniformly mixing the powdery specimen and a predetermined ratio of a thermosetting resin, and molding and solidifying the resulting mixture into a required shape under heating and pressure. CONSTITUTION:The powdery specimen such as slag generated in a steel melting process is finely pulverized to reduce the particle size thereof to 100 mesh or less and 4pts.wt. or less of the resulting powdery specimen is uniformly mixed with 1pt.wt. of a thermosetting resin such as a phenol resin not containing an analytical objective component or containing the same only in a minute amount capable of being subjected to definite correction and the obtained mixture is pressurized under heating by a mold 12 and a die 16 to obtain a cylindrical solid specimen with a diameter of 30-30mm and a height of about 20-30mm. If the specimen is a minute amount, the mixture 10 of the powdery specimen and the resin in the aforementioned ratio is received in the bottom part of the mold 16 and only the thermosetting resin 14 is supplied thereon and the whole is molded to obtain a cylindrical solidified body 18 having the aforementioned dimension, which consists of a thin layered specimen part A and the base part B only comprising the thermosetting resin, and easy to handle. By this method, a solidified body for fluorescent analysis prevented from the scattering of the powdery specimen in an analytical chamber is obtained.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、定型性を持たない粉体試料について、蛍光
X線分析法を実施し易くするために固形化する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for solidifying a non-standard powder sample in order to facilitate X-ray fluorescence analysis.

従来技術 各種試料中に含有される元素の定性分析その他の定量分
析には、従来より化学分析法が広く採用されているが、
殊に分析対象がふっ素(F)以上の元素については、蛍
光X線分析法が好適に使用されている。すなわち物質を
構成する原子は夫々固有の殻電子準位を持っており、こ
の物質にX線を照射すると、当該物質から原子特有の性
質を持つ特性X線(蛍光X線)が励起される。蛍光X線
分析法は前記の現象を利用したものであって、物質から
励起された前記特性X線を分光結晶に通過させて波長を
選別し、X線スペクトルにおけるピークトップの読取り
や標準試料から得た検量線との比較により、物質中に存
在する原子の種類および量を解析するものである。
Conventional technology Chemical analysis methods have traditionally been widely adopted for qualitative analysis and other quantitative analysis of elements contained in various samples.
In particular, when the target of analysis is fluorine (F) or higher elements, fluorescent X-ray analysis is preferably used. That is, each atom constituting a substance has a unique shell electron level, and when this substance is irradiated with X-rays, characteristic X-rays (fluorescent X-rays) having properties unique to the atoms are excited from the substance. Fluorescent X-ray analysis utilizes the above phenomenon, and the characteristic X-rays excited from a substance are passed through a spectroscopic crystal to select the wavelength, and the peak tops in the X-ray spectrum are read and analyzed from standard samples. The types and amounts of atoms present in a substance are analyzed by comparing them with the obtained calibration curve.

この蛍光X線分析法は、固体試料、液体試料、粉体試料
など各種状態の試料に関して、広範囲の分野で工程分析
その他害種目的の定量分析法として活用されている。と
ころで各種の試料を前記蛍光X線分析に供して良好な結
果を得るためには、その分析用試料は次の状態を備えて
いることが要請される。 ゛ (a)分析すべき試料の表面組成が、当該物質を代表し
得る組成になっていること。
This fluorescent X-ray analysis method is used in a wide range of fields as a quantitative analysis method for process analysis and other purposes for harmful species, regarding samples in various states such as solid samples, liquid samples, and powder samples. By the way, in order to obtain good results by subjecting various samples to the fluorescent X-ray analysis, the samples for analysis are required to have the following conditions. (a) The surface composition of the sample to be analyzed is representative of the substance in question.

(b)変形その他変質することがなく、平担面を有する
こと。
(b) It does not undergo deformation or other alteration and has a flat surface.

(C)試料の構成物質が、飛散や揮散しないこと。(C) The constituent substances of the sample do not scatter or volatilize.

