JP2014206515A - Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample - Google Patents

Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample Download PDF

Info

Publication number
JP2014206515A
JP2014206515A JP2013085489A JP2013085489A JP2014206515A JP 2014206515 A JP2014206515 A JP 2014206515A JP 2013085489 A JP2013085489 A JP 2013085489A JP 2013085489 A JP2013085489 A JP 2013085489A JP 2014206515 A JP2014206515 A JP 2014206515A
Authority
JP
Japan
Prior art keywords
chlorine concentration
solid fuel
calibration curve
ray intensity
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013085489A
Other languages
Japanese (ja)
Inventor
俊達 武井
Toshitatsu Takei
俊達 武井
光隆 近藤
Mitsutaka Kondo
光隆 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp filed Critical Oji Holdings Corp
Priority to JP2013085489A priority Critical patent/JP2014206515A/en
Publication of JP2014206515A publication Critical patent/JP2014206515A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for more simply, promptly and accurately than before measuring a chlorine concentration in solid fuel, to provide a method for preparing a calibration curve, and to provide a method for manufacturing a fluorescent X-ray intensity measuring sample.SOLUTION: A method for more simply, promptly and accurately than before measuring a chlorine concentration in solid fuel, comprises: a measuring target sample preparation step of drying and pulverizing the solid fuel having an unknown chlorine concentration and pressure-molding the obtained granular pulverized material by a pressure device to prepare the measuring target sample; and a chlorine concentration measurement step of measuring a chlorine concentration in the measuring target sample on the basis of: a fluorescent X-ray intensity obtained by measuring fluorescent X-ray intensity for the prepared measuring target sample; and a calibration curve in which the fluorescent X-ray intensity is associated with the chlorine concentration in the solid fuel.

Description

本発明は、塩化ビニル等の廃プラスチック等を含む固形燃料中の塩素濃度の測定方法、検量線の作成方法、及び、蛍光X線強度測定用試料の製造方法に関する。   The present invention relates to a method for measuring a chlorine concentration in a solid fuel containing waste plastic such as vinyl chloride, a method for preparing a calibration curve, and a method for producing a sample for measuring fluorescent X-ray intensity.

地球環境の保護の観点から、本来廃棄される廃棄物を、別の用途に用いる試みが行われている。例えば、産業廃棄物のうち、再利用が困難であり、ただ燃焼させるしかないとされる古紙や木屑、廃プラスチックを用いて、廃棄物固形化燃料(Refuse Paper & Plastic Fuel;以下、「RPF」ともいう)を得る試みが行われている。RPFは炭素元素を豊富に含むため燃焼し易く、RPFは、ボイラ駆動等のための燃料として好適である。   From the viewpoint of protecting the global environment, attempts have been made to use the waste that is originally discarded for another use. For example, refuse paper & plastic fuel (hereinafter referred to as “RPF”) is made of waste paper, wood waste, and waste plastic that are difficult to reuse and must be burned. Attempts are also being made. Since RPF contains abundant carbon elements, it is easy to burn, and RPF is suitable as a fuel for driving a boiler.

しかし、RPFには、例えば廃プラスチックに由来する塩素が含まれることがある。そのため、RPFを燃焼させると、塩素を含む灰が発生する。そして、この灰がボイラ内に堆積すると、含まれる塩素により、ボイラ内の構造物の腐食が進むことがあり、ボイラの耐久性を低下させることがある。従って、燃焼させるRPFは、塩素濃度ができるだけ低いことが好ましい。   However, RPF may contain, for example, chlorine derived from waste plastic. Therefore, when RPF is burned, ash containing chlorine is generated. And when this ash accumulates in a boiler, corrosion of the structure in a boiler may advance with the contained chlorine, and the durability of a boiler may be reduced. Therefore, it is preferable that the RPF to be burned has a chlorine concentration as low as possible.

低塩素濃度のRPFを選定するべく、RPF等の固形燃料中の塩素濃度を測定する技術が知られている。具体的には、JIS Z7302−6に基づいて、RPF中の塩素含有量(塩素濃度)が測定可能である。しかしながら、この方法においては、イオンクロマトグラフを用いて測定するため、測定が面倒で時間もかかる。そこで、このような課題を解決するため、特許文献1には、固形燃料を酸素ボンブ燃焼容器内で燃焼させ、この燃焼により発生する塩化水素及び塩素を上記燃焼容器内に収容したアルカリ水溶液に吸収させ、その吸収液中の塩素量を蛍光X線で測定する固形燃料中の塩素濃度の測定方法が記載されている。   In order to select a low chlorine concentration RPF, a technique for measuring the chlorine concentration in a solid fuel such as RPF is known. Specifically, the chlorine content (chlorine concentration) in the RPF can be measured based on JIS Z7302-6. However, in this method, since measurement is performed using an ion chromatograph, the measurement is troublesome and takes time. Therefore, in order to solve such problems, Patent Document 1 discloses that solid fuel is burned in an oxygen bomb combustion container, and hydrogen chloride and chlorine generated by this combustion are absorbed in an alkaline aqueous solution housed in the combustion container. A method for measuring the chlorine concentration in a solid fuel is described in which the amount of chlorine in the absorbing solution is measured with fluorescent X-rays.

特開2012−21797号公報JP 2012-21797 A

しかし、前記特許文献1に記載の技術は、酸素ボンブ燃焼容器等の気密性が保たれた特殊な容器を使用するものであるから、簡便に行えるものではない。また、例えば大気下等の開放系において測定を行おうとすると、測定結果がばらついたり、良好な精度での測定が行えなかったりすることがある。従って、前記特許文献1に記載の技術には、依然として、簡便かつ迅速な測定が行い難いという課題がある。   However, the technique described in Patent Document 1 uses a special container that is kept airtight, such as an oxygen bomb combustion container. In addition, for example, if measurement is performed in an open system such as in the atmosphere, measurement results may vary, or measurement with good accuracy may not be performed. Therefore, the technique described in Patent Document 1 still has a problem that it is difficult to perform simple and rapid measurement.

そこで、簡便かつ迅速な測定を行うべく、前記特許文献1に代わる技術が望まれている。例えば、測定者が独自に検量線を作成し、当該検量線を用いて、測定者が独自に作成した濃度未知の固形燃料からなる試料について塩素濃度の測定を行うことが考えられる。これによれば、簡便かつ迅速に塩素濃度を測定することができることもある。   Therefore, a technique that replaces Patent Document 1 is desired in order to perform simple and rapid measurement. For example, it is conceivable that the measurer independently creates a calibration curve, and uses the calibration curve to measure the chlorine concentration of a sample made of solid fuel of unknown concentration that is uniquely created by the measurer. According to this, the chlorine concentration may be easily and quickly measured.

しかし、検量線の作成方法や試料の作製方法等の測定条件が測定者毎に異なると、仮に同じ固形燃料からなる試料であっても、同じ測定結果(塩素濃度)にならないことがある。そのため、前記の方法によれば、簡便かつ迅速な測定ができることはあるが、良好な精度という点で依然として課題がある。   However, if the measurement conditions such as the calibration curve preparation method and the sample preparation method are different for each measurer, even if the sample is made of the same solid fuel, the same measurement result (chlorine concentration) may not be obtained. Therefore, according to the above method, simple and quick measurement can be performed, but there is still a problem in terms of good accuracy.

本発明は前記の課題に鑑みて為されたものであり、本発明が解決する課題は、従来よりも簡便かつ迅速に精度よく固体燃料中の塩素濃度を測定する方法、検量線の作成方法、及び、蛍光X線強度測定用試料の製造方法を提供することである。   The present invention has been made in view of the above problems, and the problems to be solved by the present invention include a method for measuring the chlorine concentration in a solid fuel more easily and quickly than before, a method for preparing a calibration curve, And it is providing the manufacturing method of the sample for a fluorescent X ray intensity measurement.

本発明者らは、前記課題を解決するべく鋭意検討を行った。その結果、以下の知見を見出して本発明を完成させた。即ち、本発明の要旨は、以下の通りである。   The present inventors have intensively studied to solve the above problems. As a result, the following knowledge was found and the present invention was completed. That is, the gist of the present invention is as follows.

