JPS61178472A - Heat treatment of silicon nitride sintered body - Google Patents

Heat treatment of silicon nitride sintered body

Info

Publication number
JPS61178472A
JPS61178472A JP60018056A JP1805685A JPS61178472A JP S61178472 A JPS61178472 A JP S61178472A JP 60018056 A JP60018056 A JP 60018056A JP 1805685 A JP1805685 A JP 1805685A JP S61178472 A JPS61178472 A JP S61178472A
Authority
JP
Japan
Prior art keywords
silicon nitride
sintered body
heat treatment
nitride sintered
fracture toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60018056A
Other languages
Japanese (ja)
Inventor
瀬古 日出男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP60018056A priority Critical patent/JPS61178472A/en
Publication of JPS61178472A publication Critical patent/JPS61178472A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は機械的強度の大なる、複雑な形状のセラミック
ス焼結体の熱処理法に関するもので、特に高温度雰囲気
で使用するセラミックス焼結体に使用されるものである
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a heat treatment method for ceramic sintered bodies with high mechanical strength and complex shapes, particularly for ceramic sintered bodies used in high-temperature atmospheres. It is used for.

(従来の技術) 本発明に係る従来技術としては、特開昭59−1469
81号「窒化珪素焼結体およびその製造法」の公報があ
り、このものは無加圧焼結法で窒化珪素原料粉末に焼結
助剤として、Sr,Mg。
(Prior art) As a prior art related to the present invention, Japanese Patent Application Laid-Open No. 59-1469
There is a publication entitled No. 81 "Silicon nitride sintered body and its manufacturing method", which uses a pressureless sintering method to add Sr and Mg as sintering aids to silicon nitride raw material powder.

稀土類元素およびZrの酸化物又は酸窒化物を加えて調
整原料として成形し、次いで窒素雰囲気あるいは不活性
ガス雰囲気中で焼成して強度及び破、壊靭性をアップさ
せる窒化珪素焼結体の製造方法である。
Manufacture of silicon nitride sintered bodies by adding rare earth elements and Zr oxides or oxynitrides, molding them as prepared raw materials, and then firing in a nitrogen atmosphere or inert gas atmosphere to increase strength, fracture and fracture toughness. It's a method.

(発明が解決しようとする問題点) 然し前記窒化珪素焼結体の製法により製造した焼結体は
常温時の破壊靭性が平均7.0MN/mT以下であり高
温時になると更に強度は低(なり、特に自動車用のター
ボロータのごとく複雑な形状でかつ高温時に高強度が要
求されるものにおいては前記の製法で製造された窒化珪
素焼結体はそのままでは使用することが出来ない。
(Problems to be Solved by the Invention) However, the fracture toughness of the sintered bodies manufactured by the above method for producing silicon nitride sintered bodies is 7.0 MN/mT or less on average at room temperature, and the strength is even lower at high temperatures. In particular, the silicon nitride sintered body manufactured by the above-mentioned method cannot be used as is, especially in products that have a complex shape and require high strength at high temperatures, such as turbo rotors for automobiles.

このためにこの改良方法として焼結助剤を更に多種類添
加するとか、焼成条件を改良するとか、各原材料ごとの
評価を行など複雑なテスト工程により、強度及び破壊靭
性のアップの開発が行われているが、いずれも複雑で時
間がかかり更にコストアップに繋がるという問題点があ
った。
For this reason, improvement methods are being developed to increase strength and fracture toughness, such as adding more types of sintering aids, improving firing conditions, and conducting complex test processes such as evaluating each raw material. However, they all have the problem of being complicated and time-consuming, which further increases costs.

本発明は窒化珪素焼結体において、少なくとも前記破壊
靭性が7.0以上にアップする、比較的簡単な熱処理方
法を提供するものである。
The present invention provides a relatively simple heat treatment method for increasing the fracture toughness of a silicon nitride sintered body to at least 7.0 or more.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記技術的課題を解決するために講じた技術的手段は、
次のようである。すなわち窒化珪素焼結体としてsi、
N、、にMgOを焼結助剤として含有したもの、あるい
はM g O,Z r Oユを焼結助剤として含有した
もの、更にY工03 、  Al、、OB。
(Means to solve the problem) The technical measures taken to solve the above technical problem are:
It is as follows. That is, as a silicon nitride sintered body, si,
N, , containing MgO as a sintering aid, or containing MgO, ZrO as a sintering aid, as well as Y-03, Al,, OB.

