JP2017116267A - Prediction method of methylene blue adsorption amount of fly ash, and cement composition containing fly ash - Google Patents

Prediction method of methylene blue adsorption amount of fly ash, and cement composition containing fly ash Download PDF

Info

Publication number
JP2017116267A
JP2017116267A JP2015248452A JP2015248452A JP2017116267A JP 2017116267 A JP2017116267 A JP 2017116267A JP 2015248452 A JP2015248452 A JP 2015248452A JP 2015248452 A JP2015248452 A JP 2015248452A JP 2017116267 A JP2017116267 A JP 2017116267A
Authority
JP
Japan
Prior art keywords
fly ash
methylene blue
amount
wavelength
adsorption amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015248452A
Other languages
Japanese (ja)
Other versions
JP6630145B2 (en
Inventor
裕介 桐野
Yusuke Kirino
裕介 桐野
大亮 黒川
Daisuke Kurokawa
大亮 黒川
宙 平尾
Hiroshi Hirao
宙 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2015248452A priority Critical patent/JP6630145B2/en
Publication of JP2017116267A publication Critical patent/JP2017116267A/en
Application granted granted Critical
Publication of JP6630145B2 publication Critical patent/JP6630145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method or the like capable of predicting a methylene blue adsorption amount of fly ash in a short time using a simple device.SOLUTION: In a prediction method of a methylene blue adsorption amount of fly ash, an adsorption amount of methylene blue of fly ash is predicted on the basis of an Rs value calculated using equation (1): Rs=R/R... (1). In the equation (1), Rshows a diffuse reflectance obtained by irradiating the fly ash with light of one wavelength optionally selected from the range of 380-410 nm. Rshows a diffuse reflectance obtained by irradiating the fly ash with light of a wavelength of 490 nm.SELECTED DRAWING: Figure 5

Description

本発明は、フライアッシュによるメチレンブルーの吸着量を、短時間で予測する方法等に関する。   The present invention relates to a method for predicting the amount of methylene blue adsorbed by fly ash in a short time.

フライアッシュセメントは、火力発電所などの微粉炭ボイラーの燃焼排ガス中から回収された、微細な石炭灰であるフライアッシュを混合材として含むセメントである。フライアッシュは、非晶質の二酸化けい素を主成分とする球状の微粒子であり、コンクリートのワーカビリティーを改善するとともに、セメントの水和によって生じた水酸化カルシウムと反応(ポゾラン反応)して緻密な硬化体組織を形成する。
このように、高いポゾラン活性を有するフライアッシュは、コンクリート材料として非常に有用であるため、JIS規格化され(JIS A 6201「コンクリート用フライアッシュ」)、また、フライアッシュが特定量使用されたフライアッシュセメント等はグリーン購入法の特定調達品目に指定されている。
The fly ash cement is a cement containing fly ash, which is fine coal ash, collected from the combustion exhaust gas of a pulverized coal boiler such as a thermal power plant as a mixture. Fly ash is a spherical fine particle mainly composed of amorphous silicon dioxide. It improves the workability of concrete and reacts with calcium hydroxide generated by hydration of cement (pozzolanic reaction) and is dense. A hardened body structure is formed.
As described above, fly ash having high pozzolanic activity is very useful as a concrete material. Therefore, the fly ash has been standardized by JIS (JIS A 6201 “Fly Ash for Concrete”), and a fly ash with a specific amount of fly ash is used. Ash cement is designated as a specific procurement item under the Green Purchasing Law.

しかし、一般社団法人石炭エネルギーセンターの石炭灰全国実態調査報告書によれば、平成25年度に国内で発生した石炭灰の内、セメント混合材やコンクリート混和材(フライアッシュ)として有効利用されている量は約18万トンで、これは石炭灰発生量全体の1.4%に過ぎない。この理由の1つに、フライアッシュ中に残存する未燃炭素がコンクリート中のAE剤(空気連行剤)を吸着して空気連行性を阻害し、コンクリートのフレッシュ性状を悪化させることが挙げられる。   However, according to the coal ash national fact-finding report of the Japan Coal Energy Center, it is effectively used as cement admixture or concrete admixture (fly ash) among the coal ash generated in Japan in FY2013. The amount is about 180,000 tons, which is only 1.4% of the total amount of coal ash generated. One reason for this is that the unburned carbon remaining in the fly ash adsorbs the AE agent (air entraining agent) in the concrete to inhibit air entrainment and deteriorate the fresh properties of the concrete.