(1)
固形燃料中の塩素濃度の測定方法であって、
塩素濃度未知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して測定対象試料を作製する測定対象試料作製ステップと、
作製された前記測定対象試料に対して蛍光X線強度測定を行って得られた蛍光X線強度と、蛍光X線強度と固形燃料中の塩素濃度とが対応付けられた検量線と、に基づいて前記測定対象試料中の塩素濃度を測定する塩素濃度測定ステップと、を含むことを特徴とする、固形燃料中の塩素濃度の測定方法。
(2)
塩素濃度既知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して標準試料を作製する標準試料作製ステップと、
作製された前記標準試料に対し、前記蛍光X線強度測定での測定条件と同条件で蛍光X線強度測定を行って検量線を作成する検量線作成ステップと、を含み、
前記検量線作成ステップにおいて作成された検量線を用いて、前記塩素濃度測定ステップが行われることを特徴とする、前記(1)に記載の固形燃料中の塩素濃度の測定方法。
(3)
前記固形燃料は廃棄物固形化燃料であることを特徴とする、前記(1)又は(2)に記載の固形燃料中の塩素濃度の測定方法。
(4)
前記測定対象試料作製ステップ及び前記標準試料作製ステップのうちの少なくとも一方において、前記固形燃料が直径10mm未満になるまで粉砕されることを特徴とする、前記(1)〜(3)の何れか1項に記載の固形燃料中の塩素濃度の測定方法。
(5)
前記測定対象試料作製ステップ及び前記標準試料作製ステップのうちの少なくとも一方において、乾燥及び粉砕された前記固形燃料を金型に充填して、前記金型に充填された前記固形燃料の全体に対して、前記加圧装置を用いて1000kg以上の大きさの力を付与して加圧成型を行うことを特徴とする、前記(1)〜(4)の何れか1項に記載の固形燃料中の塩素濃度の測定方法。
(6)
塩素濃度既知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して標準試料を作製する標準試料作製ステップと、
作製された前記標準試料に対して蛍光X線強度測定を行って、蛍光X線強度と固形燃料中の塩素濃度とが対応付けられた検量線を作成する検量線作成ステップと、を含むことを特徴とする、検量線の作成方法。
(7)
固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して蛍光X線強度測定用試料を作製することを特徴とする、蛍光X線強度測定用試料の製造方法。
(1)
A method for measuring chlorine concentration in a solid fuel,
A measurement target sample preparation step of drying and pulverizing a solid fuel of unknown chlorine concentration, and pressurizing and molding the obtained granular pulverized product with a pressure device;
Based on the fluorescent X-ray intensity obtained by performing fluorescent X-ray intensity measurement on the prepared sample to be measured, and a calibration curve in which the fluorescent X-ray intensity and the chlorine concentration in the solid fuel are associated with each other. And a chlorine concentration measuring step for measuring the chlorine concentration in the sample to be measured.
(2)
A standard sample preparation step of drying and pulverizing a solid fuel having a known chlorine concentration, and pressure-molding the obtained granular pulverized product with a pressurizing device;
A calibration curve creating step of creating a calibration curve by performing fluorescence X-ray intensity measurement under the same conditions as the measurement conditions in the fluorescence X-ray intensity measurement for the prepared standard sample,
The method for measuring a chlorine concentration in a solid fuel according to (1), wherein the chlorine concentration measuring step is performed using the calibration curve created in the calibration curve creating step.
(3)
The method for measuring a chlorine concentration in a solid fuel according to (1) or (2), wherein the solid fuel is a waste solidified fuel.
(4)
Any one of (1) to (3), wherein the solid fuel is pulverized in at least one of the measurement sample preparation step and the standard sample preparation step until the solid fuel has a diameter of less than 10 mm. The measuring method of the chlorine concentration in the solid fuel as described in the item.
(5)
In at least one of the measurement sample preparation step and the standard sample preparation step, the dried and pulverized solid fuel is filled in a mold, and the whole solid fuel filled in the mold is filled The solid fuel according to any one of (1) to (4) above, wherein pressure molding is performed by applying a force of 1000 kg or more using the pressurizing device. Measuring method of chlorine concentration.
(6)
A standard sample preparation step of drying and pulverizing a solid fuel having a known chlorine concentration, and pressure-molding the obtained granular pulverized product with a pressurizing device;
A calibration curve creating step of performing a fluorescence X-ray intensity measurement on the prepared standard sample and creating a calibration curve in which the fluorescence X-ray intensity and the chlorine concentration in the solid fuel are associated with each other. A characteristic calibration curve creation method.
(7)
Production of a fluorescent X-ray intensity measurement sample characterized by drying and pulverizing a solid fuel, and pressure-molding the obtained granular pulverized product with a pressure device to produce a fluorescent X-ray intensity measurement sample Method.

本発明によれば、従来よりも簡便かつ迅速に精度よく固体燃料中の塩素濃度を測定する方法、検量線の作成方法、及び、蛍光X線強度測定用試料の製造方法を提供することができる。   According to the present invention, it is possible to provide a method for measuring a chlorine concentration in a solid fuel, a method for preparing a calibration curve, and a method for producing a fluorescent X-ray intensity measurement sample more easily and quickly than in the past. .

RPF標準板の作製フローである。It is a production flow of an RPF standard board. 検量線の作成フローである。It is a creation flow of a calibration curve. 作成可能な検量線の一例である。It is an example of a calibration curve that can be created. RPFサンプルの塩素濃度の測定フローである。It is a measurement flow of the chlorine concentration of a RPF sample. 実施例1において作成した検量線であるIt is a calibration curve created in Example 1 実施例1の精度を示すグラフである。3 is a graph showing the accuracy of Example 1. 比較例1の精度を示すグラフである。5 is a graph showing the accuracy of Comparative Example 1. 実施例3の精度を示すグラフである。10 is a graph showing the accuracy of Example 3.

以下、本発明を実施するための形態(本実施形態)について説明する。   Hereinafter, a mode for carrying out the present invention (this embodiment) will be described.

本実施形態の固形燃料中の塩素濃度の測定方法は、蛍光X線強度測定により、例えば廃棄物固形化燃料(RPF)等の固形燃料中の塩素濃度を測定するものである。本実施形態の固形燃料中の塩素濃度の測定方法は、主に、4つのステップ(工程)を含んでいる。具体的には、(1)塩素濃度既知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して標準試料を作製する標準試料作製ステップと、(2)作製された前記標準試料に対して蛍光X線強度測定を行って検量線を作成する検量線作成ステップと、(3)塩素濃度未知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して測定対象試料を作製する測定対象試料作製ステップと、(4)作製された前記測定対象試料に対し、前記蛍光X線強度測定での測定条件と同条件で蛍光X線強度測定を行って得られた蛍光X線強度と、蛍光X線強度と固形燃料中の塩素濃度とが対応付けられた検量線と、に基づいて前記測定対象試料中の塩素濃度を測定する塩素濃度測定ステップと、の4つのステップが含まれている。ここで、(1)標準試料作製ステップと、(2)検量線作成ステップとを少なくとも経ることで、検量線を作成することができる。   The method for measuring the chlorine concentration in the solid fuel according to the present embodiment measures the chlorine concentration in the solid fuel such as waste solidified fuel (RPF) by fluorescent X-ray intensity measurement. The measuring method of the chlorine concentration in the solid fuel of this embodiment mainly includes four steps (processes). Specifically, (1) a standard sample preparation step in which a solid fuel having a known chlorine concentration is dried and pulverized, and the obtained granular pulverized product is pressure-molded by a pressure device to prepare a standard sample; ) A calibration curve creating step for creating a calibration curve by measuring fluorescent X-ray intensity on the prepared standard sample, and (3) drying and pulverizing the solid fuel whose chlorine concentration is unknown, and pulverizing the resulting granules A measurement target sample preparation step for preparing a measurement target sample by press molding an object with a pressure device; and (4) the same conditions as the measurement conditions in the fluorescent X-ray intensity measurement for the prepared measurement target sample The concentration of chlorine in the sample to be measured based on the fluorescent X-ray intensity obtained by measuring the fluorescent X-ray intensity in 1 and the calibration curve in which the fluorescent X-ray intensity and the chlorine concentration in the solid fuel are associated with each other And chlorine concentration measurement step to measure Steps are included. Here, a calibration curve can be created through at least the (1) standard sample preparation step and (2) the calibration curve creation step.