MgO等を焼結助剤として添加したものにおいて、原料
混合後、射出成形により製品形状に成形後、・約180
0℃の温度で不活性ガス中にて焼成してセラミックス焼
結体を製造後更に800モ〜1100℃の酸化雰囲気中
で常圧で2時間保持後自然冷却の熱処理を行うことによ
り破壊靭性をアップさせるものである。
For products to which MgO etc. are added as a sintering aid, after mixing the raw materials and molding into a product shape by injection molding, approximately 180
After producing a ceramic sintered body by firing in an inert gas at a temperature of 0°C, fracture toughness is improved by holding it at normal pressure for 2 hours in an oxidizing atmosphere of 800°C to 1100°C, and then performing a heat treatment of natural cooling. It is something that increases

(作用) 前記技術的手段は次のようである。すなわち、S ii
 N$&にMgOを0.1〜15重量%、  Z r 
%を0.1〜11重量%の焼結助剤と残部が70重量%
以上のS i 3 Nt、を調合し、金型にて成形、焼
成してセラミック焼結体を作り、更に熱処理として80
0〜1100℃の炉内に2時間保持し、自然冷却するこ
とにより、セラミックス焼結体の表面はSiよN、より
一部変化してガラス質のSiO工に変化することにより
表面硬度が著しくアップし破壊靭性が向上するものであ
る。
(Operation) The technical means is as follows. That is, S ii
0.1-15% by weight of MgO in N$&, Zr
% to 0.1 to 11% by weight of sintering aid and the balance is 70% by weight
The above S i 3 Nt was mixed, molded in a mold, fired to make a ceramic sintered body, and further heat treated at 80°C.
By keeping the ceramic sintered body in a furnace at 0 to 1100°C for 2 hours and allowing it to cool naturally, the surface of the ceramic sintered body changes from Si to N to a glassy SiO material, which significantly reduces the surface hardness. This improves fracture toughness.

前記方法にて厚さ3日、中4m、長さ40鶴のテストピ
ースを作り、前記不活性ガス中にて焼成したものをAI
、A2.A3.  ・・・とし、更に800〜1100
℃の酸化雰囲気中で2時間保持後冷却する、本発明に係
る熱処理を行ったものをBl、B2.B3.  ・・・
とし、それらの破壊靭性を測定した。測定方法としては
テストピースの両端を支持して微小圧子押し込み法によ
り臨界応力拡大係数Kcを求め比較検討を行う。セラミ
ック試料の破壊靭性測定については窯業協会誌、91 
 (7)339−43 (1983)P、41による。
A test piece with a thickness of 3 days, a medium size of 4 m, and a length of 40 cranes was made using the above method and fired in the above inert gas.
, A2. A3. ...and further 800-1100
B1, B2. B3. ...
and their fracture toughness was measured. As a measurement method, both ends of the test piece are supported, and the critical stress intensity factor Kc is determined by a microindentation method, and a comparative study is performed. For fracture toughness measurement of ceramic samples, see Ceramics Association Journal, 91.
(7) 339-43 (1983) P, 41.

第1表 次は熱処理方法としてセラミック焼結体の熱処理温度と
破壊靭性の関係を第2表に示す。
Table 1 and Table 2 below show the relationship between the heat treatment temperature and fracture toughness of ceramic sintered bodies as a heat treatment method.

第2表 第1表及び第2表の破壊靭性、K  Cはセラミックの
破壊靭性を表すもので単位はM N / m”である。
Table 2 The fracture toughness in Tables 1 and 2, K C represents the fracture toughness of the ceramic, and the unit is MN/m''.

