JPS61178293A - Stern structure for ship - Google Patents

Stern structure for ship

Info

Publication number
JPS61178293A
JPS61178293A JP60019153A JP1915385A JPS61178293A JP S61178293 A JPS61178293 A JP S61178293A JP 60019153 A JP60019153 A JP 60019153A JP 1915385 A JP1915385 A JP 1915385A JP S61178293 A JPS61178293 A JP S61178293A
Authority
JP
Japan
Prior art keywords
propeller
seawater
stern
ship
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60019153A
Other languages
Japanese (ja)
Inventor
Ichiro Tanaka
田中 一朗
Matao Takagi
高木 又男
Akihisa Kuniyone
国米 昭久
Takeshi Kato
剛 加藤
Masami Hikino
引野 正巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP60019153A priority Critical patent/JPS61178293A/en
Publication of JPS61178293A publication Critical patent/JPS61178293A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the hull resistance, improve the propulsion efficiency, and decrease oscillation by setting the flowing direction of the seawater induced by a pump from an outlet port provided on the external surface of a bossing that supports a propeller shaft to an inlet port, in the direction opposite to the rotation of the propeller. CONSTITUTION:When a propeller is turned in A direction and a seawater pump 12 is actuated at navigation, the seawater is sucked from respective inlet ports 3 and 4 through a suction pipe 9 and a connection pipe 11 and then ejected from outlet ports 5 and 6 through an ejecting recessed section 8 by the pump 12. Consequently, the flow of the seawater in the B direction is generated toward the inlet ports 3 and 4 from the outlet ports 5 and 6 and a seawater stream is advanced toward the propeller by the effect of the flow while it is turning in direction B opposite to the direction A of propeller rotation. As a result, the thrust of the propeller is improved and the propulsion efficiency is increased. In addition, since vortexes are collected on the surface of the propeller, the oscillation of the hull resulting from the propeller is reduced and cavitation and the generation of corrosion resulting from the cavitation can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は船舶の船尾構造に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a stern structure for a ship.

従来技術 船尾の船体中心面(水平断面における船体中心線を含む
鉛直面)内にプロペラ軸を有する1つのプロペラを備え
た通常の一軸船の場合、船側および船底を通る流れのね
じれによって、船尾洗場には船体長さ方向に垂直な面内
において回転流が存在する。この回転流は一般に船尾ビ
ルジ渦と呼ばれ、この渦の中心には、境界層の剥離によ
る減速流すなわち伴流が集中している。船尾形状が船体
中心面に対して対称な船舶では、船尾ビルジ渦は   
゛両舷に左右対称に生じ、その回転方向は自回シすなわ
ち左舷側では右回転で右舷側では左回転である。両舷の
船尾ビルジ渦の中心近傍に、それぞ汰渦と逆向きに回転
する2つのプロペラを設ければ、境°界1層)の剥離に
よるエネルギ損失を伴流利得の形で回収できるため、推
進効率の向上が期待できる。
Prior art In the case of a normal single-shaft ship equipped with one propeller with the propeller axis in the hull center plane (vertical plane including the hull center line in horizontal section) at the stern, the stern wash is caused by the twisting of the flow through the ship's side and the bottom. There is a rotating flow in the field perpendicular to the longitudinal direction of the hull. This rotating flow is generally called a stern bilge vortex, and the deceleration flow, that is, the wake, is concentrated at the center of this vortex due to separation of the boundary layer. In ships whose stern shape is symmetrical about the hull center plane, the stern bilge vortex
It occurs symmetrically on both sides, and the direction of rotation is self-rotation, that is, rotation to the right on the port side and rotation to the left on the starboard side. By installing two propellers that rotate in the opposite direction to the vortices near the center of the stern bilge vortices on both sides, the energy loss due to separation of the boundary layer 1) can be recovered in the form of wake gain. , an improvement in propulsion efficiency can be expected.