(d)分析面の形状を維持したり、飛散や揮散するのを
防止するために厚膜を設ける場合は、−次X線あるいは
二次X線を減衰させない程度に止めること。
(d) If a thick film is provided to maintain the shape of the analysis surface or to prevent scattering or volatilization, it must be applied to an extent that does not attenuate negative X-rays or secondary X-rays.

(e)機械的に強固で、取扱い中に破損する畏れのない
こと。
(e) Mechanically strong and free from damage during handling.

このような条件に最も適うのは固体試料であるが、いわ
ゆる定型性を有しない粉体試料や液体試料に関して蛍光
X線分析法を実施するためには、これらの試料を少くと
も固体試料と同等の状態に近づけるべき何らかの工夫が
必要とされる。例えば液体試料では、当該液体を充満さ
せた容器の開口部をマイラーで緊張被覆し、前記マイラ
ーを透過して試料表面に1次X線を照射し、2次X線を
取出して分析する方法が実施されている。また粉体試料
に関しては、流動性に富む状態を固定化するべく、一般
にブリケット法やガラスビード法が採用されている。
Solid samples are the most suitable for these conditions, but in order to perform fluorescent Some kind of ingenuity is needed to bring the situation closer to that of . For example, in the case of a liquid sample, a method is to cover the opening of a container filled with the liquid under tension with Mylar, irradiate the sample surface with primary X-rays that pass through the Mylar, and extract and analyze the secondary X-rays. It has been implemented. Regarding powder samples, the briquette method and glass bead method are generally used to fix the highly fluid state.

発明が解決しようとする問題点 ブリケット法は、粉体を更に微粉砕して所要粒度範囲に
整えた後、油圧プレスで加圧成形して固体試料にする方
法である(試料が少量のときはセルローンパウダ等の増
量剤を混入する)。しかしながらこの方法では、粉体相
互の結合が強力でないため、固形化させた試料の表面か
ら粉体が剥落その他崩壊して飛散する欠点がある。殊に
蛍光X線分析法では、分析装置として真空チャンバーを
使用するので、このチャンバー中で粉体が飛散する傾向
を有する。また分析作業者の手を汚染すると共に他の試
料に付着し1組成の異る試料を分析する場合には分析誤
差を生ずる要因にもなっている。
Problems to be Solved by the Invention The briquetting method is a method in which the powder is further finely pulverized to the required particle size range, and then pressure-molded using a hydraulic press to form a solid sample (when the sample is small, (Add a filler such as cellulone powder). However, this method has the disadvantage that the powders peel off or otherwise disintegrate and scatter from the surface of the solidified sample because the bond between the powders is not strong. In particular, in fluorescent X-ray analysis, since a vacuum chamber is used as an analysis device, powder tends to scatter in this chamber. Moreover, it contaminates the hands of the analysis worker and also adheres to other samples, causing analysis errors when analyzing samples with different compositions.

またガラスビード法は、微粉砕した粉体試料とほう酸リ
チウムを主体にした融剤とを混合し、白金血中で約10
00’Cの温度下に10分間程度溶融し、焼鈍・冷却さ
せてガラスビード状の固体試料を得る方法である。この
方式では、ブリケット法にみられる如き粉体試料の飛散
がなく広く採用されている。しかし該粉体試料に金属粉
末を混入させた場合は、この試料の溶融中に前記金属成
分が白金皿と反応してこれを侵し、高価な白金皿を使用
不能にするので、このガラスビード法を適用し得る粉体
試料には制約がある。
In addition, in the glass bead method, a finely pulverized powder sample is mixed with a flux mainly composed of lithium borate, and approximately 10%
This method involves melting at a temperature of 00'C for about 10 minutes, annealing, and cooling to obtain a glass bead-shaped solid sample. This method does not cause scattering of the powder sample as seen in the briquette method, and is widely used. However, if metal powder is mixed into the powder sample, the metal component will react with and attack the platinum plate during melting of the sample, making the expensive platinum plate unusable. There are restrictions on the powder samples to which this method can be applied.

