JPH08150983A - Resistance reducing device of ship - Google Patents

Resistance reducing device of ship

Info

Publication number
JPH08150983A
JPH08150983A JP6317728A JP31772894A JPH08150983A JP H08150983 A JPH08150983 A JP H08150983A JP 6317728 A JP6317728 A JP 6317728A JP 31772894 A JP31772894 A JP 31772894A JP H08150983 A JPH08150983 A JP H08150983A
Authority
JP
Japan
Prior art keywords
stern
propeller
plate
ship
hull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6317728A
Other languages
Japanese (ja)
Inventor
Satoshi Toyama
聡 外山
Yukio Koshiba
幸雄 小柴
Ryosuke Fujino
良亮 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP6317728A priority Critical patent/JPH08150983A/en
Publication of JPH08150983A publication Critical patent/JPH08150983A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE: To reduce form resistance of propeller shaft holding members in an inward turning twin-screw ship. CONSTITUTION: Propeller shafts 3 are arranged so as to be respectively and protrusively positioned backward from a port side part and a starboard side part of a stern part 2 of the hull 1 having a center skeg 11. A clearance between protective sleeves 6 to protect the propeller shafts 3 and stern hull surfaces 2a above them is blocked up by plates 9. The plates 9 are formed in a flat shape or a shape swelling to the board side. Upward flows Y entering all the way into an inside area from an outside area of the plates 9 are promoted by a pressure difference between the inside and outside areas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二軸内回り船の航行時に
おける船尾部のプロペラシャフト保持部材による形状抵
抗を減少させ且つ推進効率を改善させるようにする船舶
の抵抗低減装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ship drag reducing device for reducing the shape resistance of a propeller shaft holding member at the stern and improving propulsion efficiency when a biaxial inward turning ship travels.

【0002】[0002]

【従来の技術】大型船舶あるいは高速船舶として用いら
れている二軸内回り船においては、プロペラシャフトを
船尾部で保持する構造として、主に、ボッシング方式と
シャフトブラケット方式とが知られている。
2. Description of the Related Art In a two-axis inward-running vessel used as a large vessel or a high-speed vessel, a bossing method and a shaft bracket method are mainly known as a structure for holding a propeller shaft at the stern.

【0003】上記ボッシング方式は、図9の(イ)
(ロ)に示す如く、船体1の船尾部2の左舷側部及び右
舷側部(図では右舷側部のみを示す)にて船尾船体表面
2aからボッシングにて下方へ膨出させたスケグ4を有
し、該左右のスケグ4にプロペラシャフト3を保持させ
るようにしたものである。5はプロペラを示す。
The above boshing method is shown in FIG.
As shown in (b), the skeg 4 bulged downward from the stern hull surface 2a by boshing at the port side and starboard side (only the starboard side is shown in the figure) of the stern 2 of the hull 1 The left and right skegs 4 hold the propeller shaft 3. 5 shows a propeller.

【0004】又、シャフトブラケット方式は、図10の
(イ)(ロ)に示す如く、センタースケグ11を有する
船舶において、船体1の左舷側部及び右舷側部(図では
右舷側部のみを示す)から突出するプロペラシャフト3
を覆って保護するようにしてある保護スリーブ6の後端
部を、ブラケット7を介して船尾船体表面2aに保持さ
せるようにしたものである。
In the shaft bracket system, as shown in (a) and (b) of FIG. 10, in a ship having a center skeg 11, a port side portion and a starboard side portion (only the starboard side portion in the figure are shown. ) Propeller shaft 3 protruding from
The rear end portion of the protective sleeve 6 that covers and protects the stern is held on the stern hull surface 2a via the bracket 7.