しかしながら、通常の一軸船の場合、両舷に生じる船尾
ビルジ渦の各中心をともにプロペラ中心に近付けること
はできないため、伴流利得が十分に得られず、これを有
効に利用することは困輸である。さらに、たとえば右回
転のプロペラを備えた通常の一軸船の場合、右舷側船尾
ビルジ渦はプロベラと逆向きの左回転であるため、これ
を有効に利用できるが、左舷側ビルジ渦はプロペラと同
じ向きの□右□回転であるため、とれを利用できない。
However, in the case of a normal single-shaft ship, it is not possible to bring the centers of the stern bilge vortices that occur on both sides close to the propeller center, so it is difficult to obtain sufficient wake gain and it is difficult to utilize this effectively. It is. Furthermore, for example, in the case of a normal single-shaft ship with a right-handed propeller, the starboard stern bilge vortex rotates to the left in the opposite direction to the propeller, so it can be used effectively, but the port bilge vortex is the same as the propeller. Since the direction is □right□ rotation, the tore cannot be used.

また、プロペラの右舷側では辷れと逆向きに回転転する
船尾ビルジ渦によってプロペラ翼の迎角が増大し、プロ
ペラの左舷側ではこれと同じ向きに回転する船尾ビルジ
渦によって迎角が減少するため、プロペラによる振動が
発生する。左回転のプロペラを備えた通常の一軸船の場
合も、左右の関係は逆になるが、これと同様の問題が生
じる。
Additionally, on the starboard side of the propeller, the angle of attack of the propeller blade increases due to the stern bilge vortex rotating in the opposite direction to the slippage, and on the port side of the propeller, the angle of attack decreases due to the stern bilge vortex rotating in the same direction. Therefore, vibrations caused by the propeller occur. In the case of a normal single-shaft ship with a counterclockwise-rotating propeller, the left-right relationship is reversed, but a similar problem occurs.

上記のような通常の一軸船における欠点を解消するため
、従来から、たとえば次のような種々の対策が講じられ
ている。
In order to eliminate the above-mentioned drawbacks of ordinary single-shaft ships, various measures have been taken in the past, such as the following.

(a)  船尾部没水部のプロペラ前方の形状を左右非
対称化して、両舷の船尾渦をプロペラ中心に近付ける。
(a) The shape of the stern submerged area in front of the propeller is made asymmetrical to bring the stern vortices on both sides closer to the center of the propeller.

(b)  船尾部没水部の形状を左右非対称化して、船
尾渦をほぼ片舷側にのみ発生させ、この渦の中心近傍に
これと逆向きに回転するプロペラを配置する。
(b) The shape of the stern submerged part is made asymmetrical to generate a stern vortex only on one side, and a propeller rotating in the opposite direction is placed near the center of this vortex.

(c)  船尾部没水部のプロペラ前方に変流フィンな
どを設ける。
(c) Install current-variant fins in front of the propeller in the submerged stern section.

発明が解決しようとする問題点 上記(alおよび(C)においては、両舷の船尾渦の中
心をプロペラ中心にある程1、度近付けることができた
にしても、両舷の渦は依然として存在し、十分な推進効
率の向上は期待できない。また、上記(b)においては
、船尾渦を片舷側にのみ発生させるために船尾形状が複
雑に力って船体抵抗が増大するとともに、プロペラおよ
び主機の配置などに問題が生じる。
Problems to be Solved by the Invention In the above cases (al and (C)), even if the center of the stern vortices on both sides could be moved one degree closer to the center of the propeller, the vortices on both sides would still exist. However, sufficient improvement in propulsion efficiency cannot be expected.In addition, in (b) above, in order to generate the stern vortex only on one side, the stern shape is complicated and the hull resistance increases, and the propeller and main engine Problems arise with the placement of

