JPH0319835B2 - - Google Patents

Info

Publication number
JPH0319835B2
JPH0319835B2 JP59023588A JP2358884A JPH0319835B2 JP H0319835 B2 JPH0319835 B2 JP H0319835B2 JP 59023588 A JP59023588 A JP 59023588A JP 2358884 A JP2358884 A JP 2358884A JP H0319835 B2 JPH0319835 B2 JP H0319835B2
Authority
JP
Japan
Prior art keywords
hull
stern
propeller
bossing
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59023588A
Other languages
Japanese (ja)
Other versions
JPS60166590A (en
Inventor
Masami Hikino
Yukio Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59023588A priority Critical patent/JPS60166590A/en
Publication of JPS60166590A publication Critical patent/JPS60166590A/en
Publication of JPH0319835B2 publication Critical patent/JPH0319835B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/50Measures to reduce greenhouse gas emissions related to the propulsion system

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、一軸船の船尾船型に関する。[Detailed description of the invention] Industrial applications The present invention relates to a stern hull type of a single-shaft ship.

従来技術 船尾の船体中心面(水平断面における船体中心
線を含む鉛直面)内にプロペラ軸を有する1つの
プロペラを備えた通常の一軸船の場合、船側およ
び船底を通る流れのねじれによつて、船尾流場に
は船体長さ方向に垂直な面内において回転流が存
在する。この回転流は一般に船尾ビルジ渦と呼ば
れ、この渦の中心には、境界層の剥離による減速
流すなわち伴流が集中している。船尾形状が船体
中心面に対して対称な船舶では、船尾ビルジ渦は
両玄に左右対称に生じ、その回転方向は内回りす
なわち左玄側では右回転で右玄側では左回転であ
る。両玄の船尾ビルジ渦の中心近傍に、それぞ
れ、渦と逆向きに回転する2つのプロペラを設け
れば、プロペラの単独効率が向上するとともに、
境界層の剥離によるエネルギ損失を伴流利得の形
で回収できるため、推進効率の向上が期待でき
る。しかしながら、通常の一軸船の場合、両玄に
生じる船尾ビルジ渦の各中心をともにプロペラ中
心に近付けることはできないため、伴流利得が充
分に得られず、これを有効に利用することは困難
である。さらに、たとえば右回転のプロペラを備
えた通常の一軸船の場合、右玄側船尾ビルジ渦は
プロペラと逆向きの左回転であるため、これを有
効に利用できるが、左玄側ビルジ渦はプロペラと
同じ向きの右回転であるため、これを利用できな
い。また、プロペラの右玄側ではこれと逆向きに
回転する船尾ビルジ渦によつてプロペラ翼の迎角
が増大し、プロペラの左玄側ではこれと同じ向き
に回転する船尾ビルジ渦によつて迎角が減少する
ため、プロペラによる振動が発生する。左回転の
プロペラを備えた通常の一軸船の場合も、左右の
関係は逆になるが、これと同様の問題が生じる。
PRIOR ART In the case of a normal single-shaft ship equipped with one propeller with the propeller axis in the hull center plane at the stern (the vertical plane that includes the hull center line in horizontal section), due to the twisting of the flow through the ship's side and the ship's bottom, In the stern flow field, there is a rotating flow in a plane perpendicular to the length direction of the ship. This rotating flow is generally called a stern bilge vortex, and a deceleration flow, that is, a wake, is concentrated at the center of this vortex due to separation of the boundary layer. In a ship whose stern shape is symmetrical with respect to the hull center plane, the stern bilge vortex occurs symmetrically on both sides, and the rotation direction is inward, that is, clockwise rotation on the left side and counterclockwise rotation on the right side. By installing two propellers that rotate in the opposite direction to the vortices near the center of the stern bilge vortex, the independent efficiency of the propellers will improve, and
Since energy loss due to separation of the boundary layer can be recovered in the form of wake gain, it is expected that propulsion efficiency will improve. However, in the case of a normal single-shaft ship, it is not possible to bring the centers of the stern bilge vortices that occur on both sides close to the propeller center, so it is difficult to obtain sufficient wake gain and make effective use of this. be. Furthermore, for example, in the case of a normal single-shaft ship with a right-handed propeller, the right side stern bilge vortex rotates to the left in the opposite direction to the propeller, so it can be used effectively, but the left side bilge vortex rotates counterclockwise in the opposite direction to the propeller. This cannot be used because it is a clockwise rotation in the same direction as . Additionally, on the right side of the propeller, the angle of attack of the propeller blade increases due to the stern bilge vortex rotating in the opposite direction, and on the left side of the propeller, the angle of attack is increased by the stern bilge vortex rotating in the same direction. Vibrations caused by the propeller occur due to the reduced angle. In the case of a normal single-shaft ship with a counterclockwise-rotating propeller, the left-right relationship is reversed, but a similar problem occurs.