【0005】[0005]

【発明が解決しようとする課題】ところが、上記ボッシ
ング方式の場合には、プロペラシャフト3を保持してい
るスケグ4を船体1の船尾部2の形状と一体で設計する
必要があるため、スケグ4の肉厚が厚くなって重量的に
不利であるばかりでなく、設計、建造が共に複雑にな
り、又、左右のスケグ4の間は船尾トンネル8となるよ
うに設計されるものであるため、航行中に、船尾トンネ
ル8に追い波が入り込むと船尾部2の外板が波浪外力に
よりダメージを受ける、という問題がある。
However, in the case of the above bossing method, the skeg 4 holding the propeller shaft 3 needs to be designed integrally with the shape of the stern portion 2 of the hull 1, so the skeg 4 Is not only disadvantageous in terms of weight because it is thick, but it is also complicated in design and construction, and is designed to form a stern tunnel 8 between the left and right skegs 4. There is a problem that if a trailing wave enters the stern tunnel 8 during navigation, the outer plate of the stern portion 2 will be damaged by the wave external force.

【0006】一方、シャフトブラケット方式の場合に
は、上記ボッシング方式に比して、重量的にも設計の面
でも有利であり、しかも船尾部2の外板が波浪外力によ
りダメージを受けることも少ないものであり、又、保護
スリーブ6をその上方の船尾船体表面2aに保持させる
ブラケット7は断面翼形に成形されていて摩擦抵抗は小
さくなるようにしてあるが、ブラケット7が存在するこ
とから、航行時に、ブラケット7によるプロペラシャフ
ト保持部材の形状抵抗が作用することになり、殊に、最
近の高速化要求に伴って主機馬力が大きくなると、プロ
ペラシャフト3自体も太くしなければならないので、こ
れを保持するためには、上記ブラケット7に加えて、図
10の(ロ)において二点鎖線で示す如く、別の角度位
置にもブラケット7を設けるようにする等、複数枚のブ
ラケット7が必要となるため、上記の形状抵抗が更に増
大する結果、船速を思うように上げることができず、推
進効率の面で問題がある。
On the other hand, the shaft bracket method is more advantageous in terms of weight and design than the above bossing method, and the outer plate of the stern portion 2 is less likely to be damaged by the wave external force. Also, the bracket 7 for holding the protective sleeve 6 on the stern hull surface 2a above the bracket 7 is formed in a wing shape in cross section so that the friction resistance is small, but since the bracket 7 exists, At the time of navigation, the shape resistance of the propeller shaft holding member by the bracket 7 acts, and especially when the main engine horsepower becomes large due to the recent demand for high speed, the propeller shaft 3 itself must be thick. In order to hold the bracket 7, in addition to the bracket 7 described above, the bracket 7 can be moved to another angular position as shown by a chain double-dashed line in FIG. Etc. to be provided, because it requires a plurality of brackets 7, a result of the shape described above the resistance is further increased, can not be increased as expected the ship speed, there is a problem in terms of propulsion efficiency.

【0007】そこで、本発明は、センタースケグを有す
る船舶において、プロペラシャフト保持部材の形状抵抗
を小さくして推進性能を改善し、同時に設計、建造の容
易化を図ることができるような船舶の抵抗低減装置を提
供しようとするものである。
In view of the above, the present invention provides a ship having a center skeg, which reduces the shape resistance of the propeller shaft holding member to improve propulsion performance, and at the same time facilitates design and construction. It is intended to provide a reduction device.

【0008】[0008]

【課題を解決するための手段】本発明は、上記課題を解
決するために、センタースケグを有する船舶における船
尾部の左舷側部及び右舷側部からそれぞれ後方へ向けて
プロペラシャフトを突出させて互いに内回りとなるよう
にし、該各プロペラシャフトを保護する保護スリーブと
該保護スリーブの上方に位置する船尾船体表面との間
を、全面が平らなプレートで塞いだ構成とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has a propeller shaft projecting rearward from each of the port side part and the starboard side part of the stern of a ship having a center skeg. The inner circumference is covered with a plate whose entire surface is closed between a protective sleeve that protects each propeller shaft and the surface of the stern hull located above the protective sleeve.

【0009】又、全面が平らなプレートに代えて、少な
くとも後半部を、それぞれ舷側に対称的に膨らむような
湾曲形状としたプレートを用いた構成としてもよい。
Further, instead of the plate having a flat surface, at least the latter half may be configured to have a curved shape so as to symmetrically swell toward the port side.

【0010】更に、プレートの厚みを、後端側へ向けて
逓減させた構成とするとよい。
Further, it is preferable that the thickness of the plate is gradually reduced toward the rear end side.