発明の目的 本発明は、前述した従来法に内在している難点に鑑みこ
れを好適に解決すべく提案されたものであって、粉体試
料を蛍光X線分析し易い形態に簡単に固形化させること
ができ、しかも粉体相互の結合が密で該粉体が容易に剥
落飛散することのない新規な蛍光X線分析用粉体試料の
固形化方法を提供することを目的とする。
Purpose of the Invention The present invention has been proposed in order to suitably solve the problems inherent in the conventional methods described above. It is an object of the present invention to provide a novel method for solidifying a powder sample for fluorescent X-ray analysis, which allows solidification of a powder sample for fluorescent X-ray analysis, and in which the powders are closely bonded to each other so that the powders do not easily peel off and scatter.

問題点を解決するための手段 前記の目的を達成するため本発明に係る蛍光X線分析用
粉体試料の固形他方iは、蛍光X線分析に供すべき粉体
試料と熱硬化性樹脂とを所定の割合で均一に混合し、得
られた混合物を加熱して所要形状に成形して固形化する
ことを特徴とする。
Means for Solving the Problems In order to achieve the above-mentioned object, the solid state of the powder sample for fluorescent X-ray analysis according to the present invention, i. It is characterized by uniformly mixing at a predetermined ratio, heating the resulting mixture, shaping it into a desired shape, and solidifying it.

実施例 次に本発明に係る方法につき、好適な実施例を挙げて説
明する。すなわち本発明は、微粉砕した粉体試料と熱硬
化性樹脂とを適当な割合で混合して加熱成形することに
より、前記粉体を固形化する方法に関するものである。
EXAMPLES Next, the method according to the present invention will be explained with reference to preferred examples. That is, the present invention relates to a method of solidifying the powder by mixing a finely pulverized powder sample and a thermosetting resin in an appropriate ratio and thermoforming the mixture.

この粉体試料は、所定粒度範囲内に納まるよう充分に微
粉砕してあればそのまま使用してよいが、粒度径が粗か
ったり不揃いである場合は、これを所要の粒度になるま
で微粉砕する。この粉体を微粉砕するには、従来のブリ
ケット法やガラスビード法で実施されていると同じく振
動ミル、平行ミル、ジェットミル等の装置を使用すれば
よく、好ましくは粒度径が約100メツシユ以下になる
よう微粉砕する。これに混合される熱硬化性樹脂は、熱
、触媒、紫外線等の作用によって化学反応を受け、最終
状態において殆ど不溶不融性となる樹脂を総称し、フェ
ノール系樹脂、尿素系樹脂、エポキシ系樹脂など何れで
も良い。但し分析目的成分が、当該熱硬化性樹脂中に含
まれていないことを必要とすることは勿論である。なお
分析目的成分が微少最古まれている場合であっても、そ
の量が常に一定で補正できる程度であるならば差支えな
い。
This powder sample can be used as is if it has been sufficiently pulverized to fall within the specified particle size range, but if the particle size is coarse or uneven, it must be pulverized to the required particle size. do. To finely pulverize this powder, it is sufficient to use equipment such as a vibrating mill, parallel mill, jet mill, etc., as used in the conventional briquette method and glass bead method, and preferably the particle size is about 100 mesh. Finely grind to the following size. The thermosetting resin mixed with this is a general term for resins that undergo chemical reactions under the action of heat, catalysts, ultraviolet rays, etc. and become almost insoluble and infusible in the final state, including phenolic resins, urea resins, and epoxy resins. Any material such as resin may be used. However, it is of course necessary that the component to be analyzed is not contained in the thermosetting resin. Note that even if the component to be analyzed is the oldest, there is no problem as long as the amount is always constant and can be corrected.