上記のような通常の一軸船における欠点を解消
するため、従来から、たとえば次のような種々の
対策が講じられている。
In order to eliminate the above-mentioned drawbacks of ordinary single-shaft ships, various measures have been taken in the past, such as the following.

(a) 船尾部没水部のプロペラ前方の形状を左右非
対称化して、両玄の船尾渦をプロペラ中心に近
付ける。
(a) Make the shape of the stern submerged area in front of the propeller asymmetrical to bring the stern vortices on both sides closer to the center of the propeller.

(b) 船尾部没水部の形状を左右非対称化して、船
尾渦をほぼ片玄側にのみ発生させ、この渦の中
心近傍にこれと逆向きに回転するプロペラを配
置する。
(b) The shape of the submerged part of the stern is made asymmetrical, so that a stern vortex is generated almost only on one side, and a propeller that rotates in the opposite direction is placed near the center of this vortex.

(c) 船尾部没水部のプロペラ前方に変流フインな
どを設ける。
(c) Install current-variant fins in front of the propeller in the submerged stern section.

しかしながら、上記(a)および(c)においては、両
玄の船尾渦の中心をプロペラ中心にある程度近付
けることができたにしても、両玄の渦は依然とし
て存在し、十分な推進効率の向上は期待できな
い。また、上記(b)においては、船尾渦を片玄側に
のみ発生させるために船尾形状が複雑になつて船
体抵抗が増大するとともに、プロペラおよび主機
の配置などに問題が生じる。
However, in (a) and (c) above, even if the center of the Ryogen's stern vortex could be brought closer to the propeller center to some extent, the Ryogen's vortex still exists, and the propulsion efficiency cannot be sufficiently improved. I can't wait. In addition, in (b) above, since the stern vortex is generated only on one side, the stern shape becomes complicated, the hull resistance increases, and problems arise with the arrangement of the propeller and main engine.

また、通常の一軸船の場合、船尾ビルジ渦が船
底境界層を巻込み、伴流係数を増加するという利
点があるが、プロペラ面内に集中できないような
強いビルジ渦を船尾部両玄に発生させることは、
船体抵抗を増加するため不利である。このため、
船体中央付近から船尾までの主船体の横断面形状
がU形で、船体中央不近から船尾方向への主船体
表面の曲率が船側と船底とではほぼ同一であるい
わゆる低抵抗船型が提案されている。このような
低抵抗船型を採用すれば、船尾ビルジ渦がほとん
ど発生しないため船体抵抗は減少するが、ビルジ
渦により伴流係数の増加が望めないため推進効率
は一般に悪化する。
In addition, in the case of a normal single-shaft ship, the stern bilge vortex has the advantage of involving the bottom boundary layer and increasing the wake coefficient, but strong bilge vortices that cannot be concentrated within the propeller plane are generated on both sides of the stern. What to do is
This is disadvantageous because it increases the hull resistance. For this reason,
A so-called low-resistance hull type has been proposed in which the cross-sectional shape of the main hull from near the center of the hull to the stern is U-shaped, and the curvature of the main hull surface from near the center of the hull toward the stern is almost the same on the ship side and the bottom. There is. If such a low-resistance hull form is adopted, hull resistance will be reduced because stern bilge vortices will hardly be generated, but propulsion efficiency will generally deteriorate because the wake coefficient cannot be expected to increase due to bilge vortices.