また−通常の一軸船の場合、船尾ビルジ渦が船底境界層
を巻込み、伴流係数を増加するという利点があるが、プ
ロペラ面内に集中できないような強いビルジ渦を船尾部
両舷に発生させることは、船体抵抗を増加す、るため不
利である。このため、船体中央付近から船尾までの主船
体の横断面形状がU形で、船体中央付近から船尾方向へ
の主船体表面の曲率が船側と船底とでほぼ同一であるい
わゆる低抵抗船型が提案されている。このような低抵抗
船便を採用すれば、船尾ビルジ渦がほとんど発生しない
ため船体抵抗は減少するが、ビルジ渦による伴流係数の
増加が望めないため推進効率は一般に悪化する。
In addition, in the case of a normal single-shaft ship, the stern bilge vortex has the advantage of involving the bottom boundary layer and increasing the wake coefficient, but strong bilge vortices that cannot be concentrated within the propeller plane are generated on both sides of the stern. This is disadvantageous as it increases the hull resistance. For this reason, a so-called low-resistance hull type has been proposed in which the cross-sectional shape of the main hull from near the center of the hull to the stern is U-shaped, and the curvature of the surface of the main hull from near the center of the hull to the stern is almost the same on the side and the bottom. has been done. If such a low-resistance shipping method is adopted, hull resistance will be reduced because stern bilge vortices will hardly be generated, but propulsion efficiency will generally deteriorate because the wake coefficient cannot be expected to increase due to bilge vortices.

・本発明は上記問題点を解消した船舶の船尾構造を提供
することを目的とする。
- An object of the present invention is to provide a stern structure for a ship that solves the above problems.

問題を解決するための手段 上記問題を解決するため、本発明の船舶の船尾構造は船
体中央から船尾までの主船体の横断面形状がU字形で、
船体中央付近から船尾方向への主船・体表・面の曲率が
船側と船底とではほぼ同一である一軸船において、プロ
ペラシャフトを回転自在に支持するポッシングの外周面
適所に適当数の吸口と吹出口とを形成し、ポッシング内
に吸口から吸引した海水を吹出口より吸口に向けて吹出
す海水ポンプを設け、吹出口から吸口へ吹出される海水
の流れ方向をプロペラ回転方向と逆に設定したもめで纏
る。
Means for Solving the Problems In order to solve the above problems, the stern structure of the ship of the present invention has a U-shaped cross-sectional shape of the main hull from the center of the ship to the stern.
In a single-shaft ship, where the curvature of the main ship, body surface, and surface from near the center of the ship toward the stern is almost the same on the ship side and the bottom, an appropriate number of suction ports are placed at appropriate locations on the outer circumferential surface of the possing that rotatably supports the propeller shaft. A seawater pump is installed in the possing to blow out the seawater drawn from the suction port toward the suction port, and the flow direction of the seawater blown from the blowout port to the suction port is set to be opposite to the propeller rotation direction. Wear it in a dirty manner.

作用 上記構成において、ポンプを作動させると、吸口から吸
込まれた海水が吹出口から吸口に向けて吹出され、その
吹出された海水の流れによって生じた海水流がプロペラ
に向けてそのプロペラの回転方向とは逆方向に旋回しな
がら進むものである。
Operation In the above configuration, when the pump is operated, the seawater sucked in from the suction port is blown out from the outlet toward the suction port, and the seawater flow generated by the flow of the blown seawater is directed toward the propeller in the direction of rotation of the propeller. It moves while turning in the opposite direction.