【0011】[0011]

【作用】プロペラシャフトを保護する保護スリーブとそ
の上方の船尾船体表面との間の隙間が平らなプレートに
よって塞がれていることから、従来のプロペラブラケッ
ト方式の如き航行時の形状抵抗が大きくなるという問題
はなくなる。又、上記プレートの内側領域と外側領域で
は流速差に基づく圧力差が生じるため、この圧力差を埋
め合せするようにプレートの外側領域から内側流域へ回
り込む上向きの流れが促進され、この上向きの流れがプ
ロペラの回転方向と逆の回転流成分となるため、プロペ
ラの後方に残る水流の回転エネルギーを効率よく回収し
て推進効率を向上させることができる。
[Function] Since the gap between the protective sleeve for protecting the propeller shaft and the surface of the stern hull above the protective sleeve is closed by the flat plate, the shape resistance during navigation as in the conventional propeller bracket system becomes large. That problem disappears. Further, since a pressure difference based on the flow velocity difference is generated between the inner region and the outer region of the plate, an upward flow that wraps around from the outer region of the plate to the inner flow region is promoted so as to compensate for this pressure difference, and this upward flow. Becomes a rotational flow component that is opposite to the rotational direction of the propeller, so that the rotational energy of the water flow remaining behind the propeller can be efficiently collected and the propulsion efficiency can be improved.

【0012】又、左右のプレートの少なくとも後半部を
それぞれ舷側に対称的に膨らむように湾曲させた場合
は、プレートの内側領域に回り込んだ上向きの流れの回
転の度合が強められるため、プロペラの後方における水
流の回転エネルギーを更に効率よく回収できるようにな
る。この際、左右のプレートに生じる横力は打ち消され
るので、当て舵の必要はない。
Further, when at least the rear half portions of the left and right plates are curved so as to be symmetrically inflated to the port side, the degree of rotation of the upward flow wrapping around the inner region of the plate is strengthened, so that the propeller The rotational energy of the water stream in the rear can be recovered more efficiently. At this time, the lateral force generated on the left and right plates is canceled out, so that the rudder is not necessary.

【0013】更に、プレートの厚みを後端側へ向けて逓
減させると、形状抵抗をより低減できることになる。
Further, when the thickness of the plate is gradually reduced toward the rear end side, the shape resistance can be further reduced.

【0014】[0014]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1乃至図4は本発明の一実施例を示すも
ので、センタースケグ11を有する船体1の船尾部2の
左舷側部及び右舷側部から後方へ向けてプロペラシャフ
ト3をそれぞれ突出位置させ、該プロペラシャフト3の
後端のプロペラ5を互いに内回り(矢印X方向)に回転
させることにより、船体1に推進力が与えられるように
してある二軸内回り船において、上記各プロペラシャフ
ト3を保護するようにその外側に嵌めてある保護スリー
ブ6と該保護スリーブ6の上方に位置する船尾船体表面
2aとの間を、全面が平坦なプレート9で塞ぎ、該プレ
ート9と船尾船体表面2aとの間に、図9(ロ)の船尾
トンネル8とは異なる閉じられた空間10を形成させる
ようにし、航行中に、上記空間10の部分に淀みが出来
るようにする。
1 to 4 show an embodiment of the present invention, in which a propeller shaft 3 is projected rearward from the port side and starboard side of the stern 2 of a hull 1 having a center skeg 11, respectively. The propeller shafts 3 are positioned and the propellers 5 at the rear ends of the propeller shafts 3 are rotated inward (in the direction of the arrow X) with respect to each other to provide a propulsive force to the hull 1. A plate 9 having a flat surface is provided between the protective sleeve 6 fitted on the outer side of the protective sleeve 6 and the stern hull surface 2a located above the protective sleeve 6 to close the plate 9 and the stern hull surface 2a. 9B, a closed space 10 different from the stern tunnel 8 of FIG. 9B is formed so that a stagnation can be formed in the space 10 during navigation.