発明の目的 この発明の目的は、上記のような低抵抗船型を
採用した一軸船において、プロペラ面内にこれと
逆向きの1つの渦を発生させて推進効率の向上を
図りうる船尾船型を提供することにある。
Purpose of the Invention The purpose of the present invention is to provide a stern hull shape that can improve propulsion efficiency by generating a single vortex in the opposite direction within the plane of the propeller in a single-shaft ship adopting a low-resistance hull shape as described above. It's about doing.

発明の構成 この発明による一軸船の船尾船型は、 船尾の船体中心面内にプロペラ軸を有する1つ
のプロペラを備え、船体中央付近から船尾までの
主船体の横断面形状がU形で、船体中央付近から
船尾方向への主船体表面の曲率が船側と船底とで
ほぼ同一である一軸船において、 主船体の船尾部に、船体中心面に対して前進時
のプロペラ回転方向と逆向きに傾斜したボシング
が設けられ、 スクエヤステーシヨン3/8の横断面において、
ボシング中心線の船体中心面に対する傾斜角が20
〜40゜であり、 各スクエヤステーシヨンの横断面におけるボシ
ングの下端部形状が略円弧状であり、 前進時にプロペラ翼が上向きに運動する側にお
いて、各スクエヤステーシヨンの横断面において
ボシングが主船体と交わる点から船体中心面まで
の距離(l1)とプロペラ直径(D)との間に 0.65≦l1/D≦1.0 の関係があり、 前進時にプロペラ翼が下向きに運動する側にお
いて、各スクエヤステーシヨンの横断面において
ボシングが主船体と交わる点から船体中心面まで
の距離(l2)と主船体のベースラインからこの点
までの高さ(h)とプロペラ直径(D)との間に −0.595l2/D+0.9≦h/D h/D≦−0.595l2/D+1.2 の関係があることを特徴とするものである。
Composition of the Invention The stern hull type of the single-shaft boat according to the present invention is equipped with one propeller having a propeller shaft in the center plane of the hull at the stern, and the cross-sectional shape of the main hull from the vicinity of the center of the hull to the stern is U-shaped. In a single-shaft ship where the curvature of the main hull surface from the vicinity to the stern is almost the same on the side and the bottom, there is a curvature on the stern of the main hull that is tilted in the opposite direction to the propeller rotation direction when moving forward with respect to the center plane of the hull. A bossing is provided, and in the cross section of the square station 3/8,
The angle of inclination of the bossing centerline to the hull center plane is 20
~40°, and the lower end shape of the bossing in the cross section of each square station is approximately arc-shaped, and on the side where the propeller blades move upward during forward movement, the bossing in the cross section of each square station is close to the main hull. There is a relationship of 0.65≦l 1 /D≦1.0 between the distance (l 1 ) from the point where it intersects with the center plane of the ship and the propeller diameter (D). The distance between the point where the bossing intersects with the main hull in the cross section of the square station to the center plane of the hull (l 2 ), the height from the baseline of the main hull to this point (h), and the propeller diameter (D). It is characterized by the following relationship: −0.595l 2 /D+0.9≦h/D h/D≦−0.595l 2 /D+1.2.

実施例と作用 図面はこの発明による船尾船型を採用した一軸
船の船尾部を示しており、第1図は側面図、第2
図はスクエヤステーシヨン(以下sqstという)3/
8における横断面図、第3図は正面線図である。
Embodiments and Operations The drawings show the stern of a single-shaft ship adopting the stern hull type according to the present invention, and FIG. 1 is a side view, and FIG. 2 is a side view.
The figure shows Square Station (hereinafter referred to as SQST) 3/
8 is a cross-sectional view, and FIG. 3 is a front view.