これらのうち、(3)測定対象試料作製ステップと、(4)塩素濃度測定ステップとの少なくとも2つのステップを経ることにより、従来よりも簡便かつ迅速に精度よく固体燃料中の塩素濃度を測定する方法を提供することができる。ただし、よりいっそうの効果を得るために、これら4つのステップを経ることが好ましい。そこで、以下の説明においては、これらの4つのステップを行うものとして、各ステップについて説明する。なお、本実施形態の測定方法は、特にRPF中の塩素に対して好適であるので、以下の説明においては、固形燃料の一例として、RPFを例に挙げて説明する。   Among these, the chlorine concentration in the solid fuel is measured more easily and more quickly and accurately than in the past by passing through at least two steps of (3) a measurement target sample preparation step and (4) a chlorine concentration measurement step. A method can be provided. However, in order to obtain a further effect, it is preferable to go through these four steps. Therefore, in the following description, each step will be described on the assumption that these four steps are performed. In addition, since the measuring method of this embodiment is especially suitable with respect to chlorine in RPF, in the following description, RPF will be described as an example of solid fuel.

<各ステップの説明>
(1)標準試料作製ステップ
本ステップでは、塩素濃度既知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型してRPF標準板(標準試料、蛍光X線強度測定用試料)を作製する。作製されたRPF標準板は、後記する検量線を作成する際に用いられる。本ステップを、図1に示すフローを参照しながら説明する。図1は、RPF標準板の作製フローである。
<Description of each step>
(1) Standard sample preparation step In this step, a solid fuel with a known chlorine concentration is dried and pulverized, and the resulting granular pulverized material is pressure-molded with a pressure device, and then an RPF standard plate (standard sample, fluorescent X-rays). Strength measurement sample) is prepared. The produced RPF standard plate is used when creating a calibration curve to be described later. This step will be described with reference to the flow shown in FIG. FIG. 1 is a flowchart for manufacturing an RPF standard plate.

まず、JIS Z 7302−6の方法(所謂JIS法)に従って、RPF中の塩素濃度を測定する。この測定は、複数のRPFについて行って、複数(例えば20検体程度)の濃度既知のRPFが準備される。そして、濃度既知のRPFのそれぞれについて、乾燥が行われる(ステップS101)。なお、乾燥は、後記する粉砕(ステップS102)の後に行われてもよい。この乾燥は、十分に行われることが好ましく、所謂「絶乾」となることがより好ましい。RPFを十分に乾燥させることにより、より正確な蛍光X線強度が得られ易いという利点がある。   First, the chlorine concentration in the RPF is measured according to the method of JIS Z 7302-6 (so-called JIS method). This measurement is performed on a plurality of RPFs, and a plurality (for example, about 20 samples) of RPFs with known concentrations are prepared. Then, each of the RPFs having known concentrations is dried (step S101). In addition, drying may be performed after the grinding | pulverization (step S102) mentioned later. This drying is preferably performed sufficiently, and more preferably so-called “absolutely dry”. By sufficiently drying the RPF, there is an advantage that more accurate fluorescent X-ray intensity can be easily obtained.

乾燥方法は特に制限されないが、RPFの大きさ等によっても異なるため一概には言えないものの、直径30mm程度の円筒状のRPFであれば、例えば105℃で1時間以上とすることが好ましい。自然乾燥でもよいが、乾燥装置を用いる場合には、例えば、ヤマト科学社製 定温乾燥器 DV 600等が使用可能である。   The drying method is not particularly limited, but since it varies depending on the size of the RPF and the like, it cannot be generally stated. However, in the case of a cylindrical RPF having a diameter of about 30 mm, for example, it is preferably set at 105 ° C. for 1 hour or longer. Natural drying may be used, but when a drying apparatus is used, for example, a constant temperature dryer DV 600 manufactured by Yamato Scientific Co., Ltd. can be used.

乾燥されたRPFは、その後、粉砕される(ステップS102)。ただし、前記のように、RPFは、粉砕後に乾燥されるようにしてもよい。粉砕は、粒状のRPFの粉砕物が得られる程度にまで粉砕するものとする。また、これ以外の粉砕の条件は特に制限されないが、例えば、粒径(直径)として10mm未満になるまで粉砕することが好ましく、より好ましくは5mm以下、特に好ましくは2mm以下である。粒径が小さければ小さいほど、RPF中の塩化ビニル等の塩素含有材料を細かくして全体に分散させることができ、より精度のよい測定結果を得ることができる。粉砕は、1回のみ行ってもよく、複数回行ってもよい。また、必要に応じて、所望の粒径のRPFが得られるように、所定の孔径を有する篩を用いてもよい。   The dried RPF is then pulverized (step S102). However, as described above, the RPF may be dried after pulverization. The pulverization is performed to such an extent that a pulverized product of granular RPF is obtained. The other grinding conditions are not particularly limited. For example, the grinding is preferably performed until the particle size (diameter) is less than 10 mm, more preferably 5 mm or less, and particularly preferably 2 mm or less. The smaller the particle size, the finer the chlorine-containing material such as vinyl chloride in the RPF can be dispersed throughout, and a more accurate measurement result can be obtained. The pulverization may be performed only once or a plurality of times. Moreover, you may use the sieve which has a predetermined hole diameter as needed so that RPF of a desired particle size may be obtained.

粉砕装置は、どのようなものを用いてもよい。例えば、粉砕は、カッタ、ミキサ、ウィレーミル等の任意の粉砕装置を用いることができる。カッタとしては例えばMERRY社製 PIP−19、ミキサとしては例えば大阪ケミカル社製 WDL−1、ウィレーミルとしては例えば吉田製作所社製 1029型(φ2mm)等が使用可能である。さらに、必要に応じて、RPFは、人手によって粉砕されてもよい。   Any pulverizer may be used. For example, for the pulverization, an arbitrary pulverization apparatus such as a cutter, a mixer, or a Willet mill can be used. As the cutter, for example, PIP-19 manufactured by MERRY can be used, for example, WDL-1 manufactured by Osaka Chemical Co., Ltd. can be used as the mixer, and for example, 1029 type (φ2 mm) manufactured by Yoshida Seisakusho can be used. Furthermore, if necessary, the RPF may be crushed manually.

次に、RPFの粒状の粉砕物は、金型等に充填され、加圧装置によって加圧成型される(ステップS103)。成型は、加圧装置を用いて行うものとする。また、これ以外の成型の条件は特に制限されないが、できるだけ密になるように大きな力を付与可能な加圧装置を用いて成型することが好ましい。得られる成型品(RPF標準板)ができるだけ密になっていることで、含まれる空隙によるX線の乱反射等を抑制し、より精度のよい測定結果を得ることができる。また、できるだけ大きな力を付与することで、成型品(RPF標準板)の表面の凹凸を減らして高い平滑状態にすることができ、後記する蛍光X線強度測定を良好に行うことができる。   Next, the granular pulverized product of RPF is filled in a mold or the like and is pressure-molded by a pressure device (step S103). Molding is performed using a pressure device. Further, other molding conditions are not particularly limited, but it is preferable to perform molding using a pressure device capable of applying a large force so as to be as dense as possible. Since the molded product (RPF standard plate) to be obtained is as dense as possible, it is possible to suppress irregular reflection of X-rays due to the included voids and obtain a more accurate measurement result. Further, by applying as much force as possible, the surface roughness of the molded product (RPF standard plate) can be reduced to a high smooth state, and the fluorescent X-ray intensity measurement described later can be performed well.

従って、成型の条件として、具体的には例えば、円形状の金型(例えば内径30mm)にRPFの粒状の粉砕物を充填後、金型に充填された粉砕物の全体に対して例えば1000kg(1t)以上20000kg(20t)以下、好ましくは10000kg(10t)以下程度の大きさの力を付与することができる。これにより、厚さが例えば3mm程度、重さが例えば2g程度の、円板状のRPFからなる板(RPF標準板)を作製することができる。なお、このような金型としては、例えば、三庄インダストリ社製 N1246−00等が使用可能である。   Therefore, as the molding conditions, specifically, for example, a circular mold (for example, an inner diameter of 30 mm) is filled with RPF granular pulverized material, and then, for example, 1000 kg ( A force having a magnitude of about 1 t) to 20000 kg (20 t), preferably about 10,000 kg (10 t) can be applied. Thereby, a plate (RPF standard plate) made of a disc-shaped RPF having a thickness of, for example, about 3 mm and a weight of, for example, about 2 g can be produced. As such a mold, for example, N1246-00 manufactured by Sansho Industry Co., Ltd. can be used.