JIS A 6201「コンクリート用フライアッシュ」では、未燃炭素量の指標として、強熱減量(LOI)が定められている。しかし、フライアッシュの強熱減量は、フライアッシュに含まれる水和物からの脱水や、炭酸塩が分解して生じる炭酸ガス等の揮発による減量も含まれるため、強熱減量と未燃炭素量は同じではない。
フライアッシュ中の未燃炭素は、AE剤と同様に、メチレンブルー(MB)も吸着することが知られている。染料であるメチレンブルーの吸着量は、吸着前後の溶液中のメチレンブルーの濃度(色調)の変化から容易に定量できるため、フライアッシュによるメチレンブルーの吸着量は、強熱減量に代わる、フライアッシュの未燃炭素の含有量を示す指標になる。
公益社団法人土木学会の「コンクリートライブラリー94 フライアッシュを用いたコンクリートの施工指針(案)(1999)」によると、フレッシュコンクリート中の空気量の管理において、AE剤の種類や使用量の調整が不要とされるメチレンブルー吸着量の上限値は、0.4mg/gである。
メチレンブルー吸着量の測定方法は、一般社団法人セメント協会の標準試験方法(JCAS I−61:2008)および電源開発法(電発法)が広く用いられており、両方法の測定値の間には大きな違いはない。ただし、これらの試験方法は、メチレンブルー吸着量の測定に約1時間要するため、より短時間に結果が得られ、且つ、測定者間でバラツキが生じない方法が求められている。
この課題に対し、特許文献1と特許文献2ではメチレンブルー吸着量の自動測定装置が提案されている。しかし、両装置ともに複雑な機構を有する専用装置であり、汎用的な測定装置とは言い難い。
In JIS A 6201 “Fly Ash for Concrete”, loss on ignition (LOI) is defined as an index of the amount of unburned carbon. However, the loss on ignition of fly ash includes dehydration from the hydrates contained in fly ash and the loss due to volatilization of carbon dioxide gas generated by decomposition of carbonates. Are not the same.
It is known that unburned carbon in fly ash adsorbs methylene blue (MB) as well as the AE agent. The amount of methylene blue adsorbed as a dye can be easily determined from the change in the concentration (color tone) of methylene blue in the solution before and after the adsorption, so the amount of methylene blue adsorbed by fly ash is an unburned fly ash instead of loss of ignition It becomes an index indicating the carbon content.
According to the “Concrete Library 94 Guidelines for Construction of Concrete Using Fly Ash (Draft)” (1999) of the Japan Society of Civil Engineers, the type and amount of AE agent can be adjusted in the management of the amount of air in fresh concrete. The upper limit of the unnecessary amount of methylene blue adsorbed is 0.4 mg / g.
As a method for measuring the amount of methylene blue adsorbed, the standard test method (JCAS I-61: 2008) and the power source development method (electric generation method) of the Japan Cement Association are widely used. There is no big difference. However, since these test methods require about 1 hour to measure the amount of methylene blue adsorbed, there is a demand for a method in which results can be obtained in a shorter time and variations do not occur between measurers.
In response to this problem, Patent Document 1 and Patent Document 2 propose an automatic measuring device for the amount of adsorbed methylene blue. However, both devices are dedicated devices having a complicated mechanism, and are difficult to say as general-purpose measuring devices.

特開平11−94745号公報Japanese Patent Laid-Open No. 11-94745 特開2002−228588号公報JP 2002-228588 A

そこで、本発明は、フライアッシュのメチレンブルー吸着量を、簡易な装置を用いて短時間で予測できる方法等を提供することを目的とする。   Then, an object of this invention is to provide the method etc. which can estimate the methylene blue adsorption amount of fly ash in a short time using a simple apparatus.

本発明者は、簡易な装置を用いたメチレンブルー吸着量の予測方法を鋭意検討した結果、特定の範囲の波長の光をフライアッシュに照射して得られる拡散反射率と、特定の1点の波長の光をフライアッシュに照射して得られる拡散反射率の比が、フライアッシュのメチレンブルー吸着量を予測するための指標となることを見出し、本発明を完成させた。
すなわち、本発明は下記の構成を有するフライアッシュのメチレンブルー吸着量予測方法等である。
As a result of intensive studies on a method for predicting the amount of methylene blue adsorbed using a simple device, the present inventor has obtained a diffuse reflectance obtained by irradiating fly ash with light in a specific range of wavelengths and a specific single wavelength. The ratio of diffuse reflectance obtained by irradiating the fly ash with the above light was found to be an index for predicting the methylene blue adsorption amount of fly ash, and the present invention was completed.
That is, the present invention is a methylene blue adsorption amount prediction method for fly ash having the following configuration.

