JPS61178473A - Manufacture of si3n4 sintered body - Google Patents
Manufacture of si3n4 sintered bodyInfo
- Publication number
- JPS61178473A JPS61178473A JP60018069A JP1806985A JPS61178473A JP S61178473 A JPS61178473 A JP S61178473A JP 60018069 A JP60018069 A JP 60018069A JP 1806985 A JP1806985 A JP 1806985A JP S61178473 A JPS61178473 A JP S61178473A
- Authority
- JP
- Japan
- Prior art keywords
- average particle
- particle size
- sintering
- sintered body
- mixed powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B1/00—Engines characterised by fuel-air mixture compression
- F02B1/02—Engines characterised by fuel-air mixture compression with positive ignition
- F02B1/04—Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
Landscapes
- Ceramic Products (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、例えばガソリンエンジン、ガスタービンエ
ンジン等の部品材料として適用されるSi3N4焼結体
の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing a Si3N4 sintered body, which is used as a component material for, for example, gasoline engines, gas turbine engines, etc.
従来の技術
Si3N4焼結体の製造にあたっては、できるだけ低温
で焼結させることによって直接的には燃料費を節減し、
間接的には炉材、窯道具の損耗の減少を図ることができ
るという利益があることから、Y2O3や^Q20s
、もしくはMIIOなどの焼結助剤が添加される。それ
等の焼結助剤を添加することによって、焼結過程におい
て低温で液相が生成し、Si3N4が粒子単位で移動す
る粘性流動機構による焼結が行なわれ、焼結速度が速く
なる。そのため、従来、常圧焼結による5iaN+焼結
体の製造にあたっては焼結助剤としてY203や^Q2
03もしくは190が総量で6.0%より多く添加され
ていた。Conventional technology In manufacturing Si3N4 sintered bodies, sintering is performed at as low a temperature as possible to directly reduce fuel costs.
Indirectly, there is the benefit of reducing wear and tear on furnace materials and kiln tools, so Y2O3 and ^Q20s
Alternatively, a sintering aid such as MIIO is added. By adding such a sintering aid, a liquid phase is generated at a low temperature during the sintering process, and sintering is performed by a viscous flow mechanism in which Si3N4 moves particle by particle, increasing the sintering speed. Therefore, conventionally, when producing 5iaN+ sintered bodies by pressureless sintering, Y203 and ^Q2 were used as sintering aids.
03 or 190 was added in a total amount of more than 6.0%.
一方、セラミック粉末焼結体の製造方法として、粉末を
加圧成形すると同時に加熱し、焼結させる加圧焼結法が
従来から行われている。この加圧焼結法によれば、高温
加圧下で粉体の塑性流動が起こり緻密化が促進されると
いう利点があることから、従来から5iaN4焼結体の
製造にも適用されていた。しかし、その場合でも焼結速
度を速くする必要上、Y203等の焼結助剤が4.0%
以上添加されていた。On the other hand, as a method for producing ceramic powder sintered bodies, a pressure sintering method has been conventionally used in which powder is pressure-molded and simultaneously heated and sintered. This pressure sintering method has the advantage of causing plastic flow of the powder under high temperature and pressure, promoting densification, and has thus far been applied to the production of 5iaN4 sintered bodies. However, even in that case, it is necessary to increase the sintering speed, so sintering aids such as Y203 are used at 4.0%.
More than that was added.
発明が解決しようとする問題点
しかし、以上の従来のSi3N+焼結体の製造方法では
次のような問題があった。Problems to be Solved by the Invention However, the above-described conventional method for manufacturing a Si3N+ sintered body had the following problems.