力を付与する加圧装置は特に制限されないが、できるだけ大きな力を付与できる加圧装置を用いることが好ましい。従って、このような手段としては、手動プレス機や電動プレス機が挙げられるが、より大きな力を付与可能という観点から、電動プレス機を用いることが好ましい。ただし、より手軽に成型を行うという観点からは、手動プレス機を用いてもよい。このような手動プレス機としては、例えば、島津製作所社製 ハンドプレスSSP−10A等が挙げられる。   The pressure device for applying force is not particularly limited, but it is preferable to use a pressure device capable of applying as much force as possible. Accordingly, examples of such means include a manual press machine and an electric press machine, but it is preferable to use an electric press machine from the viewpoint that a larger force can be applied. However, a manual press machine may be used from the viewpoint of easier molding. Examples of such a manual press machine include a hand press SSP-10A manufactured by Shimadzu Corporation.

また、成型は、金型を用いた成型に限定されるものではない。即ち、金型を用いた場合に得られる成型品と同様のものが成型可能であれば、金型以外のどのような手段や方法を使用してもよい。   Further, the molding is not limited to molding using a mold. That is, any means or method other than the mold may be used as long as the same molded product as that obtained using the mold can be molded.

以上のステップS101〜ステップS103を経ることにより、濃度既知のRPF標準板が得られる(ステップS104)。なお、この濃度既知のRPF標準板は、後記する検量線を作成するとき(検量線作成ステップ)に用いられる。   Through the above steps S101 to S103, an RPF standard plate with a known density is obtained (step S104). This RPF standard plate with a known concentration is used when a calibration curve to be described later is created (calibration curve creation step).

(2)検量線作成ステップ
本ステップでは、前記の(1)標準試料作製ステップにおいて作製されたRPF標準板(標準試料)に対して蛍光X線強度測定を行うことで、検量線を作成する。作成された検量線が用いられることにより、濃度未知のRPFの塩素濃度が、迅速かつ簡便に精度よく測定可能となる。
(2) Calibration curve creation step In this step, a calibration curve is created by performing fluorescent X-ray intensity measurement on the RPF standard plate (standard sample) produced in the above (1) standard sample production step. By using the prepared calibration curve, the chlorine concentration of RPF whose concentration is unknown can be measured quickly and simply with high accuracy.

具体的には、まず、前記の(1)標準試料作製ステップにおいて作製された各RPF標準板について、蛍光X線強度の測定を行う(ステップS201)。ここで、蛍光X線分析法は、X線を試料(RPF標準板や後記するRPFサンプル板等)に照射したときに発生する蛍光X線のエネルギや強度から、含まれる塩素等の成分元素の濃度等を分析する手法である。塩素については、Kα線が測定される。蛍光X線分析装置の具体的な種類は特に制限されず、例えばスペクトリス社製 波長分散型蛍光X線 PW2404や、オックスフォード社製 Twin−X、SII ナノテクノロジー社製 SEA1200VX、テクノエックス社製 ED05S、SII ナノテクノロジー社製 SEA1000AII等が使用可能である。なお、詳細は後記するが、RPF標準板についての蛍光X線強度測定と、RPFサンプルについての蛍光X線強度測定とは、同型の装置を用いて同条件にて行うものとする。   Specifically, first, the fluorescent X-ray intensity is measured for each RPF standard plate produced in the (1) standard sample production step (step S201). Here, the fluorescent X-ray analysis method is based on the energy and intensity of fluorescent X-rays generated when X-rays are irradiated on a sample (RPF standard plate, RPF sample plate described later, etc.). This is a technique for analyzing concentration and the like. For chlorine, Kα radiation is measured. The specific type of the X-ray fluorescence analyzer is not particularly limited. For example, Spectris wavelength-dispersion X-ray fluorescence PW2404, Oxford Twin-X, SII Nanotechnology SEA1200VX, Techno-X ED05S, SII SEA1000AII manufactured by Nanotechnology, Inc. can be used. Although details will be described later, the fluorescent X-ray intensity measurement for the RPF standard plate and the fluorescent X-ray intensity measurement for the RPF sample are performed under the same conditions using the same type of apparatus.

そして、測定された蛍光X線強度について、各RPF標準板の濃度は既知であるから、x軸を既知の塩素濃度、y軸を蛍光X線強度としたグラフが作成される(ステップS202)。そして、グラフ上の各プロットについて、最小二乗法を用いて、近似直線をひく。このようにして引かれた近似直線を、後記する濃度未知のRPFの塩素濃度測定に用いる検量線とし、検量線が完成する(ステップS203)。   And since the density | concentration of each RPF standard plate is known about the measured fluorescence X-ray intensity, the graph which made the x-axis the known chlorine density | concentration and the y-axis the fluorescence X-ray intensity is created (step S202). Then, for each plot on the graph, an approximate straight line is drawn using the least square method. The approximate straight line drawn in this way is used as a calibration curve used for measuring the chlorine concentration of RPF whose concentration is unknown, which will be described later, and the calibration curve is completed (step S203).

このようにして作成された検量線の一例を、図3に示す。なお、図3では、図示の簡略化のために、0.5質量%、0.75質量%及び1.0質量%の3検体のみプロットし、相関係数(R値)を1としている。また、図3は、説明を簡略化して行うための検量線の一例であり、現実の検量線と必ずしも一致するものではない。 An example of the calibration curve created in this way is shown in FIG. In FIG. 3, for simplification of illustration, only three specimens of 0.5 mass%, 0.75 mass%, and 1.0 mass% are plotted, and the correlation coefficient (R 2 value) is 1. . FIG. 3 is an example of a calibration curve for simplifying the description, and does not necessarily match an actual calibration curve.

図3に示す検量線においては、塩素濃度が0.5質量%のときの蛍光X線強度は20kcps、塩素濃度が0.75質量%のときの蛍光X線強度は30kcps、塩素濃度が1.0質量%のときの蛍光X線強度は40kcpsである。そのため、これらのプロットについて最小二乗法により(図3では単にプロットを線で結ぶことにより)得られる検量線の式は、y=40xとなる。   In the calibration curve shown in FIG. 3, the fluorescent X-ray intensity when the chlorine concentration is 0.5 mass% is 20 kcps, the fluorescent X-ray intensity when the chlorine concentration is 0.75 mass% is 30 kcps, and the chlorine concentration is 1. The fluorescent X-ray intensity at 0 mass% is 40 kcps. Therefore, the equation of the calibration curve obtained by the least square method for these plots (in FIG. 3, simply connecting the plots with a line) is y = 40x.

(3)測定対象試料作製ステップ
本ステップでは、塩素濃度未知のRPF(固形燃料)を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型してRPFサンプル板(測定対象試料、蛍光X線強度測定用試料)を作製する。この点を、図4を参照しながら説明する。
(3) Measuring object sample preparation step In this step, RPF (solid fuel) whose chlorine concentration is unknown is dried and pulverized, and the obtained granular pulverized material is pressure-molded by a pressurizing device and RPF sample plate (measuring object) Sample, fluorescent X-ray intensity measurement sample). This point will be described with reference to FIG.

図4は、RPFサンプルの塩素濃度の測定フローである。本実施形態では、濃度未知のRPFサンプルに含まれる塩素の濃度を測定するものとする。そこで、当該濃度未知のRPFサンプルについて、前記のRPF標準板の作製方法と同様にして、RPFサンプル板が作製される(ステップS301〜ステップS304)。ただし、作製条件や作製方法は、前記の(1)標準試料作製ステップにおける条件や方法等と同様であることが好ましいが、必ずしも厳密に同様とする必要はない。従って、本発明の効果を著しく損なわない範囲で、適宜条件や方法を変更してもよい。   FIG. 4 is a measurement flow of the chlorine concentration of the RPF sample. In this embodiment, it is assumed that the concentration of chlorine contained in the RPF sample whose concentration is unknown is measured. Therefore, an RPF sample plate is produced for the RPF sample with an unknown concentration in the same manner as in the method for producing the RPF standard plate (steps S301 to S304). However, the production conditions and production method are preferably the same as the conditions and method in the above (1) standard sample production step, but are not necessarily exactly the same. Therefore, conditions and methods may be changed as appropriate within a range that does not significantly impair the effects of the present invention.