粉体試料と熱硬化性樹脂との混合は、可能な限り均一に
する必要があり、この混合攪拌が不充分な場合は、正確
な分析結果が得られない。従って熱硬化性樹脂の粒度は
、出来るだけ粉体試料の粒度に近いものが推奨される。
The powder sample and the thermosetting resin must be mixed as uniformly as possible, and if the mixing and agitation is insufficient, accurate analytical results cannot be obtained. Therefore, it is recommended that the particle size of the thermosetting resin be as close to the particle size of the powder sample as possible.

また粉体試料と熱硬化性樹脂との混合割合は、その分析
目的に応じて成る程度自由に選択できるが、熱硬化性樹
脂の混合割合が増えれば相対的に粉体試料の希釈率が大
きくなることに留意する必要がある。従って粉体試料中
の微量含有成分を定量分析するような場合は、熱硬化性
樹脂の量を減少させ、粉体試料の割合を増大させるのが
良い。しかし粉体試料の割合を増大させ過ぎると、試料
を固形化する結合強度が低下し、前述したブリケット法
と同じように、成形された固形化物体の表面から粉体試
料が剥離、飛散することになるので、このような粉体試
料の割合の増加には限度がある。
Furthermore, the mixing ratio of the powder sample and thermosetting resin can be freely selected depending on the purpose of analysis, but as the mixing ratio of the thermosetting resin increases, the dilution rate of the powder sample becomes relatively large. It is necessary to keep in mind that Therefore, when quantitatively analyzing trace amounts of components contained in a powder sample, it is preferable to reduce the amount of thermosetting resin and increase the proportion of the powder sample. However, if the proportion of the powder sample is increased too much, the bonding strength that solidifies the sample will decrease, and the powder sample will peel off and scatter from the surface of the molded solidified object, similar to the briquetting method described above. Therefore, there is a limit to the increase in the proportion of such a powder sample.

実験例 試料として、鉄鋼溶製過程で生じるスラグ(鉱滓や鋼滓
)を100メツシユ以下に微粉砕したものを用い、フェ
ノール系樹脂と各種割合に混合して加熱成形する試験を
行った。その結果、熱硬化性樹脂1に対し粉体試料4以
下の重量混合割合にするのが、前記粉体試料の剥離・飛
散を有効に防止し得る限界であった。また成形試料の寸
法程度は、蛍光X線分析に際し当該分析装置において必
要な平担照射面積を確保し得る大きさであって、取扱い
容易であればよい、一般には直径30〜40011+、
高さ20〜30mm程度の円筒形状に成形する。
Experimental Example A test was conducted in which slag (mine slag and steel slag) produced during the steel melting process was pulverized to 100 mesh or less, and mixed with phenolic resin in various proportions and heated to form the mixture. As a result, it was found that a weight mixing ratio of less than 4 parts of the powder sample to 1 part of the thermosetting resin was the limit for effectively preventing the powder sample from peeling off and scattering. The dimensions of the molded sample may be such that it can secure the necessary flat irradiation area in the analyzer for fluorescent X-ray analysis and is easy to handle.
Form into a cylindrical shape with a height of about 20 to 30 mm.

このように固形化した粉体試料は、ブリケット法にみら
れる如き剥離、飛散もなく、一度成形したものは長期間
の保存に耐え、特に標準試料として繰り返し使用するこ
とができる。また必要な装置は加圧成形機のみであって
、簡単にしかも短時間に固形化した試料を得ることがで
きる。
The powder sample solidified in this manner does not peel or scatter as seen in the briquette method, and once molded, it can be stored for a long time and can be used repeatedly, especially as a standard sample. Further, the only equipment required is a pressure molding machine, and a solidified sample can be obtained easily and in a short time.