すなわち、上述したようにY203や^Q203等の焼
結助剤を添加すると焼結過程において低温で液相が生成
され、その効果によって焼結速度が向上される。しかし
、その反面得られた焼結体は高温強度が十分ではないと
いう問題があった。具体的には、Si3N4焼結体の製
造にあたって焼結助剤を約4.0%添加すると得られた
焼結体の強度は1200℃で53〜70 ka/−程度
にまで低下するという事実があった。That is, as described above, when a sintering aid such as Y203 or ^Q203 is added, a liquid phase is generated at a low temperature during the sintering process, and this effect improves the sintering rate. However, on the other hand, there was a problem in that the obtained sintered body did not have sufficient high temperature strength. Specifically, it is a fact that when approximately 4.0% of sintering aid is added in the production of Si3N4 sintered bodies, the strength of the obtained sintered bodies decreases to about 53 to 70 ka/- at 1200°C. there were.
また、以上の従来のSi3N4焼結体の製造方法では、
得られる焼結体を酸化雰囲気中で加熱した場合、酸化増
量が大きく、焼結体の特性が変化するという問題があっ
た。In addition, in the above conventional method for manufacturing a Si3N4 sintered body,
When the resulting sintered body is heated in an oxidizing atmosphere, there is a problem in that the weight increase due to oxidation is large and the properties of the sintered body change.
この発明は以上の従来の事情に鑑みてなされたものであ
って、Si3N+焼結体の焼結過程における酸化増lを
低減し、高温強度を向上することができるSi3N4焼
結体の製造方法を提供することを目的とするものである
。This invention has been made in view of the above-mentioned conventional circumstances, and provides a method for manufacturing a Si3N4 sintered body that can reduce oxidation gain during the sintering process of the Si3N+ sintered body and improve high-temperature strength. The purpose is to provide
問題点を解決するための手段
すなわちこの発明の5iaN4焼結体の製造方法は、平
均粒径0.1声以下の八i1203 、Y203、MI
Oのうち少なくとも1種類以上を全量・で2.0%(重
量%、以下同じ)以下となるように平均粒径2JJll
以下の5isN+に添加し、非酸化性雰囲気中で加圧焼
結することを特徴とするものである。The means for solving the problem, that is, the method for manufacturing 5iaN4 sintered bodies of the present invention, is to use 8i1203, Y203, MI
The average particle size of at least one type of O is 2JJll so that the total amount is 2.0% (weight%, the same hereinafter) or less.
It is characterized in that it is added to the following 5isN+ and pressure sintered in a non-oxidizing atmosphere.
以下にこの発明の方法における各混合粉末の平均粒径、
添加量の限定理由を記す。Below, the average particle size of each mixed powder in the method of this invention,
Describe the reason for limiting the amount added.
(1)SisN+の平均粒径
5iaN4の平均粒径が2.0声を越えると得られる焼
結体の強度が不足する。そのため5iaN+の平均粒径
は、2.0声以下にする必要があり、ざらに好ましくは
1.8声以下がよく、最も好ましくは、1.5声以下と
するのが良い。(1) Average grain size of SisN+: 5ia When the average grain size of N4 exceeds 2.0 tones, the strength of the obtained sintered body is insufficient. Therefore, the average particle diameter of 5iaN+ needs to be 2.0 tones or less, more preferably 1.8 tones or less, and most preferably 1.5 tones or less.
(2)AI!203 、Y203.14110(F)平
均粒径^g20s 、Y203 、MOOf)平均’l
l径ffi o、i声を越えると、得られる焼結体の密
度、室温・高温強度が低下する。そのため八Q203、
Y203、MIOの平均粒径は0.1311以下にする
必要があり、さらに好ましくは0.08 J3以下が良
く、最も好ましくはo、os 4以下とするのが良い。(2) AI! 203, Y203.14110(F) Average particle size^g20s, Y203, MOOf) Average 'l
When the diameter exceeds l diameter ffi o and i diameter, the density and room temperature/high temperature strength of the obtained sintered body decrease. Therefore, eight Q203,
The average particle size of Y203 and MIO must be 0.1311 or less, more preferably 0.08 J3 or less, and most preferably o, os 4 or less.
(3) AI!203 、Y203 、MIIO(7)
全量^Q203とY203およびMIOの全量を2.0
%以下とするのは、それ等の総量が2.0%を越えると
得られる焼結体の高温強度が低くなるからである。(3) AI! 203, Y203, MIIO(7)
Total amount ^ Total amount of Q203, Y203 and MIO is 2.0
% or less because if the total amount exceeds 2.0%, the high-temperature strength of the resulting sintered body will decrease.