(4)塩素濃度測定ステップ
本ステップでは、前記の(3)測定対象試料作製ステップにおいて作製された測定対象試料に対し、前記の(2)検量線作成ステップにおける蛍光X線強度測定での測定条件と同条件で蛍光X線強度測定を行って得られた蛍光X線強度と、前記の(2)検量線作成ステップにおいて作成された、蛍光X線強度と固形燃料中の塩素濃度とが対応付けられた検量線(例えば図3に示す検量線)と、に基づいて前記測定対象試料中の塩素濃度を測定する。
(4) Chlorine concentration measurement step In this step, the measurement conditions in the fluorescent X-ray intensity measurement in the (2) calibration curve creation step are compared with the measurement target sample prepared in the (3) measurement target sample preparation step. The X-ray fluorescence intensity obtained by measuring the X-ray fluorescence intensity under the same conditions as described above is associated with the X-ray fluorescence intensity created in the above (2) calibration curve creation step and the chlorine concentration in the solid fuel. Based on the obtained calibration curve (for example, the calibration curve shown in FIG. 3), the chlorine concentration in the measurement target sample is measured.

具体的には、まず、RPF標準板についての蛍光X線強度測定を行ったときと同様の装置及び条件で、RPFサンプル板についての蛍光X線強度の測定が行われる(図4のステップS305)。ただし、測定条件は必ずしも厳密に同様とする必要はなく、本発明の効果を著しく損なわない範囲で、適宜条件を変更してもよい。そして、作成された検量線(図3参照)に基づいて、測定された強度に対応する塩素濃度が測定される(ステップS306)。   Specifically, first, the measurement of the fluorescent X-ray intensity for the RPF sample plate is performed with the same apparatus and conditions as when the fluorescent X-ray intensity measurement for the RPF standard plate was performed (step S305 in FIG. 4). . However, the measurement conditions do not necessarily have to be exactly the same, and the conditions may be appropriately changed within a range that does not significantly impair the effects of the present invention. Then, based on the prepared calibration curve (see FIG. 3), the chlorine concentration corresponding to the measured intensity is measured (step S306).

このときの算出方法の一例を、より具体的に説明する。前記のように、図3に示す検量線の式はy=40x(xはJIS法に基づく塩素濃度、yは蛍光X線強度)である。そこで、蛍光X線強度に対応する塩素濃度を算出する式を得るためにxとyとを入れ替えると、y=(1/40)x=0.025xとの式が得られる。この式において、xは蛍光X線強度、yは塩素濃度である。   An example of the calculation method at this time will be described more specifically. As described above, the equation of the calibration curve shown in FIG. 3 is y = 40x (x is the chlorine concentration based on the JIS method, and y is the fluorescent X-ray intensity). Therefore, when x and y are interchanged to obtain an equation for calculating the chlorine concentration corresponding to the fluorescent X-ray intensity, an equation y = (1/40) x = 0.025x is obtained. In this equation, x is the fluorescent X-ray intensity, and y is the chlorine concentration.

従って、本実施形態のステップS306における「検量線を用いて塩素濃度を算出」とは、検量線の式(y=40x)を変換して得られる式を用い、測定された蛍光X線強度(x)から、塩素濃度(y)を算出することである。これにより、測定された蛍光X線強度及び検量線を用いて、濃度未知のRPF中の塩素濃度が測定できる。   Therefore, “calculating the chlorine concentration using the calibration curve” in step S306 of the present embodiment means that the fluorescence X-ray intensity measured using the formula obtained by converting the calibration curve formula (y = 40x) ( x) is to calculate the chlorine concentration (y). Thereby, the chlorine concentration in RPF whose concentration is unknown can be measured using the measured fluorescent X-ray intensity and calibration curve.

なお、本ステップでは、検量線を用いてRPF中の塩素濃度を特定(決定)しているため、厳密な意味で、RPF中の塩素濃度を直接測定しているわけではない。しかしながら、本明細書においては、このような検量線を用いてRPF中の塩素濃度を特定することを広義の「測定」と考え、便宜上、そのように呼称するものとする。   In this step, since the chlorine concentration in the RPF is specified (determined) using the calibration curve, the chlorine concentration in the RPF is not directly measured in a strict sense. However, in the present specification, specifying the chlorine concentration in the RPF using such a calibration curve is regarded as “measurement” in a broad sense, and is referred to as such for convenience.

次に、実施例を挙げて、本実施形態をより具体的に説明する。   Next, the present embodiment will be described more specifically with reference to examples.

<検量線の作成>
まず、JIS法により測定した塩素濃度既知の19検体のRPFを用いて、検量線を作成した。
はじめに、定温乾燥機(ヤマト科学社製 DV600)を用いて、105℃で1時間乾燥させることで、それぞれのRPFを完全に乾燥させた(絶乾)。
<Creation of calibration curve>
First, a calibration curve was prepared using 19 specimens of RPF with known chlorine concentrations measured by the JIS method.
First, each RPF was completely dried (absolutely dried) by drying at 105 ° C. for 1 hour using a constant temperature dryer (DV600 manufactured by Yamato Scientific Co., Ltd.).

次いで、乾燥後の各RPFを粉砕用カッタ、パイプカッタ(MERRY社製 PIP−19)及びミキサ(大阪ケミカル社製 WDL−1)を用いて予備粉砕した後、孔径2mmの篩がセットされたウィレーミル(吉田製作所社製 1029型)を用いて各RPFを粉砕し、直径2mm以下の粒状の粉砕物を得た。なお、装置に供するRPFは、それぞれ約100gずつとした。   Next, each dried RPF was preliminarily pulverized using a pulverizing cutter, a pipe cutter (PRY-19 manufactured by MERRY) and a mixer (WDL-1 manufactured by Osaka Chemical Co.), and then a Willet mill on which a sieve having a pore diameter of 2 mm was set. Each RPF was pulverized using (Yoshida Seisakusho 1029 type) to obtain a granular pulverized product having a diameter of 2 mm or less. The RPF provided to the apparatus was about 100 g each.

最後に、各RPFの粉砕物のうちの約2gを金型成形器(φ30mm、三庄インダストー社製 N1426−00)にそれぞれ充填した。次いで、手動の油圧式加圧成形機(加圧装置;島津製作所社製 SSP−10A)によって、RPF粉砕物に対して、10000kg(10t)の力を付与し、加圧成型を行った。そして、金型からRPFの板を取り出し、両面が平滑であることを確認し、19枚のRPF標準板を作製した。   Finally, about 2 g of the pulverized product of each RPF was filled in a mold molding machine (φ30 mm, N1426-00, manufactured by Sansho Industries Co., Ltd.). Next, a pressure of 10,000 kg (10 t) was applied to the pulverized RPF by a manual hydraulic pressure molding machine (pressure device; SSP-10A manufactured by Shimadzu Corporation) to perform pressure molding. Then, the RPF plate was taken out from the mold, and it was confirmed that both surfaces were smooth, and 19 RPF standard plates were produced.

19枚のRPF標準板について、蛍光X線分析装置(オックスフォード社製 Twin−X)を用いて蛍光X線強度(kcps)を測定し、グラフを作成した。作成されたグラフを図5に示す。そして、19検体のプロットについて、最小二乗法を用いて近似直線を得、得られた近似直線を検量線とした。この検量線(近似直線)の式はy=44.001x(xは既知濃度、yは蛍光X線強度)であり、相関係数は0.9939であった。   About 19 RPF standard plates, the fluorescence X-ray intensity (kcps) was measured using the fluorescence X-ray analyzer (Twin-X by Oxford), and the graph was created. The created graph is shown in FIG. And about the plot of 19 samples, the approximate straight line was obtained using the least squares method, and the obtained approximate straight line was used as the calibration curve. The equation of this calibration curve (approximate straight line) was y = 44.001x (x is the known concentration, y is the fluorescent X-ray intensity), and the correlation coefficient was 0.9939.

<比較的少数の検体についての濃度測定(実施例1及び実施例2)>
前記の19枚のRPF標準板をRPFサンプル板とし、前記の蛍光X線分析装置を用いて、蛍光X線強度を測定した。そして、測定された蛍光X線強度から、作成された検量線に基づき、塩素濃度を求めた。そして、測定された塩素濃度(蛍光X線法に基づく塩素濃度)を縦軸(y軸)とし、対応する既知濃度(JIS法に基づく塩素濃度)を横軸(x軸)として、グラフにプロットした(実施例1)。
<Concentration measurement for a relatively small number of samples (Example 1 and Example 2)>
The 19 RPF standard plates were used as RPF sample plates, and the X-ray fluorescence intensity was measured using the X-ray fluorescence analyzer. And the chlorine concentration was calculated | required based on the created calibration curve from the measured fluorescence X-ray intensity. The measured chlorine concentration (chlorine concentration based on fluorescent X-ray method) is plotted on the graph with the vertical axis (y-axis) and the corresponding known concentration (chlorine concentration based on JIS method) on the horizontal axis (x-axis). (Example 1).