実施例 以下、本発明の一実施例を図に基づいて説明する。この
実施例の船舶は、船尾の船体中心面内に1つのプロペラ
を備え、船体中央付近から船尾までの主船体の横断面形
状がU形で、いわゆるバトックフロー組型に関する。(
1)は船尾において〜プロペラシャフト(2)を回転自
在に支持するポッシングであって、その外周面の斜め上
方箇所と斜め下方箇所とにそれぞれ一対づつ吸口(3)
 (4)を形成しである。また各吸口(3) (4)に
対向してその外周面の斜め下方箇所と斜め上方箇所とに
吹出口(5)(6)を形成しである。さらに各吹出口(
5) (6)はその対向する吸口(3)(4)よりも船
首側に配置しである。(7)(8)は各吸口(3) (
4)および各吹出口(5) (6)に配設された吸口凹
部と吹出凹部、(9)は各吸口四部(7)内に配設され
た吸引管であって、その外周面の吸口(3) (4)と
は反対側−の箇所に吸引口QIを有する。aυは各吸引
管(9)と吹出凹部(8)とを連通させる連通管であっ
て、途中に海水ポンプ(6)を介在させである。(至)
はプロペラである。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. The ship of this embodiment has one propeller in the center plane of the hull at the stern, and the cross-sectional shape of the main hull from near the center of the ship to the stern is U-shaped, and is of a so-called buttock flow type. (
1) is a possing that rotatably supports the propeller shaft (2) at the stern, and has a pair of suction ports (3) at an obliquely upper part and an obliquely lower part of its outer peripheral surface.
(4) is formed. In addition, air outlets (5) and (6) are formed at diagonally lower and upper portions of the outer circumferential surface of each suction port (3) and (4), respectively. Furthermore, each air outlet (
5) (6) is placed closer to the bow than the opposing ports (3) and (4). (7) and (8) are each suction port (3) (
4) and each outlet (5), a suction recess and an outlet recess provided in (6), and (9) a suction pipe provided in each of the four suction ports (7); (3) It has a suction port QI on the opposite side to (4). aυ is a communication pipe that communicates each suction pipe (9) with the blowout recess (8), and a seawater pump (6) is interposed in the middle. (To)
is a propeller.

以下、上記構成における作用について説明する。The effects of the above configuration will be explained below.

航海中では、プロペラ(至)を矢印(4)方向へ回転さ
せると共に海水ポンプ(2)を作動させる。すると各吸
口(3)(4)から吸口四部(7)内に吸引された海水
は吸引口αりから吸引管(9)および連通管aηを介し
て吸引された後、ポンプ(6)によって吹出凹部(8)
を介して吹出口(5) (6)から吹出される。したが
って吹出口(5) (6)から吸口(3) (4)に向
かって矢印(B)方向の海水の流れが生じ、その流れに
よって海水流がプロペラ(2)に向けてそのプロペラ(
2)の回転方向囚とは逆方向(B)に旋回しながら進み
、プロペラ(至)の推力を向上させる。
During the voyage, the propeller (to) is rotated in the direction of the arrow (4) and the seawater pump (2) is activated. Then, the seawater sucked into the four suction ports (7) from each suction port (3) and (4) is sucked from the suction port α through the suction pipe (9) and the communication pipe aη, and then is blown out by the pump (6). Recess (8)
It is blown out from the blow-off ports (5) and (6) through the air. Therefore, a flow of seawater occurs in the direction of arrow (B) from the air outlet (5) (6) toward the suction port (3) (4), and this flow causes the seawater flow to flow toward the propeller (2).
It advances while turning in the direction (B) opposite to the direction of rotation in 2), increasing the thrust of the propeller.

発明の効果 以上述べたごとく本発明によれば、船体中央付近から、
船尾までの主船体の横断面形状がU形で、いわゆるバト
ックフロー船型であるから、船尾ビμジ\渦がほとんど
発生せず、船体抵抗が小さい。
Effects of the Invention As described above, according to the present invention, from near the center of the hull,
Since the cross-sectional shape of the main hull up to the stern is U-shaped, which is a so-called buttock-flow hull shape, almost no stern vortex is generated and the hull resistance is small.