【0016】又、上記プレート9の厚み分布は、後端側
へ向けて逓減するようにし、プロペラシャフト保持部材
の形状抵抗を低減させるようにする。
Further, the thickness distribution of the plate 9 is gradually decreased toward the rear end side, and the shape resistance of the propeller shaft holding member is reduced.

【0017】本発明においては、プロペラシャフト3を
保護する保護スリーブ6とその上方に位置する船尾船体
表面2aとの間の隙間が流線に沿わせて取り付けた平ら
なプレート9によって塞がれているため、航行時におい
て、図10に示すシャフトブラケット方式に比して形状
抵抗を極めて小さくすることができ、一方、図9に示す
ボッシング方式のスケグ4に比べてプレート9の肉厚を
薄くできるので、重量的にも有利であって軽量化を図る
ことができる。又、上記プレート9は、図4に示す如
く、先端から後端へ向けて逓減するような厚み分布とし
てあるため、強度上も問題なく同一厚み分布の場合に比
して形状抵抗をより小さくすることができる。したがっ
て、特に、高速域での抵抗低減に顕著な効果を発揮す
る。
In the present invention, the gap between the protective sleeve 6 for protecting the propeller shaft 3 and the stern hull surface 2a located above it is closed by a flat plate 9 mounted along the streamline. Therefore, at the time of navigation, the shape resistance can be made extremely small as compared with the shaft bracket method shown in FIG. 10, while the plate 9 can be made thinner than the bossing method skeg 4 shown in FIG. Therefore, it is advantageous in terms of weight and can be reduced in weight. Further, as shown in FIG. 4, the plate 9 has a thickness distribution that gradually decreases from the front end to the rear end, so that the shape resistance is made smaller than in the case of the same thickness distribution without any problem in strength. be able to. Therefore, it exhibits a remarkable effect particularly in reducing the resistance in the high speed range.

【0018】又、船体1を航行させるとき、プレート9
によって仕切られた内側領域となる空間10と外側領域
との間に流速差に基づく圧力差が発生するが、プロペラ
5に近いプレート9の後端部側位置では、図2に示す如
く、上記の圧力差を埋め合わせるようにプレート9の外
側領域から内側領域に回り込む上向きの流れYが促進さ
れることになる。この上向きの流れYは、プロペラ5の
回転方向(矢印X方向)と逆向きの回転流成分となるた
め、プロペラ5の後方に残る水流の回転エネルギーの回
収効率を高めることができ、プロペラ5の回転エネルギ
ーロスを減少させることができて、船体1の推進効率を
向上させることができる。
When the hull 1 is navigated, the plate 9
A pressure difference based on the flow velocity difference is generated between the space 10 which is an inner region and the outer region which are partitioned by, but at the position of the rear end portion of the plate 9 near the propeller 5, as shown in FIG. An upward flow Y that wraps around from the outer region of the plate 9 to the inner region to compensate for the pressure difference will be promoted. This upward flow Y becomes a rotational flow component that is in a direction opposite to the rotational direction of the propeller 5 (direction of arrow X), so that the efficiency of collecting rotational energy of the water flow remaining behind the propeller 5 can be increased and the propeller 5's efficiency can be increased. The rotational energy loss can be reduced and the propulsion efficiency of the hull 1 can be improved.

【0019】因に、図5の(イ)(ロ)は従来のシャフ
トブラケット方式と本発明の装置とを比較するために模
型を用いて試験を行った結果を示すプロペラ伴流分布図
で、(イ)に示すプロペラシャフト方式では、プロペラ
シャフト3を保護する保護スリーブ6とその上方に位置
する船尾船体表面2aとの間に隙間があるため、ブラケ
ット7の位置を境いとする外側と内側の流れの速さにあ
まり差は見られず、又、プロペラシャフト3の内側を流
れる上向きの流れの大きさは小さいが、(ロ)に示す本
発明の装置では、プレート9の存在により、プレート9
の内側領域に回り込んだ上向きの流れYは大きな矢印で
示す如く大きくなって促進されたことが解る。
Incidentally, (a) and (b) of FIG. 5 are propeller wake distribution maps showing the results of a test conducted using a model for comparing the conventional shaft bracket system and the device of the present invention. In the propeller shaft system shown in (a), since there is a gap between the protective sleeve 6 that protects the propeller shaft 3 and the stern hull surface 2a located thereabove, there is a gap between the outside and inside of the bracket 7 as a boundary. Although there is not much difference in the speed of the flow, and the magnitude of the upward flow that flows inside the propeller shaft 3 is small, in the device of the present invention shown in (b), the plate 9 exists due to the presence of the plate 9.
It can be seen that the upward flow Y circling into the inner region of the flow path was increased and promoted as indicated by the large arrow.