また、用いた蛍光X線分析装置をSII ナノテクノロジー社製 SEA1200VXに代えたこと以外は実施例1と同様にして、グラフにプロットした(実施例2)。   Further, a graph was plotted in the same manner as in Example 1 except that the used X-ray fluorescence analyzer was replaced with SEA1200VX manufactured by SII Nanotechnology (Example 2).

以上の実施例1及び実施例2の結果を図6に示す。図6において、一点鎖線は傾きが1の直線であり、グラフの形状がこの直線に近いほど、本実施形態の固形燃料中の塩素濃度の測定方法により測定された塩素濃度は、JIS法に基づく塩素濃度に近く、良好な制度であることを示している。   The results of Example 1 and Example 2 are shown in FIG. In FIG. 6, the alternate long and short dash line is a straight line with a slope of 1, and the closer the shape of the graph is to this straight line, the more the chlorine concentration measured by the method for measuring the chlorine concentration in the solid fuel of this embodiment is based on the JIS method. It is close to the chlorine concentration, indicating a good system.

実施例1の近似直線(太実線)の傾きは1.0285であり、相関係数は0.8375であった。また、実施例2の近似直線(破線)の傾きは0.9045であり、相関係数は0.8906であった。グラフの形状は、実施例1及び実施例2のいずれも、傾きが1の一点鎖線の直線に近い形状になっていた。このように、蛍光X線測定装置の種類によらず、精度よく、ばらつきの少ない(近似直線の傾きが1に近い)結果が示された。この結果は、蛍光X線分析装置に用いられる標準板を測定対象試料と同じRPFにより構成することで、マトリックスの相異による測定への影響を低減させることができたためと考えられる。   The slope of the approximate straight line (thick solid line) in Example 1 was 1.0285, and the correlation coefficient was 0.8375. The slope of the approximate straight line (broken line) in Example 2 was 0.9045, and the correlation coefficient was 0.8906. As for the shape of the graph, in both Example 1 and Example 2, the inclination was close to the one-dot chain line straight line. Thus, regardless of the type of the fluorescent X-ray measurement apparatus, a result with high accuracy and little variation (the inclination of the approximate straight line is close to 1) was shown. This result is considered to be because the influence on the measurement due to the difference in the matrix could be reduced by configuring the standard plate used in the X-ray fluorescence analyzer with the same RPF as the sample to be measured.

また、相関係数は、実施例1及び実施例2のいずれにおいても1に近く、ばらつきが少しあるものの相関が良好な結果が示された。このことは、測定条件によらず、精度のよい良好な結果が得られることを示している。特に、蛍光X線分析装置は、測定機構や測定精度の高さ等の違いにより、種々販売されている。そのため、実施例1及び実施例2の結果から、どのような測定装置であっても、JIS法に準ずるほどに精度よく、簡便かつ迅速に、RPF等の固形燃料中の塩素濃度を測定することができることがわかった。   Further, the correlation coefficient was close to 1 in both Example 1 and Example 2, and although there was a slight variation, a good correlation was shown. This indicates that good results with good accuracy can be obtained regardless of the measurement conditions. In particular, various fluorescent X-ray analyzers are sold depending on differences in measurement mechanism and measurement accuracy. Therefore, from the results of Example 1 and Example 2, regardless of the measuring device, the chlorine concentration in solid fuel such as RPF can be measured with high accuracy, simply and quickly enough to comply with the JIS method. I found out that

<本実施形態の検量線を用いない従来の測定(比較例1及び比較例2)>
JIS法により測定した塩素濃度既知の6検体のRPFを用いて、以下の比較例1及び比較例2の評価を行った。
<Conventional measurement not using the calibration curve of the present embodiment (Comparative Example 1 and Comparative Example 2)>
The following Comparative Example 1 and Comparative Example 2 were evaluated using 6 RPF samples with known chlorine concentrations measured by the JIS method.

6検体のRPFについて、乾燥を行わないこと、及び、粉砕時に孔径5mmの篩がセットされたウィレーミルを用いた(即ち、粒状RPFの粒径が5mm以下)こと以外は実施例1及び実施例2と同様にしてRPFサンプル板を作製した。   Example 1 and Example 2 except that 6 specimens of RPF were not dried and a Willet mill in which a sieve having a pore size of 5 mm was set at the time of pulverization (that is, the particle size of granular RPF was 5 mm or less). An RPF sample plate was produced in the same manner as described above.

また、実施例1及び実施例2のRPFサンプル板に相当する標準板として各装置メーカ推奨の標準試料を用い、検量線を作成した。なお、比較例1での標準試料は塩化ナトリウム水溶液、比較例2での標準試料はポリエチレン板である。   In addition, a standard curve recommended by each device manufacturer was used as a standard plate corresponding to the RPF sample plate of Example 1 and Example 2, and a calibration curve was created. The standard sample in Comparative Example 1 is a sodium chloride aqueous solution, and the standard sample in Comparative Example 2 is a polyethylene plate.

作製した6枚のRPFサンプル板について実施例1及び実施例2と同様にして蛍光X線強度を測定し、前記の各標準試料から作成される検量線により、蛍光X線分析法に基づく塩素濃度を測定した。その結果を、図6と同様にして、図7に示す。   The six RPF sample plates thus prepared were measured for fluorescent X-ray intensity in the same manner as in Example 1 and Example 2, and the chlorine concentration based on the fluorescent X-ray analysis method was determined using a calibration curve prepared from each of the standard samples. Was measured. The result is shown in FIG. 7 in the same manner as FIG.

比較例1の近似直線(太実線)の傾きは1.2909であり、相関係数は0.5591であった。また、比較例2の近似直線(破線)の傾きは0.3953であり、相関係数は0.8528であった。グラフの形状は、比較例1及び比較例2のいずれも、傾きが1の一点鎖線の直線とは大きく異なっており、蛍光X線法に基づいて測定された塩素濃度は、JIS法に基づいて測定される塩素濃度と大きく異なっていることがわかった。従って、比較例1及び比較例2の方法では、精度の低い結果しか得られないことがわかった。   The slope of the approximate straight line (thick solid line) in Comparative Example 1 was 1.2909, and the correlation coefficient was 0.5591. The slope of the approximate straight line (broken line) in Comparative Example 2 was 0.3953, and the correlation coefficient was 0.8528. The shape of the graph is greatly different from the one-dot chain line of slope 1 in both Comparative Example 1 and Comparative Example 2, and the chlorine concentration measured based on the fluorescent X-ray method is based on JIS method. It was found that the measured chlorine concentration was very different. Therefore, it was found that the method of Comparative Example 1 and Comparative Example 2 can only obtain results with low accuracy.

また、相関係数は、特に比較例1で小さく、ばらつきが大きいことが示された。このことは、測定条件によってばらつきが大きく、蛍光X線法に基づいて測定される塩素濃度の信頼性が低いことを示している。   In addition, the correlation coefficient was particularly small in Comparative Example 1, indicating that the variation was large. This indicates that the variation is large depending on the measurement conditions, and the reliability of the chlorine concentration measured based on the fluorescent X-ray method is low.

<検体数の増減による精度の変化(実施例3)>
JIS法により測定した塩素濃度既知のRPFを100検体とし、成型時に付与する力を10000kg(10t)、用いた蛍光X線分析装置をスペクトリス社製 波長分散型蛍光X線PW2404としたこと以外は実施例1と同様にして、図6と同様のグラフを描いた。
<Change in accuracy due to increase / decrease in number of samples (Example 3)>
Implemented except that 100 samples of RPF with a known chlorine concentration measured by the JIS method were used, the force applied at the time of molding was 10,000 kg (10 t), and the fluorescent X-ray analyzer used was a wavelength-dispersed fluorescent X-ray PW2404 manufactured by Spectris Similar to Example 1, a graph similar to FIG. 6 was drawn.

その結果、図8に示すように、得られた近似直線の傾きは1.0016、相関係数は0.9910であった。このことから、検体数が多ければ多いほど、より高い精度で、ばらつきの少ない結果が得られると考えられる。   As a result, as shown in FIG. 8, the slope of the obtained approximate straight line was 1.0016, and the correlation coefficient was 0.9910. From this, it is considered that the larger the number of specimens, the higher the accuracy and the less variation.