以上より800〜1100℃の範囲にて2時間保持後熱
処理を実施したものの破壊靭性は8.0〜9.0であり
、従来製品に比して10〜15%アップし、この結果高
温時における破壊靭性も大巾に向上するものと思われる
From the above, the fracture toughness of the heat treatment after holding in the range of 800 to 1100℃ for 2 hours was 8.0 to 9.0, which is 10 to 15% higher than that of conventional products. Fracture toughness is also expected to be significantly improved.

(実施例) 以下本発明の実施例について説明する。(Example) Examples of the present invention will be described below.

St、N、にMgO,ZrOを焼結助剤として添加し、
原料混合後、約300時間調整して均一な微細な粉末と
し、加水、混線、脱脂後、射出成形により金型内にて羽
根部を有する複雑な形状のターボロータを成形すると共
に前記形状のテストピースも同時に製作した。
Adding MgO and ZrO to St and N as sintering aids,
After mixing the raw materials, they are adjusted for about 300 hours to make a uniform fine powder, and after adding water, cross-wiring, and degreasing, a complex-shaped turbo rotor with blades is molded in a mold by injection molding, and the shape is tested. Pieces were also made at the same time.

次に約1800℃の不活性ガス中で焼成し、ターボロー
タ及びテストピースの焼結体を得た。
Next, it was fired in an inert gas at about 1800° C. to obtain a sintered body of a turbo rotor and a test piece.

次に酸化雰囲気中、1気圧下にて炉に入れ(電気炉)温
度を10〜15度/分の状態で順次上昇させ1000度
に到達後2時間、炉内で保持しその後自然冷却してター
ボロータの焼結体及びテストピースを得た。
Next, it was placed in a furnace (electric furnace) under 1 atm in an oxidizing atmosphere, and the temperature was gradually increased at a rate of 10 to 15 degrees per minute, and after reaching 1000 degrees, it was kept in the furnace for 2 hours, and then naturally cooled. A sintered body and a test piece of a turbo rotor were obtained.

前記テストピースについて破壊靭性を測定した結果Kc
はいずれも8.0以上であった。
The result of measuring the fracture toughness of the test piece is Kc
were all 8.0 or higher.

〔発明の効果〕 本発明は次の特有の効果がある。〔Effect of the invention〕 The present invention has the following unique effects.

5t7Ntfに焼結助剤としてMgO,zro−の他に
イツトリウム(Y)を混入して、熱処理工程なしで高温
時の破壊靭性をアップすることも出来るが、イツトリウ
ムは極めて高価であり、これの使用により製品の価格が
大巾にアップし、これに対して本発明の方法は汎用の電
気炉を使用するのみで前記破壊靭性が10〜15%アッ
プするもので、自動車部品等のコスト低減が強く要求さ
れるものについて′は好適である。
It is also possible to mix yttrium (Y) in addition to MgO and zro- as a sintering aid in 5t7Ntf to improve the fracture toughness at high temperatures without a heat treatment process, but yttrium is extremely expensive and its use is difficult. In contrast, the method of the present invention increases the fracture toughness by 10 to 15% by simply using a general-purpose electric furnace, which significantly reduces the cost of automobile parts. ' is preferred for what is required.

Claims (1)

【特許請求の範囲】[Claims] 窒化珪素粉末にMgOを焼結助剤として含有したもの、
あるいはMgO、ZrO_2、更にY_2O_3、Al
_2O_3、MgO、を含有した窒化珪素原料を無加圧
焼結法により窒化珪素焼結体を製造する方法において、
前記窒化珪素焼結体を、加熱炉内にて800〜1100
℃の温度にて2時間恒温保持後、冷却する熱処理を行う
窒化珪素焼結体の熱処理法。
Silicon nitride powder containing MgO as a sintering aid,
Or MgO, ZrO_2, further Y_2O_3, Al
In a method for producing a silicon nitride sintered body by a pressureless sintering method using a silicon nitride raw material containing _2O_3 and MgO,
The silicon nitride sintered body was heated to a temperature of 800 to 1100 in a heating furnace.
A heat treatment method for a silicon nitride sintered body, in which the heat treatment is performed by holding the temperature constant at a temperature of ℃ for 2 hours and then cooling it.
JP60018056A 1985-01-31 1985-01-31 Heat treatment of silicon nitride sintered body Pending JPS61178472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60018056A JPS61178472A (en) 1985-01-31 1985-01-31 Heat treatment of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60018056A JPS61178472A (en) 1985-01-31 1985-01-31 Heat treatment of silicon nitride sintered body