【0020】上記において、プレート9は単純な形状で
あるため、プロペラシャフト保持部材の設計、建造が容
易であり、船体1の船尾部2の改造を行うことなくプレ
ート9を取り付けることができるので、既存の船舶に対
しても短期間で取り付けることができる。
In the above description, since the plate 9 has a simple shape, it is easy to design and construct the propeller shaft holding member, and the plate 9 can be attached without modifying the stern portion 2 of the hull 1. It can be installed on existing ships in a short period of time.

【0021】次に、図6、図7及び図8の(イ)(ロ)
(ハ)は本発明の他の実施例を示すもので、上記実施例
と同様な構成において、プロペラシャフト3の外側の保
護スリーブ6とその上方位置の船尾船体表面2aとの間
を塞いだ左右のプレート9のほぼ中間部位置から後端側
へかけての後半部を、それぞれ舷側に対称的に膨らむよ
うに湾曲させたものである。
Next, in FIG. 6, FIG. 7 and FIG.
(C) shows another embodiment of the present invention. In the same configuration as the above embodiment, the left and right sides of the protective sleeve 6 outside the propeller shaft 3 and the stern hull surface 2a above it are closed. The second half of the plate 9 from the substantially middle position to the rear end side is curved so as to bulge symmetrically to the port side.

【0022】かかる実施例の場合には、二軸内回り船に
おいて、左右のプレート9の後半部が舷側へ対称的に膨
らむように湾曲させることによって、より多くの流体が
流れ込むようにしてあるため、図8の(イ)(ロ)
(ハ)に示す如く、プレート9の外側領域から内側領域
に回り込んで上向きとなった流れYの回転の度合をより
強めることができる。そのため、プロペラ5の後方にお
ける水流の回転エネルギーの回収効率を更に高めること
ができて、船体1の推進効率を大幅に向上させることが
できる。
In the case of such an embodiment, in a two-axis inward turning ship, the latter half of the left and right plates 9 are curved so as to bulge symmetrically toward the port side, so that more fluid flows in. 8 (a) (b)
As shown in (c), it is possible to further increase the degree of rotation of the flow Y that has turned up from the outer side region of the plate 9 to the inner side region. Therefore, the efficiency of collecting the rotational energy of the water flow behind the propeller 5 can be further enhanced, and the propulsion efficiency of the hull 1 can be significantly improved.

【0023】図6乃至図8(イ)(ロ)(ハ)の実施例
において、プレート9は舷側へ膨らむように湾曲させた
形状としてあることから、船体1を横方向へ押そうとす
る横力が発生するが、左右対称的に取り付けてあるた
め、左右舷側圧力分布のバランスが崩れることはなく、
船体1を直進させるために当て舵を行う必要はない。し
たがって、左右いずれか一方の船側船体表面圧力が低下
することはなく、粘性圧力抵抗を増大させてしまうこと
はない。
In the embodiment shown in FIGS. 6 to 8 (a), (b), and (c), the plate 9 has a curved shape so as to bulge to the port side, so that the hull 1 is pushed laterally. Force is generated, but since it is installed symmetrically, the balance of pressure distribution on the port side will not be disturbed,
It is not necessary to make a rudder to move the hull 1 straight. Therefore, the surface pressure of the hull on the left or right side does not decrease, and the viscous pressure resistance does not increase.

【0024】なお、図6乃至図8(イ)(ロ)(ハ)の
実施例では、プレートの後半部に膨らみをもたせた場合
を示したが、プレート9の全長にわたり膨らみをもたせ
るようにしても差し支えないこと、その他本発明の要旨
を逸脱しない範囲内において種々変更を加え得ることは
勿論である。
In the embodiments shown in FIGS. 6 to 8 (a), (b), and (c), the bulge is given to the latter half of the plate. However, the bulge is provided over the entire length of the plate 9. Needless to say, various modifications may be made without departing from the scope of the present invention.