<RPFサンプルに含まれる水分量による蛍光X線強度の変化>
水分含有量が0質量%(絶乾)のRPFと、水分含有量5質量%のRPFと、水分含有量10質量%のRPFとを用い、それぞれRPF標準板を作製した。そして、作製された3枚のRPF標準板について、実施例3で用いた蛍光X線分析装置を用いて、蛍光X線強度を測定した。その結果を以下の表1に示す。
<Change in fluorescence X-ray intensity due to the amount of water contained in the RPF sample>
RPF standard plates were prepared using RPF having a moisture content of 0% by mass (absolutely dry), RPF having a moisture content of 5% by mass, and RPF having a moisture content of 10% by mass. And about the produced three RPF standard plates, the fluorescent X ray intensity was measured using the fluorescent X ray analyzer used in Example 3. FIG. The results are shown in Table 1 below.

Figure 2014206515
※ 表1中、括弧内の数字は、「0質量%」の結果からの減少率である。
Figure 2014206515
* In Table 1, the number in parentheses is the rate of decrease from the result of “0% by mass”.

表1に示すように、水分量が多くなればなるほど、蛍光X線の強度が低下した。特に、水分が10質量%の割合で含まれているものにおいては、最大約30%も強度が減少した。蛍光X線の強度が低下すると、測定精度の低下を招く。従って、RPFサンプルに含まれる水分量はできるだけ少ないことが好ましいことがわかった。   As shown in Table 1, the intensity of fluorescent X-rays decreased as the amount of water increased. In particular, when the water content was 10% by mass, the strength decreased by up to about 30%. When the intensity of the fluorescent X-ray is lowered, the measurement accuracy is lowered. Therefore, it was found that the amount of water contained in the RPF sample is preferably as small as possible.

<粉砕の程度及び成型の方法の相異による蛍光X線強度の変化>
粉砕の程度や成型の方法が、蛍光X線強度にどのように影響するのかを調べるために、以下の評価を行った。
<Changes in fluorescent X-ray intensity due to differences in the degree of pulverization and molding method>
In order to examine how the degree of pulverization and the molding method affect the fluorescent X-ray intensity, the following evaluation was performed.

粉砕の程度を、直径10mm以上、直径5mm以下、及び、直径2mm以下の3通りとして、RPF標準板を作製した。なお、直径10mm以上の粉砕は、ウィレーミル等を用いた粉砕ではなく、RPFを単に輪切りにして得たものであり、粒状のRPFとはいえないものである。また、成型は、各粉砕の程度において、それぞれ、人間の指押しによる成型、手動プレス機(加圧装置)を用いた成型(付与する力の大きさは10000kg)、及び自動プレス機(加圧装置)を用いた成型(付与する力の大きさは20000kg)の3通りとした。そして、9枚のRPF標準板について、実施例3と同様の蛍光X線分析装置を用いて、蛍光X線強度を測定した。その結果を表2に示す。   RPF standard plates were prepared with three pulverization levels of 10 mm or more, 5 mm or less, and 2 mm or less. Note that the pulverization with a diameter of 10 mm or more is not pulverization using a Willet mill or the like, but is obtained by simply cutting the RPF into a round shape and cannot be said to be granular RPF. In addition, the molding is performed by human finger pressing, molding using a manual press machine (pressure device) (the magnitude of the applied force is 10,000 kg), and automatic press machine (pressurization) at each degree of crushing. Three types of molding using a device (the magnitude of the applied force is 20000 kg). Then, for the nine RPF standard plates, the fluorescent X-ray intensity was measured using the same fluorescent X-ray analyzer as in Example 3. The results are shown in Table 2.

Figure 2014206515
※ 表2中、括弧内の数字は、「直径2mm以下」の結果からの減少率である。
また、評価項目において、「○」は強度十分、「△」は強度がやや弱い、「×」は強度が弱いことを示している。
Figure 2014206515
* In Table 2, the number in parentheses is the rate of decrease from the result of “diameter 2 mm or less”.
In the evaluation items, “◯” indicates that the strength is sufficient, “Δ” indicates that the strength is slightly weak, and “×” indicates that the strength is weak.

表2に示すように、RPFを単に輪切りにしただけの「直径10mm以上」においては、指押し成型又は加圧装置による加圧成型のいずれにおいても、傾向X線の強度が弱かった。また、直径5mm以下になるまで、及び直径2mm以下になるまで粉砕を行った場合、指押し程度の大きさの力での成型では、蛍光X線の強度は弱かった。従って、これらの場合には、良好な精度での塩素濃度の測定が行えない可能性がある。   As shown in Table 2, in the “diameter of 10 mm or more” in which the RPF was simply cut into round pieces, the intensity of the tendency X-rays was weak in both the finger press molding and the pressure molding by the pressure device. Moreover, when it grind | pulverized until it became diameter 5mm or less and diameter 2mm or less, the intensity | strength of the fluorescent X-ray was weak in the shaping | molding by the magnitude | size of the magnitude | size of a finger press. Therefore, in these cases, there is a possibility that the chlorine concentration cannot be measured with good accuracy.

一方で、直径5mm以下の粒状になるまで、及び直径2mm以下の粒状になるまで粉砕を行った場合、自動プレス機及び手動プレス機のいずれを用いた場合でも、比較的良好な蛍光X線強度が得られた。従って、粉砕を行って、自動プレス機や手動プレス機等の加圧装置によって加圧成型を行えば、良好な精度で塩素濃度を測定することができることがわかった。特に、直径2mm以下の粒状になるまで粉砕を行うことで、より良好な精度での測定を行うことができることがわかった。   On the other hand, when pulverized until it becomes a granule with a diameter of 5 mm or less and until it becomes a granule with a diameter of 2 mm or less, even when using either an automatic press or a manual press, a relatively good fluorescent X-ray intensity was gotten. Therefore, it was found that the chlorine concentration can be measured with good accuracy if pulverization is performed and pressure molding is performed by a pressure device such as an automatic press or a manual press. In particular, it was found that measurement with better accuracy can be performed by pulverization until the particle has a diameter of 2 mm or less.

以上、説明したように、本実施形態によれば、各測定者が標準試料(RPF標準板等)を作製して検量線を作成すれば、その後は、標準試料の作製方法と同様の方法で測定対象試料(RPFサンプル板等)を作製して蛍光X線強度を測定することで、当該測定対象試料中の塩素濃度を簡便かつ迅速に、精度よく測定することができる。特に、検量線作成時に用いた蛍光X線分析条件と同じ測定条件で測定対象試料についての蛍光X線強度分析を行うことで、測定者によるばらつきを抑制することができる。   As described above, according to the present embodiment, if each measurer prepares a standard sample (RPF standard plate, etc.) and creates a calibration curve, thereafter, the method is the same as the standard sample preparation method. By preparing a measurement target sample (RPF sample plate or the like) and measuring the fluorescent X-ray intensity, the chlorine concentration in the measurement target sample can be measured easily, quickly and accurately. In particular, by performing fluorescent X-ray intensity analysis on the measurement target sample under the same measurement conditions as the fluorescent X-ray analysis conditions used at the time of creating the calibration curve, it is possible to suppress variation by the measurer.

Claims (7)