なお粉体試料の量が少ないような場合、前記ブリケット
法では、その総量がブリケット状試料を得ることができ
ない程度以下であれば、これを加圧成形して固形化試料
とすることができない、またガラスビード法によっても
、希釈率を大きくしない限リピートをつくることができ
ない。しかも希釈率を大きくすれば、微量成分の分析に
は適さなくなる。このような場合に本発明では、以下の
ようにして少量の粉体試量であっても蛍光X線分析に供
することができる。すなわち粉体試料と熱硬化性樹脂と
の混合比は、目的に応じて適当な割合を選択し、混合後
のトータル量を粉体試料の量に合せて決定する。そして
第1図に示すように、粉体試料と熱硬化性樹脂との混合
物10を先ず加熱成形をする型12の底部に均一に挿入
する。この混合層10の上に前記熱硬化性樹脂単体14
を更に載置してダイ16により加熱成形を実施する。
In addition, when the amount of the powder sample is small, in the briquette method, if the total amount is less than the amount that makes it impossible to obtain a briquette-like sample, it is not possible to pressurize it and make it into a solidified sample. Also, even with the glass bead method, repeats cannot be created unless the dilution rate is increased. Moreover, if the dilution rate is increased, it becomes unsuitable for analysis of trace components. In such a case, according to the present invention, even a small amount of powder can be subjected to fluorescent X-ray analysis in the following manner. That is, the mixing ratio of the powder sample and the thermosetting resin is selected appropriately depending on the purpose, and the total amount after mixing is determined in accordance with the amount of the powder sample. As shown in FIG. 1, a mixture 10 of a powder sample and a thermosetting resin is first uniformly inserted into the bottom of a mold 12 for thermoforming. On this mixed layer 10, the thermosetting resin alone 14 is placed.
is further placed and heated and formed by the die 16.

このようにして得られた第2図に示す固形化試料18は
、X線を照射して分析をするに必要な平坦面を有する薄
層からなる試料部分Aと、固形化してはいるが薄層のた
め取扱不便な前記試料部分Aを補う熱硬化性樹脂の硬化
部からなる基部Bとの二重の層で構成されており、少量
の粉体試料でも取扱い容易になっている。なお前記基部
Bとして、本実施例では試料部分Aに混合される熱硬化
性樹脂と同じ熱硬化性樹脂を使用したが、これは型12
により同時成形するための便宜上であって、副成分から
なる適宜形状の基部としてもよい。
The thus obtained solidified sample 18 shown in FIG. It is composed of a double layer with a base part B made of a hardened thermosetting resin to compensate for the sample part A, which is difficult to handle due to its layered structure, making it easy to handle even a small amount of powder sample. In this example, the same thermosetting resin as the thermosetting resin mixed in sample portion A was used as the base B, but this was different from mold 12.
For the convenience of simultaneous molding, the base may be formed of a subcomponent and have an appropriate shape.

発明の効果 以上詳細に説明したように、本発明に係る蛍光X線分析
用粉体試料の固形化方法によれば、定型を有しない粉体
試料を、蛍光X線分析し易い形態に簡単に固形化させる
ことができ、しかも粉体相互が樹脂を介して密に結合さ
れているので、該粉体試料が固形化物から容易に剥落飛
散することがなく好適である。
Effects of the Invention As explained in detail above, according to the method for solidifying a powder sample for fluorescent X-ray analysis according to the present invention, a powder sample that does not have a regular shape can be easily transformed into a form that is easy to perform fluorescent X-ray analysis. Since it can be solidified and the powders are closely bonded to each other via the resin, the powder sample does not easily peel off from the solidified material, which is preferable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る蛍光xm分析用粉体試料の固形化
方法により得られる粉体試料に基部を一体成形する際の
説明図、第2図は第1図により得られた固形化され基部
上に載置された粉体試料の概略斜視図である。 FloG、1 FIG、2
FIG. 1 is an explanatory diagram of integrally molding a base to a powder sample obtained by the method of solidifying a powder sample for fluorescence xm analysis according to the present invention, and FIG. FIG. 3 is a schematic perspective view of a powder sample placed on a base. FloG, 1 FIG, 2