この船は、船尾の船体中心面C内にプロペラ軸
1を有する1つのプロペラ2を備え、船体中央付
近から船尾までの主船体3の横断面形状がU形の
左右対称なものであり、船体中央付近から船尾方
向への主船体3表面の曲率が船側と船底とでほぼ
同一である。そして、前進時のプロペラ2の回転
方向は右回転である。
This ship is equipped with one propeller 2 having a propeller shaft 1 in the hull center plane C at the stern, and the cross-sectional shape of the main hull 3 from the vicinity of the hull center to the stern is U-shaped and bilaterally symmetrical. The curvature of the surface of the main hull 3 from the vicinity of the center toward the stern is approximately the same on the ship side and on the bottom. The direction of rotation of the propeller 2 during forward movement is clockwise rotation.

主船体3の船尾部には、船体中心面Cに体して
前進時のプロペラ2の回転方向と逆向きの左回り
に傾斜したボシング4が設けられており、ボシン
グ4と主船体3とが横断面略円弧状の中間曲面
5,6によつて連続状に接続されている。そし
て、船尾部の右玄側には、ボシング4と中間曲面
6と主船体3とによつてみぞ状凹部7が形成され
ている。また、各sqstの横断面におけるボシング
4の下端部8の形状は略円弧状である。
A bossing 4 is provided at the stern of the main hull 3, and is inclined counterclockwise in the direction opposite to the rotating direction of the propeller 2 during forward movement, and is attached to the hull center plane C. They are continuously connected by intermediate curved surfaces 5 and 6 having a substantially arcuate cross section. A groove-like recess 7 is formed on the right side of the stern by the bossing 4, the intermediate curved surface 6, and the main hull 3. Further, the shape of the lower end portion 8 of the bossing 4 in the cross section of each sqst is approximately arcuate.

第3図において、(B)は船幅、(B)は各sqstの
横断面における右玄側の中間曲面6の半径であ
り、sqst3/8〜1・1/4において、この半径(r)
と船幅の比(r/B)は約0.036〜0.096である。
In Figure 3, (B) is the ship width, (B) is the radius of the intermediate curved surface 6 on the right side in the cross section of each sqst, and in sqst3/8 to 1 1/4, this radius (r)
The ratio of ship width to ship width (r/B) is approximately 0.036 to 0.096.

(P2)は各sqstの横断面における右玄側中間曲
面6と主船体3の接触点、(T)は主船体3のベ
ースラインblからこの接触点(P2)までの高さ
(接触点高さ)、(M2)は各sqstにおける接触点
(P2)を結んだ接触線である。そして、sqst3/8〜
1・1/4において、この接触点高さ(T)と船幅
(B)の比(T/B)は約0.28〜0.103であり、この
接触線M2のベースラインbl)に対する角度(α)
は約32.5゜である。なお、(P1)は各sqstの横断面
における左玄側中間曲面5と主船体3の接触点、
M1はこれらの接触点(P1)を結んだ接触線であ
る。
(P 2 ) is the contact point between the right side intermediate curved surface 6 and the main hull 3 in the cross section of each sqst, and (T) is the height from the baseline bl of the main hull 3 to this contact point (P 2 ) (contact point height) and (M 2 ) are contact lines connecting the contact points (P 2 ) in each sqst. And sqst3/8~
At 1 1/4, this contact point height (T) and ship width
The ratio (T/B) of (B) is approximately 0.28 to 0.103, and the angle (α) of this contact line M2 with respect to the baseline bl)
is approximately 32.5°. In addition, (P 1 ) is the contact point between the left side intermediate curved surface 5 and the main hull 3 in the cross section of each sqst,
M 1 is a contact line connecting these contact points (P 1 ).