[1]下記(1)式を用いて算出したRs値に基づき、フライアッシュのメチレンブルーの吸着量を予測する、フライアッシュのメチレンブルー吸着量予測方法。
Rs=R380〜410/R490 ・・・(1)
(ただし、(1)式中、R380〜410は380〜410nmの範囲から任意に選ばれる1つの波長の光を、フライアッシュに照射して得られる拡散反射率を表し、R490は490nmの波長の光を、フライアッシュに照射して得られる拡散反射率を表す。)
[2]前記[1]に記載のフライアッシュのメチレンブルー吸着量予測方法を用いて算出したRs値が、0.6以下であるフライアッシュを含む、フライアッシュ含有セメント組成物。
[1] A method for predicting the amount of methylene blue adsorbed on fly ash, which predicts the amount of methylene blue adsorbed on fly ash based on the Rs value calculated using the following equation (1).
Rs = R 380-410 / R 490 (1)
(However, in the formula (1), R 380 to 410 represents a diffuse reflectance obtained by irradiating fly ash with light having one wavelength arbitrarily selected from the range of 380 to 410 nm, and R 490 is 490 nm. (This represents the diffuse reflectance obtained by irradiating fly ash with light of a wavelength.)
[2] A fly ash-containing cement composition containing fly ash having an Rs value calculated using the methylene blue adsorption amount prediction method for fly ash according to [1] above of 0.6 or less.

本発明のフライアッシュのメチレンブルー吸着量予測方法は、フライアッシュのメチレンブルー吸着量を、簡易な装置を用いて短時間で予測できる。また、本発明のフライアッシュ含有セメント組成物は、AE剤の空気連行性に与える影響が少ない。   The method for predicting the amount of methylene blue adsorbed on fly ash according to the present invention can predict the amount of methylene blue adsorbed on fly ash in a short time using a simple device. Moreover, the fly ash containing cement composition of this invention has little influence which it has on the air entrainment property of AE agent.

フライアッシュに照射した光の波長と、フライアッシュの拡張反射率の関係を示す図である。なお、凡例の数字は試料の番号である。It is a figure which shows the relationship between the wavelength of the light irradiated to fly ash, and the extended reflectance of fly ash. The numbers in the legend are sample numbers. フライアッシュに照射した光の波長と、フライアッシュのメチレンブルー吸着量および拡散反射率の間で単回帰分析を行って求めた相関係数の関係を示す図である。It is a figure which shows the relationship of the correlation coefficient calculated | required by performing a single regression analysis between the wavelength of the light irradiated to fly ash, the methylene blue adsorption amount and diffuse reflectance of fly ash. フライアッシュに照射した光の波長と、Rsの関係を示す図である。なお、凡例の数字は試料の番号である。It is a figure which shows the relationship between the wavelength of the light irradiated to fly ash, and Rs. The numbers in the legend are sample numbers. フライアッシュに照射した光の波長と、フライアッシュのメチレンブルー吸着量およびRsの間で単回帰分析を行って求めた相関係数の関係を示す図である。It is a figure which shows the relationship of the correlation coefficient calculated | required by performing a single regression analysis between the wavelength of the light irradiated to fly ash, the methylene blue adsorption amount of fly ash, and Rs. Rsと、フライアッシュのメチレンブルー吸着量の関係を示す図である。It is a figure which shows the relationship between Rs and the methylene blue adsorption amount of fly ash.

本発明は、前記(1)式を用いて算出したRs値に基づき、フライアッシュのメチレンブルーの吸着量を予測する方法、およびフライアッシュ含有セメント組成物である。
以下、本発明について、フライアッシュのメチレンブルー吸着量予測方法と、フライアッシュ含有セメント組成物に分けて、詳細に説明する。
The present invention is a method for predicting the amount of methylene blue adsorbed on fly ash based on the Rs value calculated using the formula (1), and a fly ash-containing cement composition.
Hereinafter, the present invention will be described in detail by dividing it into a methylene blue adsorption amount prediction method for fly ash and a fly ash-containing cement composition.