【0025】[0025]

【発明の効果】以上述べた如く、本発明の船舶の抵抗低
減装置によれば、次の如き優れた効果を発揮する。 (i) 内回りする左右のプロペラシャフトを保護するため
の保護スリーブとその上方に位置する船尾船体表面との
間の隙間全面を、平らなプレートで塞いだので、従来の
ボッシング方式に比してプロペラシャフト保持部材の重
量を軽減することができると共に、従来のシャフトブラ
ケット方式に比してプロペラシャフト保持部材の形状抵
抗を限りなく零にすることができるように極めて小さく
することができ、高速域での抵抗低減に効果を発揮で
き、高速船舶の馬力低減に寄与し得る。 (ii)プレートの内側領域と外側領域との流速差に基づく
圧力差により、外側領域から内側領域へ回り込む上向き
の流れを促進でき、上記上向きの流れが内回りする左右
のプロペラシャフトのプロペラ回転方向と逆の回転成分
となるため、プロペラの後方に残る水流の回転エネルギ
ーの回収効率を高めることができて、推進効率を向上さ
せることができる。 (iii) 上記プレートは構造が単純であることから、船舶
の設計、建造の面で有利であり、既存の船舶へも適用す
ることができる。 (iv)内回りする左右のプロペラシャフトの保護スリーブ
と船尾船体表面との間に設けたプレートの少なくとも後
半部をそれぞれ舷側に対称的に膨らむように湾曲させた
構成とすることにより、内側に回り込んだ上向きの流れ
の回転の度合を高めることができるので、プロペラの後
方に残る水流の回転エネルギーを更に効率よく回収する
ことができて、推進効率を大幅に向上させることがで
き、この際、プレートは左右対称配置であることから、
船体の直進性を損うことはなく、当て舵を行う必要がな
い。 (v) プレートの厚みを後端側へ向け逓減させた構成とす
ることにより、プロペラシャフト保持部材の形状抵抗を
より低減することができる。
As described above, the resistance reducing device for a ship of the present invention exhibits the following excellent effects. (i) A flat plate covers the entire gap between the protective sleeves for protecting the left and right propeller shafts that go inward and the surface of the stern hull located above it. In addition to being able to reduce the weight of the shaft holding member, it can be made extremely small compared to the conventional shaft bracket method so that the shape resistance of the propeller shaft holding member can be reduced to zero as much as possible, and in the high speed range. It is possible to exert the effect of reducing the resistance of the ship and contribute to the reduction of the horsepower of the high-speed ship. (ii) Due to the pressure difference based on the flow velocity difference between the inner region and the outer region of the plate, it is possible to promote an upward flow that wraps around from the outer region to the inner region, and the above-mentioned upward flow and the propeller rotation direction of the left and right propeller shafts Since it becomes the reverse rotation component, the recovery efficiency of the rotation energy of the water flow remaining behind the propeller can be improved, and the propulsion efficiency can be improved. (iii) Since the plate has a simple structure, it is advantageous in the design and construction of a ship, and can be applied to existing ships. (iv) At least the latter half of the plate provided between the protective sleeves of the left and right propeller shafts that circulate inward and the surface of the stern hull is curved so as to bulge symmetrically toward the port side, so that it wraps inward. Since the degree of rotation of the upward flow can be increased, the rotational energy of the water flow remaining behind the propeller can be more efficiently recovered, and the propulsion efficiency can be significantly improved. Is a symmetrical arrangement,
It does not impair the straightness of the hull, and there is no need for steering. (v) By adopting a configuration in which the thickness of the plate is gradually reduced toward the rear end side, it is possible to further reduce the shape resistance of the propeller shaft holding member.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の船舶の抵抗低減装置の一実施例を示す
船尾部の側面図である。
FIG. 1 is a side view of a stern showing an embodiment of a resistance reducing device for a ship according to the present invention.

【図2】図1のII−II矢視図である。FIG. 2 is a view taken along the line II-II in FIG.