(Q1)は、左玄側において、各sqstの横断面に
おいてボシング4が主船体3と交わる交点、(l1
はこの交点(Q1)から船体中心面Cまでの距離
(交点距離)、 N1は各sqstにおける交点(Q1)を結んだ交線
である。また、(D)はプロペラ直径であり、交点距
離(l1)とプロペラ直径(D)との間には、 0.65≦l1/D≦1.0 の関係がある。
(Q 1 ) is the intersection point where the bossing 4 intersects with the main hull 3 in the cross section of each sqst on the left side, (l 1 )
is the distance from this intersection (Q 1 ) to the hull center plane C (intersection distance), and N 1 is the intersection line connecting the intersections (Q 1 ) in each sqst. Further, (D) is the propeller diameter, and there is a relationship of 0.65≦l 1 /D≦1.0 between the intersection distance (l 1 ) and the propeller diameter (D).

(Q2)は右玄側において、各sqstの横断面にお
いてボシング4が主船体3と交わる交点、(l2
はこの交点(Q2)から船体中心面Cまでの距離
(交点距離)、(h)はベースラインblからこの交点
(Q2)までの高さ(交点高さ)、N2は各sqstにお
ける交点(Q2)を結んだ交線である。そして、
交点距離(l2)と交点高さ(h)とプロペラ直径(D)と
の間には、 、−0.595l2/D+0.9≦h/D h/D≦−0.595l2/D+1.2 の関係がある。
(Q 2 ) is the intersection point where the bossing 4 intersects with the main hull 3 in the cross section of each sqst on the starboard side, (l 2 )
is the distance from this intersection (Q 2 ) to the hull center plane C (intersection distance), (h) is the height from the baseline bl to this intersection (Q 2 ) (intersection height), and N 2 is the distance at each sqst. It is an intersection line connecting the intersection points (Q 2 ). and,
Between the intersection distance (l 2 ), intersection height (h), and propeller diameter (D), -0.595l 2 /D+0.9≦h/D h/D≦−0.595l 2 /D+1.2 There is a relationship between

clはsqst3/8の横断面におけるボシング中心線
であり、(β)はボシング中心線clの船体中心面
Cに対する傾斜角である。この傾斜角(β)は、
この実施例では32゜であるが、20〜40゜の範囲にあ
ればよい。sqst2・1/2の横断面におけるボシング
中心線は船体中心面C内にあり、これより前側の
横断面形状は船体中心面Cに対して左右対称であ
る。Sはsqst2・1/2〜3/8の間の各sqstの横断面
におけるボシング中心線とボシング4下部との交
点を結んだ曲線であり、この曲線Sはsqst3/8に
おけるボシング中心線(cl)に左右非対称な形で
接続する。
cl is the bossing centerline in the cross section of sqst3/8, and (β) is the inclination angle of the bossing centerline cl with respect to the hull center plane C. This angle of inclination (β) is
In this embodiment, the angle is 32 degrees, but it may be in the range of 20 to 40 degrees. The bossing centerline in the cross section of sqst2.1/2 is within the hull center plane C, and the cross-sectional shape forward of this is symmetrical with respect to the hull center plane C. S is a curve connecting the intersection of the bossing center line and the lower part of bossing 4 in the cross section of each sqst between sqst2・1/2 and 3/8, and this curve S is the bossing center line (cl ) in an asymmetrical manner.