1、フライアッシュのメチレンブルー吸着量予測方法
本発明のフライアッシュのメチレンブルー吸着量予測方法で用いる指標は、前記(1)式に示すように、490nmの波長の光をフライアッシュに照射して得られる拡散反射率(R490)に対する、380〜410nmの範囲から任意に選ばれる1つの波長の光をフライアッシュに照射して得られる拡散反射率(R380〜410)の比(Rs)である。後掲の図4に示すように、フライアッシュに照射した光の波長と、フライアッシュのメチレンブルー吸着量およびRsの間で単回帰分析を行って求めた相関係数は、380〜410nmの範囲で最大値(0.8)を取るから、他の範囲の波長を用いた場合よりも予測精度は高くなる。
前記拡散反射率は、市販の色差計を用いて、例えば、JIS P 8152「紙、板紙及びパルプ−拡散反射率係数の測定方法」に準拠して測定できる。
1. Method for predicting the amount of methylene blue adsorbed on fly ash The index used in the method for predicting the amount of methylene blue adsorbed on fly ash according to the present invention is obtained by irradiating fly ash with light having a wavelength of 490 nm as shown in the above equation (1). It is a ratio (Rs) of diffuse reflectance (R 380-410 ) obtained by irradiating fly ash with light of one wavelength arbitrarily selected from the range of 380-410 nm with respect to diffuse reflectance (R 490 ). As shown in FIG. 4 below, the correlation coefficient obtained by performing a single regression analysis between the wavelength of light irradiated on fly ash, the amount of methylene blue adsorbed on fly ash, and Rs is in the range of 380 to 410 nm. Since the maximum value (0.8) is taken, the prediction accuracy is higher than when other wavelengths are used.
The diffuse reflectance can be measured using a commercially available color difference meter in accordance with, for example, JIS P 8152 “Paper, paperboard and pulp—Method of measuring diffuse reflectance coefficient”.

2.フライアッシュ含有セメント組成物
本発明のフライアッシュ含有セメント組成物は、前記フライアッシュのメチレンブルー吸着量予測方法を用いて算出したRs値が、0.6以下であるフライアッシュを含むセメント組成物である。フライアッシュのRs値が0.6以下であれば、一般的なAE剤の調整が不要となる目安であるメチレンブルー吸着量が0.4mg/g以下を満たすため、フレッシュコンクリートの空気量の管理において、AE剤の種類や使用量の調整が必要ない。
また、本発明のフライアッシュ含有セメント組成物に用いるセメントは、特に制限されず、普通ポルトランドセメント、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、シリカセメント、およびエコセメントから選ばれる1種以上である。また、前記セメントと前記フライアッシュの混合装置は、例えば、ボールミルやヘンシェルミキサ等が挙げられる。また、フライアッシュ含有セメント組成物中のフライアッシュの含有率は、強度発現性およびコンクリートのワーカビリティの向上の観点から、5〜30質量%である。
2. Fly ash containing cement composition The fly ash containing cement composition of this invention is a cement composition containing the fly ash whose Rs value computed using the methylene blue adsorption amount prediction method of the said fly ash is 0.6 or less. . If the Rs value of fly ash is 0.6 or less, the amount of methylene blue adsorbed, which is a standard that eliminates the need for adjustment of a general AE agent, satisfies 0.4 mg / g or less. It is not necessary to adjust the type or amount of AE agent used.
The cement used in the fly ash-containing cement composition of the present invention is not particularly limited, and is selected from ordinary Portland cement, early-strength Portland cement, moderately hot Portland cement, low heat Portland cement, blast furnace cement, silica cement, and ecocement. One or more types. Examples of the cement and fly ash mixing device include a ball mill and a Henschel mixer. Moreover, the content rate of the fly ash in a fly ash containing cement composition is 5-30 mass% from a viewpoint of an intensity | strength expression and the improvement of workability of concrete.

以下、実施例を用いて本発明を説明するが、本発明はこれらの実施例に限定されない。
1.使用材料
(1)フライアッシュ
7つの石炭火力発電所の9ラインから採取した19種のフライアッシュを試料として用いた。同一ラインから複数の試料を採取する場合、試料の採取日を変えた。また、全ての試料は、JIS A 6201「コンクリート用フライアッシュ」のフライアッシュII種またはフライアッシュIII種に分類される。
これらのフライアッシュのメチレンブルー吸着量は、一般社団法人セメント協会の標準試験方法(JCAS I−61:2008)に準拠して測定し、強熱減量、密度、ブレーン比表面積、および45μmふるい残分は、JIS A 6201「コンクリート用フライアッシュ」に準拠して測定した。また化学分析値は、蛍光X線分析法(検量線法)により測定した。これらの結果を表1に示す。
EXAMPLES Hereinafter, although this invention is demonstrated using an Example, this invention is not limited to these Examples.
1. Materials used (1) Fly ash 19 kinds of fly ash collected from 9 lines of 7 coal-fired power plants were used as samples. When collecting a plurality of samples from the same line, the sample collection date was changed. All samples are classified into JIS A 6201 “Fly Ash for Concrete”, fly ash type II or fly ash type III.
The amount of methylene blue adsorbed by these fly ash was measured according to the standard test method (JCAS I-61: 2008) of the Japan Cement Association. The loss on ignition, density, brain specific surface area, and 45 μm sieve residue were , Measured according to JIS A 6201 “Fly Ash for Concrete”. The chemical analysis value was measured by fluorescent X-ray analysis (calibration curve method). These results are shown in Table 1.