Claims (4)

【特許請求の範囲】[Claims] (1)蛍光X線分析に供すべき粉体試料と熱硬化性樹脂
とを所定の割合で均一に混合し、得られた混合物を加熱
して所要形状に成形して固形化することを特徴とする蛍
光X線分析用粉体試料の固形化方法。
(1) A powder sample to be subjected to fluorescent X-ray analysis and a thermosetting resin are uniformly mixed at a predetermined ratio, and the resulting mixture is heated and formed into a desired shape to solidify it. A method for solidifying a powder sample for fluorescent X-ray analysis.
(2)前記熱硬化性樹脂1に対して粉体試料は4以下の
重量混合割合に設定される特許請求の範囲第1項記載の
蛍光X線分析用粉体試料の固形化方法。
(2) The method for solidifying a powder sample for fluorescent X-ray analysis according to claim 1, wherein the weight mixing ratio of the powder sample to the thermosetting resin 1 is set to 4 or less.
(3)前記粉体試料は、必要に応じて更に微粉砕される
特許請求の範囲第1項記載の蛍光X線分析用粉体試料の
固形化方法。
(3) The method for solidifying a powder sample for fluorescent X-ray analysis according to claim 1, wherein the powder sample is further finely pulverized if necessary.
(4)粉体試料と熱硬化性樹脂との混合物を加熱し固形
化して得た蛍光X線分析用粉体試料を、所要形状の基部
に接合してなる特許請求の範囲第1項記載の蛍光X線分
析用粉体試料の固形化方法。
(4) A powder sample for fluorescent X-ray analysis obtained by heating and solidifying a mixture of a powder sample and a thermosetting resin is bonded to a base having a desired shape. A method for solidifying a powder sample for fluorescent X-ray analysis.
JP60020622A 1985-02-05 1985-02-05 Method for solidifying powdery specimen for fluorescent x-ray analysis Pending JPS61178651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60020622A JPS61178651A (en) 1985-02-05 1985-02-05 Method for solidifying powdery specimen for fluorescent x-ray analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60020622A JPS61178651A (en) 1985-02-05 1985-02-05 Method for solidifying powdery specimen for fluorescent x-ray analysis

Publications (1)

Publication Number Publication Date
JPS61178651A true JPS61178651A (en) 1986-08-11

Family

ID=12032337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60020622A Pending JPS61178651A (en) 1985-02-05 1985-02-05 Method for solidifying powdery specimen for fluorescent x-ray analysis

Country Status (1)