Publications (1)

Publication Number Publication Date
JPS61178472A true JPS61178472A (en) 1986-08-11

Family

ID=11961037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60018056A Pending JPS61178472A (en) 1985-01-31 1985-01-31 Heat treatment of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS61178472A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800536A1 (en) * 1987-01-12 1988-07-28 Ngk Insulators Ltd METHOD FOR PRODUCING CERAMIC SILICON NITRIDE OBJECTS
JPS6451378A (en) * 1987-08-21 1989-02-27 Sumitomo Electric Industries Production of silicon nitride sintered body for cutting tool
US5049531A (en) * 1988-09-09 1991-09-17 Ngk Spark Plug Co., Ltd. Silicon nitride sintered body
JPH06227866A (en) * 1993-02-02 1994-08-16 Ngk Insulators Ltd Sintered compact of silicon nitride and its production
CN112830796A (en) * 2021-01-07 2021-05-25 盐城工学院 Silicon nitride foamed ceramic for purifying water and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800536A1 (en) * 1987-01-12 1988-07-28 Ngk Insulators Ltd METHOD FOR PRODUCING CERAMIC SILICON NITRIDE OBJECTS
US4834926A (en) * 1987-01-12 1989-05-30 Ngk Insulators, Ltd. Process for producing silicon nitride ceramic articles
JPS6451378A (en) * 1987-08-21 1989-02-27 Sumitomo Electric Industries Production of silicon nitride sintered body for cutting tool
JPH0460077B2 (en) * 1987-08-21 1992-09-25 Sumitomo Electric Industries
US5049531A (en) * 1988-09-09 1991-09-17 Ngk Spark Plug Co., Ltd. Silicon nitride sintered body
JPH06227866A (en) * 1993-02-02 1994-08-16 Ngk Insulators Ltd Sintered compact of silicon nitride and its production
CN112830796A (en) * 2021-01-07 2021-05-25 盐城工学院 Silicon nitride foamed ceramic for purifying water and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2563392B2 (en) Silicon nitride ceramics and method for producing the same
JPS5826077A (en) Ceramic sintered body and manufacture
JPS5823345B2 (en) Method for manufacturing ceramic sintered bodies
JP2002003276A (en) Reaction synthesis of silicon carbide-boron nitride composite material
JPS61178472A (en) Heat treatment of silicon nitride sintered body
JPS62256768A (en) Silicon nitride sintered body
JPS6236991B2 (en)
JPS63156070A (en) Silicon nitride base sintered body and manufacture
JP3091085B2 (en) Rare earth silicate based sintered body and method for producing the same
JPS5826076A (en) Ceramic sintered body and manufacture
JP2759288B2 (en) Method for producing aluminum oxide sintered body
JPS6152110B2 (en)
US5545362A (en) Production method of sintered silicon nitride
JPS63123868A (en) Manufacture of silicon nitride base sintered body
JPS63282163A (en) Production of high-toughness silicon nitride ceramics
JPH078746B2 (en) Silicon nitride ceramics and method for producing the same
JPH042664A (en) High-strength sialon based sintered compact
JPS5895652A (en) Raw material composition for silicon nitride sintered body
JPH0333058A (en) High strength mica ceramics
JPS6125676B2 (en)
JPS63134551A (en) Alumina base sintered body and manufacture
JPH0987012A (en) Martensitic-transformation ceramic compound, its production and high toughness composite material
JPS62113769A (en) Manufacture of silicon nitride sintered body
JPH01183460A (en) Production of sintered ceramic material
JPH0442864A (en) Highly strong sialon sintered product