上記一)の船王尾部にはいわゆる低抵抗船型が
採用されているので、船尾ビルジ渦はほとんど発
生せず、船体抵抗は小さい。また、プロペラ軸1
の右玄側では、船底および船側から流入してきた
上向き左回りの流れが、みぞ状凹部7により、さ
らに上向き左回りに誘導され、上向き左回りの大
きな流れになる。プロペラ軸1の左玄側では、船
底および船側から流入してきた上向き右回りの流
れは、ボシング4により、逆に下向き左回りに誘
導され、上向き左回りの小さな流れになる。そし
て、これら両玄の流れは、右玄側の上向き左回り
の流れが左玄側の上向き右回りの流れより大きい
ので、全体としてプロペラ軸1を中心とする左回
りの流れになり、プロペラ面内でその回転方向と
逆向きの1つの回転流すなわち渦となつてプロペ
ラ翼に流入する。したがつて、ビルジ渦がほとん
ど発生しないために船体抵抗が減少するにもかか
わらず、プロペラ面内にこれと逆向きの1つの渦
が発生し、これにより、推進効率が向上し、プロ
ペラによる船体の振動が大幅に減少し、かつキヤ
ビテーシヨンおよびこれによる腐食の発生が防止
される。
Since the so-called low-resistance hull form is adopted in the stern part of the above 1), almost no stern bilge vortex is generated, and the hull resistance is small. Also, propeller shaft 1
On the right side of the vessel, the upward counterclockwise flow that has flowed in from the bottom and side of the ship is further guided upward and counterclockwise by the groove-shaped recess 7, and becomes a large upward counterclockwise flow. On the left side of the propeller shaft 1, the upward clockwise flow flowing in from the bottom and side of the ship is reversely guided downward and counterclockwise by the bossing 4, and becomes a small upward counterclockwise flow. Since the upward and counterclockwise flow on the right side is larger than the upward and clockwise flow on the left side, the flow on both sides becomes a counterclockwise flow centered on the propeller shaft 1 as a whole, and the flow is counterclockwise around the propeller axis 1. Inside, a rotating flow or vortex in the opposite direction to the rotation direction flows into the propeller blade. Therefore, although the hull resistance is reduced because almost no bilge vortices are generated, one vortex in the opposite direction is generated in the plane of the propeller, which improves the propulsion efficiency and reduces the hull resistance caused by the propeller. vibration is significantly reduced, and cavitation and resulting corrosion are prevented.

第4図は、上記の一軸船の船尾部における水流
の状態を電子計算機により解析した結果を示すも
のである。同図の結果より、プロペラ軸の右玄側
に上向き左回りの大きな流れが、左玄側に上向き
右回りの小さな流れが発生することがわかり、こ
れからも、プロペラ面内に1つの左回りの渦が発
生することがわかる。また、このことは、模型を
使用した水槽実験によつても確かめられている。
FIG. 4 shows the results of an electronic computer analysis of the state of water flow in the stern of the single-shaft vessel. From the results in the same figure, it is clear that a large upward counterclockwise flow occurs on the right side of the propeller shaft, and a small upward clockwise flow occurs on the left side. It can be seen that a vortex is generated. This fact has also been confirmed through water tank experiments using models.

前記のボシング中心線clの船体中心面Cに対す
る傾斜角(β)、左玄側における交点距離(l1
とプロペラ直径(D)との関係、右玄側における交点
距離(l2)と交点高さ(h)とプロペラ直径(D)との関
係などは、プロペラ面内に発生する渦の強さおよ
び位置などに影響を与え、これらが前記の範囲を
外れると、十分な効果が得られない。また、これ
らの関係は、プロペラ面内に最適な渦が発生する
ように、船型によつて前記の範囲内で適当に調整
される。
The inclination angle (β) of the bossing center line cl with respect to the hull center plane C, and the intersection distance on the left side (l 1 )
The relationship between and the propeller diameter (D), the relationship between the intersection distance (l 2 ) on the right side, the intersection height (h), and the propeller diameter (D), etc. are determined by the strength of the vortex generated within the propeller plane and If the position or the like is affected and these are out of the above range, sufficient effects will not be obtained. Further, these relationships are appropriately adjusted within the above range depending on the shape of the ship so that an optimum vortex is generated within the plane of the propeller.

この発明は、左回転のプロペラを備えた一軸船
にももちろん適用できる。この場合、船尾部船型
は上記実施例のものと左右逆のものになる。
This invention can of course be applied to a single-shaft ship equipped with a counterclockwise rotating propeller. In this case, the shape of the stern section will be opposite to that of the above embodiment.