Figure 2017116267
Figure 2017116267

2.メチレンブルー吸着量と相関性の高い指標の探索
メチレンブルー吸着量と相関性の高い指標を見い出すために、下記(1)に従いフライアッシュの拡散反射率を測定して、下記(2)〜(4)の探索を行なった。
(1)フライアッシュの拡散反射率の測定
試料1〜19を5.0±0.1g計量して、色差計の測定セルに入れた。測定セルに蓋をした後、測定セルを5cmの高さから15回落下させて、フライアッシュを測定セルに充填して測定用試料とした。次に、前記測定用試料を分光色差計(日本電色工業社製 SE6000)に装着して、380〜780nmの波長の範囲で10nmおきに拡散反射率を測定した。その結果を図1に示す。
図1に示すように、どの試料も照射した光の波長が長くなる程、拡散反射率が高くなる傾向がある。
2. Search for an index highly correlated with the amount of adsorption of methylene blue In order to find an index highly correlated with the amount of adsorption of methylene blue, the diffuse reflectance of fly ash was measured according to the following (1), and the following (2) to (4) A search was conducted.
(1) Measurement of diffuse reflectance of fly ash Samples 1 to 19 were weighed 5.0 ± 0.1 g and placed in a measurement cell of a color difference meter. After covering the measurement cell, the measurement cell was dropped 15 times from a height of 5 cm, and the measurement cell was filled with fly ash to obtain a measurement sample. Next, the sample for measurement was attached to a spectral color difference meter (SE6000 manufactured by Nippon Denshoku Industries Co., Ltd.), and the diffuse reflectance was measured every 10 nm in the wavelength range of 380 to 780 nm. The result is shown in FIG.
As shown in FIG. 1, the diffuse reflectance tends to increase as the wavelength of light irradiated on any sample increases.

(2)メチレンブルー吸着量と拡散反射率の間の関係
試料1〜19の前記メチレンブルー吸着量、および前記拡散反射率の間で単回帰分析を行い、相関係数を求めた。次に、該相関係数とフライアッシュに照射した光の波長(10nm間隔)の関係をグラフにプロットした。その結果を図2に示す。
図2から、照射した光の波長は長くなるにつれて、前記相関係数は単調に減少してプラスからマイナスに転じ、相関係数がゼロになる特異な波長(490nm)が存在することが分かる。
(2) Relationship between Methylene Blue Adsorption Amount and Diffuse Reflectance A single regression analysis was performed between the methylene blue adsorption amount of Samples 1 to 19 and the diffuse reflectance to obtain a correlation coefficient. Next, the relationship between the correlation coefficient and the wavelength of light irradiated to fly ash (at intervals of 10 nm) was plotted on a graph. The result is shown in FIG.
From FIG. 2, it can be seen that as the wavelength of the irradiated light becomes longer, the correlation coefficient decreases monotonously and turns from positive to negative, and there is a specific wavelength (490 nm) at which the correlation coefficient becomes zero.

(3)フライアッシュに照射した光の波長とRsの関係
そこで、メチレンブルー吸着量と最も相関が低い490nmの波長の光を使って測定した拡散反射率を分母に置き、380〜780nmの波長の範囲において10nmおきに測定した各フライアッシュの拡散反射率を分子に置いて、比(Rs)を求めた。
そして、Rsと、フライアッシュに照射した光の波長(10nm間隔)の関係をグラフにプロットした。その結果を図3に示す。
(3) Relationship between wavelength of light irradiated to fly ash and Rs Therefore, a diffuse reflectance measured using light having a wavelength of 490 nm having the lowest correlation with the amount of adsorption of methylene blue is placed in the denominator, and a wavelength range of 380 to 780 nm. The ratio (Rs) was determined by placing the diffuse reflectance of each fly ash measured every 10 nm in the molecule.
And the relationship between Rs and the wavelength (10 nm interval) of the light irradiated to fly ash was plotted on a graph. The result is shown in FIG.