さて、この発明では、以上の原料粉末を非酸化性雰囲気
中で加圧焼結する。Now, in this invention, the above raw material powder is sintered under pressure in a non-oxidizing atmosphere.
非酸化性雰囲気としては、Ar 、N2等を用いること
ができる。また加圧焼結は周知のHP法、HIP法を適
用して行なうことができる。Ar, N2, etc. can be used as the non-oxidizing atmosphere. Further, the pressure sintering can be performed by applying the well-known HP method or HIP method.
実施例 以下にこの発明の実施例を記す。Example Examples of this invention are described below.
実施例1
平均粒径0.3jJのSi3N<に、平均粒径0.03
−のY203を0.3%、平均粒径0.02 paの^
Q203を0.6%添加して焼結し5iaN4焼結体を
得た。Example 1 Si3N with an average particle size of 0.3jJ, an average particle size of 0.03
-0.3% Y203, average particle size 0.02 pa^
0.6% of Q203 was added and sintered to obtain a 5iaN4 sintered body.
焼結プロセスを第1図に示す。The sintering process is shown in Figure 1.
先ず、Si3N41!:Y203と^1203 f)粉
末を、エタノールを媒液としてプラスチック製ボールを
使用したボールミルによって96時間混合し、乾燥した
ものを圧力200 ko/dで型込め成形して一次成形
を行なった。その−次成形品を圧力1200kMdで静
水圧成形した後、得られた成形体を10atsの窒素ガ
ス雰囲気中で1700〜1850℃の温度下で400a
t−の圧力で2時開加圧した。得られた焼結体をダイヤ
モンド砥石およびダイヤモンドペーストを用いて研摩し
た。ダイヤモンドペーストの最終粒度は1声とした。研
摩後の焼結体から4QX4X311のテストピースを5
0本切り出し、そのうち40本について3点曲げ試験を
行なった。3点曲げ試験は大気雰囲気中で行ない、スパ
ンを30+m、クロスヘッドの速度を0.5−1/mと
して室温および1200℃の温度下で行なった。また、
残りの10本を1200℃の湿度45%の大気中に72
0Hr放置して、酸化増量の測定を行なった。First, Si3N41! :Y203 and ^1203 f) Powders were mixed for 96 hours using a ball mill using plastic balls with ethanol as a medium, and the dried product was molded at a pressure of 200 ko/d to perform primary molding. After the next molded product was subjected to isostatic pressing at a pressure of 1200 kMd, the obtained molded product was heated at a temperature of 1700 to 1850°C in a nitrogen gas atmosphere of 10 ats for 400 mA.
It was opened and pressurized at a pressure of t-. The obtained sintered body was polished using a diamond grindstone and diamond paste. The final particle size of the diamond paste was one tone. Five test pieces of 4QX4X311 were made from the sintered body after polishing.
Zero pieces were cut out, and a three-point bending test was conducted on 40 pieces. Three-point bending tests were carried out in ambient air, with a span of 30+m and a crosshead speed of 0.5-1/m at room temperature and at temperatures of 1200<0>C. Also,
The remaining 10 pieces were placed in an atmosphere of 1200℃ and 45% humidity for 72 hours.
After standing for 0 hours, oxidation weight gain was measured.
実施例2
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増量の測定を行なった。Example 2 Using a mixed powder having the following composition, sintering was performed in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were performed.
混合粉末は、平均粒径1.1JJIの5isN4に、平
均粒径0.03 JJIIのY2O3を0.5%、平均
粒径0.02声の^1!203を0.5%添加して得た
。The mixed powder was obtained by adding 0.5% of Y2O3 with an average particle size of 0.03 JJII and 0.5% of ^1!203 with an average particle size of 0.02 to 5isN4 with an average particle size of 1.1JJI. Ta.
実施例3
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試羨および
酸化増量の測定をを行なった。Example 3 Using a mixed powder having the following composition, sintering was performed in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were performed.