固形燃料中の塩素濃度の測定方法であって、
塩素濃度未知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して測定対象試料を作製する測定対象試料作製ステップと、
作製された前記測定対象試料に対して蛍光X線強度測定を行って得られた蛍光X線強度と、蛍光X線強度と固形燃料中の塩素濃度とが対応付けられた検量線と、に基づいて前記測定対象試料中の塩素濃度を測定する塩素濃度測定ステップと、を含むことを特徴とする、固形燃料中の塩素濃度の測定方法。
A method for measuring chlorine concentration in a solid fuel,
A measurement target sample preparation step of drying and pulverizing a solid fuel of unknown chlorine concentration, and pressurizing and molding the obtained granular pulverized product with a pressure device;
Based on the fluorescent X-ray intensity obtained by performing fluorescent X-ray intensity measurement on the prepared sample to be measured, and a calibration curve in which the fluorescent X-ray intensity and the chlorine concentration in the solid fuel are associated with each other. And a chlorine concentration measuring step for measuring the chlorine concentration in the sample to be measured.
塩素濃度既知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して標準試料を作製する標準試料作製ステップと、
作製された前記標準試料に対し、前記蛍光X線強度測定での測定条件と同条件で蛍光X線強度測定を行って検量線を作成する検量線作成ステップと、を含み、
前記検量線作成ステップにおいて作成された検量線を用いて、前記塩素濃度測定ステップが行われることを特徴とする、請求項1に記載の固形燃料中の塩素濃度の測定方法。
A standard sample preparation step of drying and pulverizing a solid fuel having a known chlorine concentration, and pressure-molding the obtained granular pulverized product with a pressurizing device;
A calibration curve creating step of creating a calibration curve by performing fluorescence X-ray intensity measurement under the same conditions as the measurement conditions in the fluorescence X-ray intensity measurement for the prepared standard sample,
The method for measuring a chlorine concentration in a solid fuel according to claim 1, wherein the chlorine concentration measuring step is performed using the calibration curve created in the calibration curve creating step.
前記固形燃料は廃棄物固形化燃料であることを特徴とする、請求項1又は2に記載の固形燃料中の塩素濃度の測定方法。   The said solid fuel is a waste solidification fuel, The measuring method of the chlorine concentration in the solid fuel of Claim 1 or 2 characterized by the above-mentioned. 前記測定対象試料作製ステップ及び前記標準試料作製ステップのうちの少なくとも一方において、前記固形燃料が直径10mm未満になるまで粉砕されることを特徴とする、請求項1〜3の何れか1項に記載の固形燃料中の塩素濃度の測定方法。   4. The method according to claim 1, wherein in at least one of the measurement target sample preparation step and the standard sample preparation step, the solid fuel is pulverized until the diameter becomes less than 10 mm. Of measuring chlorine concentration in solid fuel. 前記測定対象試料作製ステップ及び前記標準試料作製ステップのうちの少なくとも一方において、乾燥及び粉砕された前記固形燃料を金型に充填して、前記金型に充填された前記固形燃料の全体に対して、前記加圧装置を用いて1000kg以上の大きさの力を付与して加圧成型を行うことを特徴とする、請求項1〜4の何れか1項に記載の固形燃料中の塩素濃度の測定方法。   In at least one of the measurement sample preparation step and the standard sample preparation step, the dried and pulverized solid fuel is filled in a mold, and the whole solid fuel filled in the mold is filled The pressure of chlorine concentration in the solid fuel according to any one of claims 1 to 4, wherein pressure molding is performed by applying a force of 1000 kg or more using the pressurizer. Measuring method. 塩素濃度既知の固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して標準試料を作製する標準試料作製ステップと、
作製された前記標準試料に対して蛍光X線強度測定を行って、蛍光X線強度と固形燃料中の塩素濃度とが対応付けられた検量線を作成する検量線作成ステップと、を含むことを特徴とする、検量線の作成方法。
A standard sample preparation step of drying and pulverizing a solid fuel having a known chlorine concentration, and pressure-molding the obtained granular pulverized product with a pressurizing device;
A calibration curve creating step of performing a fluorescence X-ray intensity measurement on the prepared standard sample and creating a calibration curve in which the fluorescence X-ray intensity and the chlorine concentration in the solid fuel are associated with each other. A characteristic calibration curve creation method.
固形燃料を乾燥及び粉砕し、得られた粒状の粉砕物を加圧装置によって加圧成型して蛍光X線強度測定用試料を作製することを特徴とする、蛍光X線強度測定用試料の製造方法。   Production of a fluorescent X-ray intensity measurement sample characterized by drying and pulverizing a solid fuel, and pressure-molding the obtained granular pulverized product with a pressure device to produce a fluorescent X-ray intensity measurement sample Method.
JP2013085489A 2013-04-16 2013-04-16 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample Pending JP2014206515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013085489A JP2014206515A (en) 2013-04-16 2013-04-16 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013085489A JP2014206515A (en) 2013-04-16 2013-04-16 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017175814A Division JP6376259B2 (en) 2017-09-13 2017-09-13 Method for measuring chlorine concentration in solid waste fuel

Publications (1)

Publication Number Publication Date
JP2014206515A true JP2014206515A (en) 2014-10-30

Family

ID=52120148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013085489A Pending JP2014206515A (en) 2013-04-16 2013-04-16 Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample

Country Status (1)

Country Link
JP (1) JP2014206515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103315A (en) * 2019-12-06 2020-05-05 北京清析技术研究院 XRF-based method for rapidly detecting concentration of chloride ions in concrete

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105888A (en) * 1975-03-14 1976-09-20 Sumitomo Metal Ind KEIKOETSUKUSUSENBUNSEKINYORU SEKITANHAIBUNSUITEIHOHO
JPS61178651A (en) * 1985-02-05 1986-08-11 Daido Steel Co Ltd Method for solidifying powdery specimen for fluorescent x-ray analysis
JPH01274046A (en) * 1988-04-27 1989-11-01 Kawasaki Steel Corp Solidification of powder sample for instrumental analysis
JP2012021797A (en) * 2010-07-12 2012-02-02 Mie Chuo Kaihatsu Kk Method for measuring chlorine content in solid fuel
JP2012255689A (en) * 2011-06-08 2012-12-27 Nippon Steel & Sumitomo Metal Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51105888A (en) * 1975-03-14 1976-09-20 Sumitomo Metal Ind KEIKOETSUKUSUSENBUNSEKINYORU SEKITANHAIBUNSUITEIHOHO
JPS61178651A (en) * 1985-02-05 1986-08-11 Daido Steel Co Ltd Method for solidifying powdery specimen for fluorescent x-ray analysis
JPH01274046A (en) * 1988-04-27 1989-11-01 Kawasaki Steel Corp Solidification of powder sample for instrumental analysis
JP2012021797A (en) * 2010-07-12 2012-02-02 Mie Chuo Kaihatsu Kk Method for measuring chlorine content in solid fuel
JP2012255689A (en) * 2011-06-08 2012-12-27 Nippon Steel & Sumitomo Metal Measuring method of lead content in inorganic oxide-based material, separation method of inorganic oxide-based material, and manufacturing method of inorganic oxide-based material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111103315A (en) * 2019-12-06 2020-05-05 北京清析技术研究院 XRF-based method for rapidly detecting concentration of chloride ions in concrete

Similar Documents

Publication Publication Date Title
Ueki et al. Effect of woody biomass addition on coke properties
Craven et al. Hydrophobic coatings for moisture stable wood pellets
de Oliveira et al. Cellulose microfiber functionalized with N, N′-bis (2-aminoethyl)-1, 2-ethanediamine as a solid sorbent for the fast preconcentration of Cd (II) in flow system analysis
Cutz et al. Microstructural degradation during the storage of biomass pellets
JP6376259B2 (en) Method for measuring chlorine concentration in solid waste fuel
US11852570B2 (en) Method for preparing a sample for laser induced breakdown spectroscopy
JP2014206515A (en) Method for measuring chlorine concentration in solid fuel, method for preparing calibration curve, and method for manufacturing fluorescent x-ray intensity measuring sample
Vandličková et al. Evaluation of African padauk (Pterocarpus soyauxii) explosion dust
Lorenc-Grabowska et al. High adsorption capacity carbons from biomass and synthetic polymers for the removal of organic compounds from water
Cai et al. Determination of 11 photoinitiators and their migration into tea and milk by gas chromatography-tandem mass spectrometry (MSPD-GC-MS/MS)
RU2015108746A (en) METHODS OF SORTING MATERIALS
Kasso et al. Volumes of worth—delimiting the sample size for radiocarbon dating of parchment
KR101305425B1 (en) Method for analyzing of fluorine in soil using x-ray fluorescence technique and xrf sample used for the same
dos Santos Moreau et al. Direct analysis of tree rings using laser ablation-ICP-MS and quantitative evaluation of Zn and Cu using filter paper as a solid support for calibration
JP2012021797A (en) Method for measuring chlorine content in solid fuel
JP2011021928A (en) Method for selecting halogen-based flame retardant-containing resin for mold forming
Bruffey et al. Initial Effects of NOx on Idodine and Methyl Iodine Loading of AgZ and Aerogels
CN106404513A (en) Method for treating sample by using microwave digestion technology, and detection method using the same
CN107957406A (en) A kind of measuring method of extinction coefficient
Jubin et al. Expanded analysis of hot isostatic pressed iodine-loaded silver-exchanged mordenite
Yang et al. Comparative study of textural characteristics on methane adsorption for carbon spheres produced by CO2 activation
Gazulla et al. A new methodology for the determination of silicon in plants by wavelength dispersive X‐ray fluorescence
Pickering et al. In-Situ apatite laser ablation U-Th-Sm/He dating, methods and challenges
CN204286384U (en) A kind of thickness measurement system
Fang et al. Principle, Method Development and Application of Radiocarbon (14C)-based Source Apportionment of Carbonaceous Aerosols: A Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170913

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170922

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171027