またプロペラ面内に、プロペラ回転方向と逆向きの1つ
の渦を発生させることが出来る。したがって、船体抵抗
を減少すると同時に、推進効率を向上させることができ
、全体として必要な馬力が小さくてすむ。また、渦がプ
ロペラ面内に集中するため、プロペラによる船体の振動
が大幅に減少りかつ、キャビテーションおよびこれによ
る腐食の発生が防止される。
Furthermore, it is possible to generate one vortex in the propeller plane in the direction opposite to the propeller rotation direction. Therefore, the hull resistance can be reduced and the propulsion efficiency can be improved at the same time, and the overall required horsepower can be reduced. Furthermore, since the vortices are concentrated within the plane of the propeller, the vibration of the hull due to the propeller is significantly reduced, and cavitation and corrosion caused by this are prevented from occurring.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示し、第1図は一方向から見た
斜視図、第2図は他方向から見た斜視図、第3図は要部
の横断面図である。
The drawings show an embodiment of the present invention, in which FIG. 1 is a perspective view seen from one direction, FIG. 2 is a perspective view seen from the other direction, and FIG. 3 is a cross-sectional view of the main part.

Claims (1)

【特許請求の範囲】[Claims] 1、船体中央から船尾までの主船体の横断面形状がU字
形で、船体中央付近から船尾方向への主船体表面の曲率
が船側と船底とではほぼ同一である一軸船において、プ
ロペラシャフトを回転自在に支持するポッシングの外周
面適所に適当数の吸口と吹出口とを形成し、ポッシング
内に吸口から吸引した海水を吸出口より吸口に向けて吹
出す海水ポンプを設け、吹出口から吸口へ吹出される海
水の流れ方向をプロペラ回転方向と逆に設定したことを
特徴とする船舶の船尾構造。
1. The propeller shaft is rotated in a single-shaft ship in which the cross-sectional shape of the main hull from the center of the ship to the stern is U-shaped, and the curvature of the main hull surface from near the center of the ship to the stern is almost the same on the ship side and the bottom. An appropriate number of suction ports and air outlets are formed at appropriate locations on the outer circumferential surface of the freely supported possing, and a seawater pump is installed inside the possing to blow out seawater sucked from the suction port from the suction port toward the suction port, and from the air outlet to the suction port. A stern structure of a ship characterized in that the direction of flow of seawater blown out is set opposite to the direction of rotation of a propeller.
JP60019153A 1985-02-02 1985-02-02 Stern structure for ship Pending JPS61178293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60019153A JPS61178293A (en) 1985-02-02 1985-02-02 Stern structure for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60019153A JPS61178293A (en) 1985-02-02 1985-02-02 Stern structure for ship

Publications (1)

Publication Number Publication Date
JPS61178293A true JPS61178293A (en) 1986-08-09

Family

ID=11991476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60019153A Pending JPS61178293A (en) 1985-02-02 1985-02-02 Stern structure for ship

Country Status (1)

Country Link
JP (1) JPS61178293A (en)

Similar Documents

Publication Publication Date Title
US8403716B2 (en) Twin-skeg ship
WO2010140357A1 (en) Biaxial stern catamaran ship
JP3004238B2 (en) Ship propulsion performance improvement device
KR200395385Y1 (en) Rudder for Ship
US3996877A (en) Ship propeller arrangement
US10703453B2 (en) Marine vessel
JP2013006598A (en) Side rudder of ship
EP1507701B1 (en) Propeller shafts
FI90330B (en) Craft
JP2002178993A (en) Rudder for ship
JPS61178293A (en) Stern structure for ship
JPH08150983A (en) Resistance reducing device of ship
KR900005713B1 (en) Vessel having propeler arranged on vertical hull center plane
JP2013252774A (en) Marine vessel
JPH0615828Y2 (en) Stern structure of a ship
JPS6113435Y2 (en)
JP2004074886A (en) Ship
JP3477568B2 (en) Bilge vortex energy recovery system for ships
JPS6036556Y2 (en) Vessel with stern vortex canceling fins
JPS6226197A (en) Device for improving marine propulsive performance
JP5818247B2 (en) Biaxial stern catamaran vessel
JPS5863594A (en) Ship
JPH0319835B2 (en)
JPH0319836B2 (en)
JPH06247388A (en) Rudder structure of ship