混合粉末は、平均粒径0.3−のSi3N+に、平均粒
径0.03声のY2O3を0.8%、平均粒径0.02
Pの八g203を0.8%添加して得た。The mixed powder is Si3N+ with an average particle size of 0.3-, 0.8% Y2O3 with an average particle size of 0.03, and 0.8% of Y2O3 with an average particle size of 0.02.
It was obtained by adding 0.8% of 8g203 of P.
実施例4
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点゛ 曲げ試験
および酸化増量の測定を行なった。Example 4 Using a mixed powder having the following composition, sintering was carried out in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were carried out.
混合粉末は、平均粒径0.3声のSi3N4に、平均粒
径0.03声のY2O3を1.0%、平均粒径0.02
JJa!ノ^Ih O3ヲ1.0%l加t、、テ41
7=。The mixed powder is Si3N4 with an average particle size of 0.3 mm, 1.0% Y2O3 with an average particle size of 0.03 mm, and 1.0% of Y2O3 with an average particle size of 0.02 mm.
JJa!ノ^Ih O3 added 1.0%l,,te41
7=.
実施例5
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増量の測定を行なった。Example 5 Using a mixed powder having the following composition, sintering was performed in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were performed.
混合粉末は、平均粒径1.1声のSi3N4に、平均粒
径0,03 nf) Y 203を0.5%、平均粒径
0.02 JJIl+7)Alh 03を1.5%添加
して得た。The mixed powder was obtained by adding 0.5% of Y 203 (average particle diameter 0.03 nf) and 1.5% of Alh 03 (average particle diameter 0.02 JJIl+7) to Si3N4 with an average particle diameter of 1.1 mm. Ta.
比較例1
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増量の測定を行なった。Comparative Example 1 A mixed powder having the following composition was sintered in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were performed.
混合粉末は、平均粒径0.3JJのSi3N4に、平均
粒径0.03声のY203を2.0%、平均粒径0.0
2 JJの^1!202を2.0%添加して得た。The mixed powder is Si3N4 with an average particle size of 0.3JJ, 2.0% Y203 with an average particle size of 0.03JJ, and 2.0% of Y203 with an average particle size of 0.0JJ.
2 Obtained by adding 2.0% of JJ's ^1!202.
比較例2
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増量の測定を行なった。Comparative Example 2 A mixed powder having the following composition was sintered in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were performed.
混合粉末は、平均粒径0.3JJlのSi3N+に、平
均粒径0.03声のY2O3を5.0%、平均粒径0.
02yaの^Q203@ 5.0%添加Lr1)り。The mixed powder is Si3N+ with an average particle size of 0.3 JJl, 5.0% Y2O3 with an average particle size of 0.03, and 5.0% of Y2O3 with an average particle size of 0.
02ya's ^Q203@ 5.0% addition Lr1).
実施例6
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増】の測定を行なった。Example 6 Using a mixed powder having the following composition, sintering was carried out in the same process as in Example 1, and the same three-point bending test and measurement of oxidation gain as in Example 1 were carried out.
混合粉末は、平均粒径1.1jJlの5iaN4に、平
均粒tM 0.02 %(7)Y203を0.8%、平
均粒径0.015声の&JIIOを0.8%添加して得
た。The mixed powder was obtained by adding 0.8% of Y203 with an average particle size of 0.02% (7) and 0.8% of &JIIO with an average particle size of 0.015 to 5iaN4 with an average particle size of 1.1JJl. .
実施例7
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増量の測定を行なった。Example 7 Using a mixed powder having the following composition, sintering was performed in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were performed.
混合粉末は、平均粒径0.3JJllの5isN4に、
平均粒径0.02声の^1!203を1.45%、平均
粒径0.015JJl(lfloヲ0.55 %I加L
r1l。The mixed powder is 5isN4 with an average particle size of 0.3JJll,
1.45% of ^1!203 with an average particle size of 0.02, an average particle size of 0.015 JJl (lflo 0.55% I added
r1l.