(4)メチレンブルー吸着量とRsの間の関係
試料1〜19の前記メチレンブルー吸着量、および前記Rsの間で単回帰分析を行い、相関係数を求めた。次に、該相関係数とフライアッシュに照射した光の波長(10nm間隔)の関係をグラフにプロットした。その結果を図4に示す。
図2と図4の相関係数を比べると、前記Rsの分母に採用した波長490nm以外の全ての測定点で、図4に示す相関係数が、図2に示す相関係数よりも高いこと、特に、380〜410nmの範囲で高いことが分かる。そこで、最も相関係数の高かった波長380nmの拡散反射率を分子に採用した場合の、Rsとメチレンブルー吸着量の関係をグラフにプロットした。その結果を図5に示す。
図5に示すように、決定係数(R)は0.67と高く、Rsを指標に用いた本発明のフライアッシュのメチレンブルー吸着量予測方法は、実用可能な予測精度を有していることが分かる。
また、従来の標準試験方法(JCAS 1−61:2008)は試験に約1時間かかるのに対し、本発明のフライアッシュのメチレンブルー吸着量予測方法は、数分で終了した。
(4) Relationship between Methylene Blue Adsorption Amount and Rs A single regression analysis was performed between the Methylene Blue adsorption amount of Samples 1 to 19 and Rs to obtain a correlation coefficient. Next, the relationship between the correlation coefficient and the wavelength of light irradiated to fly ash (at intervals of 10 nm) was plotted on a graph. The result is shown in FIG.
When the correlation coefficients of FIG. 2 and FIG. 4 are compared, the correlation coefficient shown in FIG. 4 is higher than the correlation coefficient shown in FIG. 2 at all measurement points other than the wavelength of 490 nm adopted as the denominator of Rs. In particular, it can be seen that it is high in the range of 380 to 410 nm. Therefore, the relationship between Rs and the amount of methylene blue adsorbed when the diffuse reflectance at a wavelength of 380 nm, which had the highest correlation coefficient, was adopted for the molecule was plotted on a graph. The result is shown in FIG.
As shown in FIG. 5, the coefficient of determination (R 2 ) is as high as 0.67, and the fly ash methylene blue adsorption amount prediction method of the present invention using Rs as an index has a practical prediction accuracy. I understand.
The conventional standard test method (JCAS 1-61: 2008) takes about 1 hour for the test, whereas the fly ash methylene blue adsorption amount prediction method of the present invention was completed in a few minutes.

本発明の予測値のみでも、メチレンブルー吸着性能に関するフライアッシュの良否を判断できるが、本発明の予測方法を1次評価試験として用い、該一次評価試験の結果、さらに詳細な確認が必要と判断されたフライアッシュに絞って、前記標準試験方法等の従来の方法によりメチレンブルー吸着量を測定すれば、より確実なフライアッシュの品質評価を、少ない作業量で迅速に行うことができる。   Although only the predicted value of the present invention can determine the quality of fly ash related to methylene blue adsorption performance, the prediction method of the present invention is used as a primary evaluation test, and as a result of the primary evaluation test, further detailed confirmation is determined to be necessary. By focusing on fly ash and measuring the amount of methylene blue adsorbed by conventional methods such as the standard test method, more reliable fly ash quality evaluation can be performed quickly with a small amount of work.

Claims (2)

下記(1)式を用いて算出したRs値に基づき、フライアッシュのメチレンブルーの吸着量を予測する、フライアッシュのメチレンブルー吸着量予測方法。
Rs=R380〜410/R490 ・・・(1)
(ただし、(1)式中、R380〜410は380〜410nmの範囲から任意に選ばれる1つの波長の光を、フライアッシュに照射して得られる拡散反射率を表し、R490は490nmの波長の光を、フライアッシュに照射して得られる拡散反射率を表す。)
A method for predicting the amount of fly ash methylene blue that predicts the amount of fly ash methylene blue adsorbed based on the Rs value calculated using the following equation (1).
Rs = R 380-410 / R 490 (1)
(However, in the formula (1), R 380 to 410 represents a diffuse reflectance obtained by irradiating fly ash with light having one wavelength arbitrarily selected from the range of 380 to 410 nm, and R 490 is 490 nm. (This represents the diffuse reflectance obtained by irradiating fly ash with light of a wavelength.)
請求項1に記載のフライアッシュのメチレンブルー吸着量予測方法を用いて算出したRs値が、0.6以下であるフライアッシュを含む、フライアッシュ含有セメント組成物。   The fly ash containing cement composition containing the fly ash whose Rs value computed using the methylene blue adsorption amount prediction method of the fly ash of Claim 1 is 0.6 or less.
JP2015248452A 2015-12-21 2015-12-21 Prediction method of methylene blue adsorption on fly ash Active JP6630145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015248452A JP6630145B2 (en) 2015-12-21 2015-12-21 Prediction method of methylene blue adsorption on fly ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015248452A JP6630145B2 (en) 2015-12-21 2015-12-21 Prediction method of methylene blue adsorption on fly ash