発明の効果 この発明による一軸船の船尾船型は、船尾の船
体中心面内にプロペラ軸を有する1つのプロペラ
を備え、船体中央付近から船尾までの主船体の横
断面形状がU形で、船体中央付近から船尾方向へ
の主船体表面の曲率が船側と船底とでほぼ同一で
あるから、いわゆる船尾ビルジ渦がほとんど発生
せず、船体抵抗が小さい。そして、主船体の船尾
部に、船体中心面に対して前進時のプロペラ回転
方向と逆向きに傾斜したボシングが設けられ、こ
のボシングと主船体との間に前述のような関係が
あるので、プロペラ面内にこれと逆向きの1つの
渦を発生させることができる。したがつて、船体
抵抗を減少すると同時に、推進効率を向上させる
ことができ、全体として必要な馬力が小さくてす
む。また、渦がプロペラ面内に集中するため、プ
ロペラによる船体の振動が大幅に減少し、かつキ
ヤビテーシヨンおよびこれによる腐食の発生が防
止される。また、主船体にボシングが設けられた
だけの簡単な形状であるから、船尾部の建造が容
易である。
Effects of the Invention The stern hull type of the single-shaft boat according to the present invention is equipped with one propeller having a propeller shaft in the center plane of the hull at the stern, and the cross-sectional shape of the main hull from near the center of the hull to the stern is U-shaped, and Since the curvature of the main hull surface from the vicinity to the stern is almost the same on the ship side and the bottom, so-called stern bilge vortices hardly occur, and the hull resistance is small. A bossing is provided at the stern of the main hull and is inclined in a direction opposite to the direction of propeller rotation when moving forward with respect to the center plane of the hull, and since there is the above-mentioned relationship between this bossing and the main hull, A single vortex in the opposite direction can be generated within the plane of the propeller. Therefore, the hull resistance can be reduced and at the same time the propulsion efficiency can be improved, and the overall required horsepower can be reduced. In addition, since the vortices are concentrated within the plane of the propeller, vibration of the hull caused by the propeller is significantly reduced, and cavitation and the corrosion caused by it are prevented from occurring. Furthermore, since the main hull has a simple shape with only a bossing provided, the stern section is easy to construct.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示し、第1図は一軸
船の船尾部の側面図、第2図は第1図−線の
横断面図、第3図は船尾部の正面線図、第4図は
船尾部における水流の状態を電子計算機により解
析した結果を示す第3図相当の図面である。 1……プロペラ軸、2……プロペラ、3……主
船体、4……ボシング、8……ボシングの下端
部。
The drawings show an embodiment of the present invention, and FIG. 1 is a side view of the stern of a single-shaft ship, FIG. 2 is a cross-sectional view along the line of FIG. The figure is a drawing equivalent to Figure 3, showing the results of computer analysis of the state of water flow in the stern section. 1... Propeller shaft, 2... Propeller, 3... Main hull, 4... Bossing, 8... Lower end of bossing.

Claims (1)