実施例8
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
醸化増量の測定を行なった。Example 8 Using a mixed powder having the following composition, sintering was performed in the same process as in Example 1, and the same three-point bending test and measurement of fermentation weight gain as in Example 1 were performed.
混合粉末は、平均粒径1.1JJIlの5iaN+に、
平均粒径0.023711(7)Y203 @ 1.0
%、平均粒径0.02 F(7)八lh 03 ヲ0.
73 %、平均粒径0.015−の&JlIOを0.5
5%添加して得た。The mixed powder is 5iaN+ with an average particle size of 1.1JJIl,
Average particle size 0.023711 (7) Y203 @ 1.0
%, average particle size 0.02 F(7)8lh 03 wo0.
73%, average particle size 0.015-0.5
It was obtained by adding 5%.
比較例3
次の組成め混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増lの測定を行なった。Comparative Example 3 Using a mixed powder with the following composition, sintering was performed in the same process as in Example 1, and the same three-point bending test and oxidation gain measurement as in Example 1 were performed.
混合粉末は、平均粒径0.3声のSi3N4に、平均粒
径0.02声のY2O3を2.0%、平均粒径0.02
JJII(7)^12203 t 1.45 %、平
均粒径0.015声のM2Oを0.55%添加して得た
。The mixed powder is Si3N4 with an average particle size of 0.3 degrees, 2.0% Y2O3 with an average particle size of 0.02 degrees, and 2.0% Y2O3 with an average particle size of 0.02 degrees.
JJII(7)^12203 t 1.45%, an average particle size of 0.015 mm was obtained by adding 0.55% of M2O.
比較例4
次の組成の混合粉末を用い、実施例1と同一のプロセス
で焼結を行ない、実施例1と同様の3点曲げ試験および
酸化増量の測定を行なった。Comparative Example 4 Using a mixed powder having the following composition, sintering was performed in the same process as in Example 1, and the same three-point bending test and oxidation weight gain measurement as in Example 1 were performed.
混合粉末は、平均粒径0.3声の5isN4に、平均粒
径0,02 JJのY2O3を3.0%、平均粒径0.
02 ymの^1!20sを2.19%、平均粒径0,
015声のMgOを0.81%添加して得た。The mixed powder is 5isN4 with an average particle size of 0.3 mm, 3.0% Y2O3 with an average particle size of 0.02 JJ, and 3.0% of Y2O3 with an average particle size of 0.02 JJ.
02 ym^1!20s 2.19%, average particle size 0,
It was obtained by adding 0.81% of MgO of 0.015.
以上の各実施例および比較例の各成分の添加条件と、得
られた焼結体の密度および3点曲げ強度および酸化増量
を第1表および第2表に示す。Tables 1 and 2 show the conditions for adding each component in each of the above Examples and Comparative Examples, as well as the density, three-point bending strength, and oxidation weight gain of the obtained sintered bodies.
第1表を見るとわかるように、この発明の実施例によっ
て得られた焼結体(岡1〜NtlL5)はいずれも98
%T−D以上の密度を有し、しかもいずれも1200℃
における3点曲げ強度が92にり/−以上で高く、また
酸化増量は0.20 mu/d以下と低かった。それに
対し、Y2O3とAI!203からなる焼結助剤の添加
量が2.0%を越えて4.0%となる比較例1 (m6
)のものは焼結体密度は99%T−D程度であったが、
1200℃における3点曲げ強度は70 ka/−と低
く、しかも酸化増量が0.51 mg/cdと多かった
。また焼結助剤の添加量が10%の比較例2(llil
17)の焼結体は、密度は99%T−D程度であったが
、しかし3点曲げ強度は53 kM−と低く、しかも酸
化増量が2.1010/dと極めて多かった。さらに、
第2表を見るとわかるように、この発明の実施例によっ
て得られた焼結体(隠8〜Na10)はいずれも120
0℃における3点曲げ強度が92 ka/−以上で高く
、しかも酸化増量は0.20■Q/d以下と低かった。As can be seen from Table 1, all of the sintered bodies (Oka 1 to NtlL5) obtained by the examples of the present invention had a 98%
%T-D or higher density, and all at 1200℃
The three-point bending strength was high at 92 μ/- or more, and the oxidation weight gain was low at 0.20 mu/d or less. On the other hand, Y2O3 and AI! Comparative Example 1 (m6
) had a sintered body density of about 99% T-D,
The three-point bending strength at 1200°C was as low as 70 ka/-, and the weight gain due to oxidation was as high as 0.51 mg/cd. In addition, Comparative Example 2 (llil
The sintered body of No. 17) had a density of about 99% TD, but the three-point bending strength was as low as 53 kM-, and the weight gain due to oxidation was extremely high at 2.1010/d. moreover,
As can be seen from Table 2, all of the sintered bodies (Hidden 8 to Na 10) obtained by the Examples of the present invention had 120
The three-point bending strength at 0°C was high at 92 ka/- or more, and the weight gain due to oxidation was low at 0.20 Q/d or less.