Publications (2)

Publication Number Publication Date
JP2017116267A true JP2017116267A (en) 2017-06-29
JP6630145B2 JP6630145B2 (en) 2020-01-15

Family

ID=59234358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015248452A Active JP6630145B2 (en) 2015-12-21 2015-12-21 Prediction method of methylene blue adsorption on fly ash

Country Status (1)

Country Link
JP (1) JP6630145B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247048A (en) * 2017-06-06 2017-10-13 济南四建(集团)有限责任公司 A kind of method of flyash and water reducer compatibility in measure concrete
JP2019178034A (en) * 2018-03-30 2019-10-17 三菱マテリアル株式会社 Injection material for rapid hardening semi-flexible pavement, and injection milk using the same
JP2019178033A (en) * 2018-03-30 2019-10-17 三菱マテリアル株式会社 Injection material for semi-flexible pavement, and injection milk for semi-flexible pavement
JP2021160963A (en) * 2020-03-31 2021-10-11 三菱マテリアル株式会社 Manufacture management method of concrete
CN114425303A (en) * 2022-03-01 2022-05-03 广东石油化工学院 Preparation method and application of alkali-soluble fly ash modified straw stalk biochar

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225441A (en) * 1996-02-26 1997-09-02 Chichibu Onoda Cement Corp Treatment of fly ash and application thereof
JPH11262749A (en) * 1998-03-16 1999-09-28 Sumitomo Osaka Cement Co Ltd Method and apparatus for measuring quantity of unburned carbon of classified fly ash
JP2000226245A (en) * 1999-02-03 2000-08-15 Taiheiyo Cement Corp Air-entraining agent for cement position and curing of cement composition containing the air-entraining agent
JP2002047051A (en) * 2000-07-31 2002-02-12 Taiheiyo Cement Corp Composition having self-leveling ability
JP2002323412A (en) * 2001-04-27 2002-11-08 Mitsubishi Heavy Ind Ltd Instrument and method for measuring reacting weight to reagent
JP2006300627A (en) * 2005-04-19 2006-11-02 Shikoku Res Inst Inc Measuring method of adsorption amount of reagent, adsorption amount measuring instrument and measuring implement
JP2007217244A (en) * 2006-02-17 2007-08-30 Umetani Shoji:Kk Quality control method of concrete admixture
JP2010030885A (en) * 2008-06-30 2010-02-12 Mitsubishi Materials Corp Method for reducing unburnt carbon content in coal ash
JP2010043933A (en) * 2008-08-12 2010-02-25 Shimizu Corp Quality evaluation method of fly ash
JP2012522103A (en) * 2009-03-30 2012-09-20 ダウ グローバル テクノロジーズ エルエルシー Hybrid dispersion and method for producing the same
CN102712533A (en) * 2010-01-15 2012-10-03 拉法基公司 Method for producing a hydraulic composition having entrained air
JP2015124136A (en) * 2013-12-27 2015-07-06 住友大阪セメント株式会社 Concrete composition having initial-stage and long-term high strength developability and high crack resistance, and concrete body using the composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225441A (en) * 1996-02-26 1997-09-02 Chichibu Onoda Cement Corp Treatment of fly ash and application thereof
JPH11262749A (en) * 1998-03-16 1999-09-28 Sumitomo Osaka Cement Co Ltd Method and apparatus for measuring quantity of unburned carbon of classified fly ash
JP2000226245A (en) * 1999-02-03 2000-08-15 Taiheiyo Cement Corp Air-entraining agent for cement position and curing of cement composition containing the air-entraining agent
JP2002047051A (en) * 2000-07-31 2002-02-12 Taiheiyo Cement Corp Composition having self-leveling ability
JP2002323412A (en) * 2001-04-27 2002-11-08 Mitsubishi Heavy Ind Ltd Instrument and method for measuring reacting weight to reagent
JP2006300627A (en) * 2005-04-19 2006-11-02 Shikoku Res Inst Inc Measuring method of adsorption amount of reagent, adsorption amount measuring instrument and measuring implement
JP2007217244A (en) * 2006-02-17 2007-08-30 Umetani Shoji:Kk Quality control method of concrete admixture
JP2010030885A (en) * 2008-06-30 2010-02-12 Mitsubishi Materials Corp Method for reducing unburnt carbon content in coal ash
JP2010043933A (en) * 2008-08-12 2010-02-25 Shimizu Corp Quality evaluation method of fly ash
JP2012522103A (en) * 2009-03-30 2012-09-20 ダウ グローバル テクノロジーズ エルエルシー Hybrid dispersion and method for producing the same
CN102712533A (en) * 2010-01-15 2012-10-03 拉法基公司 Method for producing a hydraulic composition having entrained air
US20120304893A1 (en) * 2010-01-15 2012-12-06 Lafarge Process for production of a hydraulic composition with entrained air
JP2015124136A (en) * 2013-12-27 2015-07-06 住友大阪セメント株式会社 Concrete composition having initial-stage and long-term high strength developability and high crack resistance, and concrete body using the composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107247048A (en) * 2017-06-06 2017-10-13 济南四建(集团)有限责任公司 A kind of method of flyash and water reducer compatibility in measure concrete
CN107247048B (en) * 2017-06-06 2020-06-30 济南四建(集团)有限责任公司 Method for determining compatibility of fly ash and water reducing agent in concrete
JP2019178034A (en) * 2018-03-30 2019-10-17 三菱マテリアル株式会社 Injection material for rapid hardening semi-flexible pavement, and injection milk using the same
JP2019178033A (en) * 2018-03-30 2019-10-17 三菱マテリアル株式会社 Injection material for semi-flexible pavement, and injection milk for semi-flexible pavement
JP2021160963A (en) * 2020-03-31 2021-10-11 三菱マテリアル株式会社 Manufacture management method of concrete
JP7429588B2 (en) 2020-03-31 2024-02-08 Ube三菱セメント株式会社 Concrete manufacturing control method
CN114425303A (en) * 2022-03-01 2022-05-03 广东石油化工学院 Preparation method and application of alkali-soluble fly ash modified straw stalk biochar