Country Link
JP (1) JPS61178651A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115842U (en) * 1990-03-12 1991-12-02
EP0701120A1 (en) * 1987-08-31 1996-03-13 Ngk Insulators, Ltd. Powdery, granular and conglomerate material treating apparatus and analyzing method using the apparatus
JP2006242600A (en) * 2005-02-28 2006-09-14 Fuji Xerox Co Ltd Manufacturing method of sample for fluorescent x-ray analysis, and pressurizing and molding fixture of sample for fluorescent x-ray analysis
CN103048346A (en) * 2011-10-17 2013-04-17 株式会社理学 Calibration sample and fluorescence x-ray analytical device and method
JP2014206515A (en) * 2013-04-16 2014-10-30 王子ホールディングス株式会社 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample
JP2016050920A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2016050918A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2017062223A (en) * 2015-09-24 2017-03-30 住友金属鉱山株式会社 Resin-embedded sample and method for making the same
JP2017102081A (en) * 2015-12-04 2017-06-08 住友金属鉱山株式会社 Ore observation sample for mineral particle analyzer and method for preparing the same
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701120A1 (en) * 1987-08-31 1996-03-13 Ngk Insulators, Ltd. Powdery, granular and conglomerate material treating apparatus and analyzing method using the apparatus
JPH03115842U (en) * 1990-03-12 1991-12-02
JP2006242600A (en) * 2005-02-28 2006-09-14 Fuji Xerox Co Ltd Manufacturing method of sample for fluorescent x-ray analysis, and pressurizing and molding fixture of sample for fluorescent x-ray analysis
JP4631470B2 (en) * 2005-02-28 2011-02-16 富士ゼロックス株式会社 Method for preparing sample for fluorescent X-ray analysis and sample pressing jig for fluorescent X-ray analysis
CN103048346A (en) * 2011-10-17 2013-04-17 株式会社理学 Calibration sample and fluorescence x-ray analytical device and method
JP2013088216A (en) * 2011-10-17 2013-05-13 Rigaku Corp Calibration sample for fluorescent x-ray analysis, fluorescent x-ray analyzer with the same and fluorescent x-ray analysis method using the same
JP2014206515A (en) * 2013-04-16 2014-10-30 王子ホールディングス株式会社 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample
JP2016050920A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2016050918A (en) * 2014-09-02 2016-04-11 住友金属鉱山株式会社 Resin embedding sample and method of producing the same
JP2017062223A (en) * 2015-09-24 2017-03-30 住友金属鉱山株式会社 Resin-embedded sample and method for making the same
JP2017102081A (en) * 2015-12-04 2017-06-08 住友金属鉱山株式会社 Ore observation sample for mineral particle analyzer and method for preparing the same
JP2017116534A (en) * 2015-12-17 2017-06-29 住友金属鉱山株式会社 Method of preparing samples for x-ray fluorescence analysis

Similar Documents

Publication Publication Date Title
JPS61178651A (en) Method for solidifying powdery specimen for fluorescent x-ray analysis
US20180088011A1 (en) A mounting medium for embedding a sample material and a method of mounting a sample material in a mounting medium
JP6760019B2 (en) Sample preparation method for X-ray fluorescence analysis
JP6760018B2 (en) Evaluation method using a sample for fluorescent X-ray analysis
DE10103174B4 (en) Use of a test specimen made of metal particles and non-metallic solid particles as a standard sample for calibrating a spectrometric analysis device
Injuk et al. Specimen preparation
Chung et al. A versatile thin film method for quantitative X‐ray emission analysis
JP3144031B2 (en) Oxygen analysis of aluminum and aluminum alloys
JPH06235688A (en) Preparation of sample for fluorescent x-ray analysis
Dhara et al. Universal EDXRF method for multi-elemental determinations using fused bead specimens
JPH01274046A (en) Solidification of powder sample for instrumental analysis
DE2216035A1 (en) Fused pellets - for direct use in x-ray fluorescent analyses without further treatment
JPH0579975A (en) Standard sample for atomic absorption analysis and manufacture thereof
CN1548949A (en) Quantitative method for elements contained in sample with active metal
Weakley et al. Phosphorus standards for the electron probe X‐ray microanalysis of ultrathin tissue sections
Mittal et al. Quantitative analysis of binary mixtures using a simple x‐ray fluorescence technique
KR100432428B1 (en) a method for analyzing cast iron
JPS60129651A (en) Preparation of specimen for fluorescent x-ray analysis
Reed et al. Effects of neutron irradiation upon metallographic mounting materials
Jessberger et al. PIXE-characterization of stratospheric micrometeorites
KR910004103B1 (en) A preparing method for the powder sample for the fluorescent x-ray analysis
JP2023040915A (en) Quantitative analysis method and compact for quantitative analysis
JP2796067B2 (en) Sample preparation method for X-ray fluorescence analysis
Cercasov et al. Quantitative energy dispersive X-ray fluorescence analysis (EXRFA) of biological samples using information from the background continuum
Kazlagic et al. Investigating the differences between MC-ICP-MS and MC-TIMS using conventional 87Sr/86Sr isotope ratios in limestone and slate reference materials