それに対し、Y2O3と^11203および■Oからな
る焼結助剤の添加量が2.0%を越えて4.0%となる
比較例3の焼結体(Na11)は1200℃における3
点曲げ強度が71 kM−と実施例のものより低く、ま
た酸化増量も0.60 I!la/atと実施例のもの
より多かった。また、Y203と^1!203およびN
90からなる焼結助剤量が6.0%となる比較例4の焼
結体(N1112)は1200℃における3点曲げ強度
が66kg/−と低く、しかも酸化増量は1.6010
/ciと非常に多かった。On the other hand, the sintered body of Comparative Example 3 (Na11) in which the addition amount of the sintering aid consisting of Y2O3, ^11203 and
The point bending strength was 71 kM-, lower than that of the example, and the oxidation weight gain was 0.60 I! la/at, which was higher than that of the example. Also, Y203 and ^1!203 and N
The sintered body of Comparative Example 4 (N1112) in which the amount of sintering aid consisting of 90% was 6.0% had a low three-point bending strength of 66 kg/- at 1200°C, and the weight gain due to oxidation was 1.6010.
/ci.
発明の効果
以上のようにこの発明のSi3N+焼結体の製造方法に
よれば、Si3N4に焼結助剤としてΔg203とY2
O3およびIJ90のうち少なくとも1種類以上を添加
し、しかもそれ等の全量が2.0%以下となるようにし
たことにより、焼結助剤の添加による焼結速度の向上と
いう本来の利益を確保したまま、得られる焼結体の密度
および強度、特に高温強度の向上という優れた効果が奏
される。Effects of the Invention As described above, according to the method for manufacturing a Si3N+ sintered body of the present invention, Δg203 and Y2 are added to Si3N4 as sintering aids.
By adding at least one of O3 and IJ90 and keeping the total amount of them to 2.0% or less, the original benefit of improving the sintering speed by adding a sintering aid is secured. The excellent effect of improving the density and strength of the obtained sintered body, especially the high-temperature strength, can be achieved even when the sintered body is heated.
また、高温の酸化雰囲気中に置いたときの酸化増量も低
減できるという効果が奏される。Moreover, the effect of reducing oxidation weight gain when placed in a high-temperature oxidizing atmosphere is achieved.
第1図はこの発明の実施例における焼結プロセスを示す
工程図である。
出願人 トヨタ自動車株式会社
代理人 弁理士 豊 1)武 久
(ほか1名)
第1区FIG. 1 is a process diagram showing a sintering process in an embodiment of the present invention. Applicant Toyota Motor Corporation Representative Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) District 1
Claims (1)
_3、MgOのうち少なくとも1種類以上を全量で2.
0%(重量%、以下同じ)以下、となるように平均粒径
2μm以下のSi_3N_4に添加し、非酸化性雰囲気
中で加圧焼結することを特徴とするSi_3N_4焼結
体の製造方法。Al_2O_3 with an average particle size of 0.1 μm or less and Y_2O
_3, at least one type of MgO in total amount 2.