Also Published As

Publication number Publication date
JP6630145B2 (en) 2020-01-15

Similar Documents

Publication Publication Date Title
JP6630145B2 (en) Prediction method of methylene blue adsorption on fly ash
Kassman et al. Two strategies to reduce gaseous KCl and chlorine in deposits during biomass combustion—injection of ammonium sulphate and co-combustion with peat
Yao et al. Optimizing the binder percentage to reduce matrix effects for the LIBS analysis of carbon in coal
CN101603929B (en) Device for detecting compositions of coal on conveying belt in real time
JP6462383B2 (en) Method for predicting activity index of fly ash and method for producing fly ash mixed cement
JP6755068B2 (en) Quantitative analysis method for multi-component mixed cement and manufacturing control system for multi-component mixed cement
JP2009121988A (en) Evaluation method for coal ash
Berenguer et al. Durability of concrete structures with sugar cane bagasse ash
JP2019219231A (en) Prediction method of activity index of fly ash
Singh et al. Characterization of Indian fly ashes using different experimental techniques
Holubcik et al. Ash melting temperature prediction from chemical composition of biomass ash
Garg Raman spectroscopy for characterizing and determining the pozzolanic reactivity of fly ashes
JP6642916B2 (en) Method for predicting fly ash activity index and method for producing fly ash mixed cement
Samanta et al. The standardization and application of an external (in air) particle induced gamma emission (PIGE) method for the rapid and non-destructive quantification of light elements at major to trace concentrations in coal, bottom ash and coke samples
JP2007198950A (en) Method of measuring magnesium oxide content and calcium oxide content in oxide material, using infrared absorption spectrum measuring method
CN108008069A (en) A kind of quality of fly ash compositive appraisement system and assessment method
CN110244017A (en) A method of trace element boiling characteristics in characterization fire coal
JP6541383B2 (en) Method of determining high fluidity fly ash, and method of producing fly ash mixed cement
Kruse Characterization of high-calcium fly ash for evaluating the sulfate resistance of concrete
JP5370126B2 (en) Sinter analysis method
JP6722120B2 (en) Fly ash activity index prediction method and fly ash quality evaluation method
JP6666816B2 (en) Method for predicting flow value ratio of fly ash and method for evaluating fly ash quality
Lorberau et al. Methods used by the United States National Institute for Occupational Safety and Health to monitor crystalline silica
Guo Soot oxidation in hydrocarbon-free flames
JP6135371B2 (en) Cement manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191206

R150 Certificate of patent or registration of utility model

Ref document number: 6630145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250