【特許請求の範囲】 1 船尾の船体中心面内にプロペラ軸を有する1
つのプロペラを備え、船体中央付近から船尾まで
の主船体の横断面形状がU形で、船体中央付近か
ら船尾方向への主船体表面の曲率が船側と船底と
でほぼ同一である一軸船において、 主船体の船尾部に、船体中心面に対して前進時
のプロペラ回転方向と逆向きに傾斜したボシング
が設けられ、 スクエヤステーシヨン3/8の横断面において、
ボシング中心線の船体中心面に対する傾斜角が20
〜40゜であり、 各スクエヤステーシヨンの横断面におけるボシ
ングの下端部形状が略円弧状であり、 前進時にプロペラ翼が上向きに運動する側にお
いて、各スクエヤステーシヨンの横断面において
ボシングが主船体と交わる点から船体中心面まで
の距離(l1)とプロペラ直径(D)との間に 0.65≦l1/D≦1.0 の関係があり、 前進時にプロペラ翼が下向きに運動する側にお
いて、各スクエヤステーシヨンの横断面において
ボシングが主船体と交わる点から船体中心面まで
の距離(l2)と主船体のベースラインからこの点
までの高さ(h)とプロペラ直径(D)との間に −0.595l2/D+0.9≦h/D h/D≦−0.595l2/D+1.2 の関係があることを特徴とする一軸船の船尾船
型。
[Claims] 1. 1. Having a propeller shaft in the center plane of the hull at the stern.
In a uniaxial ship, the main hull has two propellers, the main hull has a U-shaped cross-sectional shape from the center of the hull to the stern, and the curvature of the main hull surface from the center of the hull to the stern is almost the same on the side and the bottom. At the stern of the main hull, a bossing is installed that is inclined in the direction opposite to the direction of propeller rotation when moving forward with respect to the center plane of the hull.
The angle of inclination of the bossing centerline to the hull center plane is 20
~40°, and the lower end shape of the bossing in the cross section of each square station is approximately arc-shaped, and on the side where the propeller blades move upward during forward movement, the bossing in the cross section of each square station is close to the main hull. There is a relationship of 0.65≦l 1 /D≦1.0 between the distance (l 1 ) from the point where it intersects with the center plane of the ship and the propeller diameter (D). The distance between the point where the bossing intersects with the main hull in the cross section of the square station to the center plane of the hull (l 2 ), the height from the baseline of the main hull to this point (h), and the propeller diameter (D). -0.595l 2 /D+0.9≦h/D h/D≦-0.595l 2 /D+1.2.
JP59023588A 1984-02-10 1984-02-10 Shape of stern for single shaft ship Granted JPS60166590A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59023588A JPS60166590A (en) 1984-02-10 1984-02-10 Shape of stern for single shaft ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59023588A JPS60166590A (en) 1984-02-10 1984-02-10 Shape of stern for single shaft ship

Publications (2)

Publication Number Publication Date
JPS60166590A JPS60166590A (en) 1985-08-29
JPH0319835B2 true JPH0319835B2 (en) 1991-03-18

Family

ID=12114740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59023588A Granted JPS60166590A (en) 1984-02-10 1984-02-10 Shape of stern for single shaft ship

Country Status (1)

Country Link
JP (1) JPS60166590A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477618B2 (en) * 2009-06-06 2014-04-23 独立行政法人海上技術安全研究所 Ship and stern shape design method
JP5648826B2 (en) * 2010-02-22 2015-01-07 独立行政法人海上技術安全研究所 Biaxial stern catamaran vessel
WO2010140357A1 (en) * 2009-06-06 2010-12-09 独立行政法人海上技術安全研究所 Biaxial stern catamaran ship

Also Published As

Publication number Publication date
JPS60166590A (en) 1985-08-29

Similar Documents

Publication Publication Date Title
JP3004238B2 (en) Ship propulsion performance improvement device
US4631036A (en) Stern fin for single-prop ship
JP4889238B2 (en) Ship with bow fin
JP4936798B2 (en) Mariner type high-lift two-wheel rudder device
KR100946968B1 (en) Pre-swirl Stator improving ability to maneuver in vessel
JP2552808Y2 (en) Boat rudder
JP2008247050A (en) Vessel drag reducing device and vessel
KR20110101002A (en) Rudder for vessel
JPH0319835B2 (en)
JP2002178993A (en) Rudder for ship
JPH09136693A (en) Bilge voltex energy recovery device for ship
JPS6334294A (en) Ship with off center shaft
JP4363789B2 (en) High lift rudder for ships
JPH04502138A (en) Asymmetric hydrofoil propulsion method and its equipment
KR900005713B1 (en) Vessel having propeler arranged on vertical hull center plane
JP4216858B2 (en) Ship
JP4363795B2 (en) High lift twin rudder system for ships
JP2004042881A (en) Unsymmetrical stern fin structure
JP3394153B2 (en) Rudder with high lift profile
JPS6036556Y2 (en) Vessel with stern vortex canceling fins
JPH0319836B2 (en)
JP2001138986A (en) Energy-saving marine vessel
JPH06247388A (en) Rudder structure of ship
CN217198531U (en) A fairing and boats and ships for boats and ships
JPS6226197A (en) Device for improving marine propulsive performance