A method for producing a Si_3N_4 sintered body, which comprises adding Si_3N_4 with an average particle size of 2 μm or less so that the amount is 0% (weight %, the same applies hereinafter) or less, and sintering under pressure in a non-oxidizing atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60018069A JPS61178473A (en) | 1985-02-01 | 1985-02-01 | Manufacture of si3n4 sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60018069A JPS61178473A (en) | 1985-02-01 | 1985-02-01 | Manufacture of si3n4 sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61178473A true JPS61178473A (en) | 1986-08-11 |
Family
ID=11961373
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60018069A Pending JPS61178473A (en) | 1985-02-01 | 1985-02-01 | Manufacture of si3n4 sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61178473A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH038771A (en) * | 1989-06-07 | 1991-01-16 | Denki Kagaku Kogyo Kk | Silicon nitride sintered compact |
US5017530A (en) * | 1987-01-28 | 1991-05-21 | Tosoh Corporation | Silicon nitride sintered body and process for preparation thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5864279A (en) * | 1981-10-12 | 1983-04-16 | 住友電気工業株式会社 | Non-oxide ceramics sintered body |
JPS5939770A (en) * | 1978-11-08 | 1984-03-05 | 日本碍子株式会社 | Silicon nitride base sintering composition |
JPS59184771A (en) * | 1983-04-04 | 1984-10-20 | トヨタ自動車株式会社 | Manufacture of silicon nitride sintered body |
-
1985
- 1985-02-01 JP JP60018069A patent/JPS61178473A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5939770A (en) * | 1978-11-08 | 1984-03-05 | 日本碍子株式会社 | Silicon nitride base sintering composition |
JPS5864279A (en) * | 1981-10-12 | 1983-04-16 | 住友電気工業株式会社 | Non-oxide ceramics sintered body |
JPS59184771A (en) * | 1983-04-04 | 1984-10-20 | トヨタ自動車株式会社 | Manufacture of silicon nitride sintered body |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5017530A (en) * | 1987-01-28 | 1991-05-21 | Tosoh Corporation | Silicon nitride sintered body and process for preparation thereof |
JPH038771A (en) * | 1989-06-07 | 1991-01-16 | Denki Kagaku Kogyo Kk | Silicon nitride sintered compact |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6172684A (en) | High strength high abrasion resistance sliding member and manufacture | |
JPS6054976A (en) | Silicon nitride sintered body and manufacture | |
JPS62246865A (en) | Silicon nitride sintered body and manufacture | |
JPS61178473A (en) | Manufacture of si3n4 sintered body | |
JPS63156070A (en) | Silicon nitride base sintered body and manufacture | |
JPS62256768A (en) | Silicon nitride sintered body | |
JP3091085B2 (en) | Rare earth silicate based sintered body and method for producing the same | |
JP3320645B2 (en) | Manufacturing method of ceramic sintered body | |
JP3145470B2 (en) | Tungsten carbide-alumina sintered body and method for producing the same | |
JPH05509073A (en) | Production of nitridable silicon-containing materials, resulting materials | |
JP2892186B2 (en) | Method for producing silicon nitride-silicon carbide composite sintered body | |
JP3564165B2 (en) | Method for producing silicon nitride reaction sintered body | |
JPS60131865A (en) | Manufacture of silicon nitride ceramics | |
JPS61186263A (en) | Manufacture of silicon nitiride sintered body | |
JPS63256572A (en) | Sic base ceramics and manufacture | |
JPS62167257A (en) | Manufacture of silicon nitride sintered body | |
JP2858965B2 (en) | Aluminum oxide sintered body | |
JPS63134551A (en) | Alumina base sintered body and manufacture | |
JPS61201665A (en) | Silicon nitride base sintered body and manufacture | |
JPS62265173A (en) | Silicon carbide whisker-reinforced composite material | |
JPS63303864A (en) | Production of sialon sintered body | |
JPH03164472A (en) | Production of silicon nitride sintered body | |
JPS61163170A (en) | Manufacture of si3n4 sintered body | |
JPS6270266A (en) | Production of composite sintered body | |
JPS61270260A (en) | Manufacture of silicon nitride base ceramic |