【図3】図1のIIIA方向、IIIB方向、IIIC方向、IIID方
向の合成矢視図である。
FIG. 3 is a combined arrow view of IIIA direction, IIIB direction, IIIC direction, and IIID direction of FIG.

【図4】図1のIV−IV拡大矢視図である。FIG. 4 is an enlarged view of IV-IV in FIG.

【図5】プロペラ伴流分布を示すもので、(イ)は従来
のシャフトブラケット方式の場合を、又、(ロ)は本発
明による場合をそれぞれ示す図である。
FIG. 5 is a diagram showing a propeller wake distribution, (a) showing a case of a conventional shaft bracket system and (b) showing a case of the present invention.

【図6】本発明の他の実施例を示す船尾部の側面図であ
る。
FIG. 6 is a side view of a stern part showing another embodiment of the present invention.

【図7】図6のVII −VII 矢視図である。FIG. 7 is a view taken in the direction of arrows VII-VII in FIG. 6;

【図8】図6を部分的に拡大して示すもので、(イ)は
図6のVIIIA 方向断面図、(ロ)はVIIIB 方向断面図、
(ハ)はVIIIC 方向断面図である。
FIG. 8 is a partially enlarged view of FIG. 6, in which (a) is a sectional view in the VIIIA direction of FIG. 6, (b) is a sectional view in the VIIIB direction,
(C) is a cross-sectional view in the VIIIC direction.

【図9】ボッシング方式のプロペラシャフト保持構造を
示すもので、(イ)は船尾部の概略側面図、(ロ)は
(イ)のIX方向より見た右半部の背面図である。
9A and 9B show a boshing type propeller shaft holding structure, in which FIG. 9A is a schematic side view of the stern portion, and FIG. 9B is a rear view of the right half portion viewed from the IX direction in FIG. 9A.

【図10】シャフトブラケット方式のプロペラシャフト
保持構造を示すもので、(イ)は船尾部の概略側面図、
(ロ)は(イ)のX方向より見た右半部の背面図であ
る。
FIG. 10 shows a shaft bracket type propeller shaft holding structure, in which (a) is a schematic side view of a stern portion,
(B) is a rear view of the right half portion viewed from the X direction of (A).

【符号の説明】[Explanation of symbols]

2 船尾部 2a 船尾船体表面 3 プロペラシャフト 6 保護スリーブ 9 プレート 11 センタースケグ 2 Stern part 2a Stern hull surface 3 Propeller shaft 6 Protective sleeve 9 Plate 11 Center skeg

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 センタースケグを有する船舶における船
尾部の左舷側部及び右舷側部からそれぞれ後方へ向けて
プロペラシャフトを突出させて互いに内回りとなるよう
にし、該各プロペラシャフトを保護する保護スリーブと
該保護スリーブの上方に位置する船尾船体表面との間
を、全面が平らなプレートで塞いでなる構成を有するこ
とを特徴とする船舶の抵抗低減装置。
1. A protective sleeve that protects each propeller shaft by projecting the propeller shafts toward the rear from the port side and starboard side of the stern of a ship having a center skeg so as to be inside each other. A resistance reducing device for a ship, characterized in that a space between the surface of the stern and the surface of the stern hull located above the protective sleeve is covered with a plate having a flat surface.
【請求項2】 左右のプレートの少なくとも後半部を、
それぞれ舷側に対称的に膨らむような湾曲形状とした請
求項1記載の船舶の抵抗低減装置。
2. At least the latter half of the left and right plates,
The marine vessel drag reduction device according to claim 1, wherein the marine vessel has a curved shape that bulges symmetrically toward the port side.
【請求項3】 プレートの厚みを、後端側へ向けて逓減
させた請求項1又は2記載の船舶の抵抗低減装置。
3. The resistance reducing device for a ship according to claim 1, wherein the thickness of the plate is gradually reduced toward the rear end side.
JP6317728A 1994-11-29 1994-11-29 Resistance reducing device of ship Pending JPH08150983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6317728A JPH08150983A (en) 1994-11-29 1994-11-29 Resistance reducing device of ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6317728A JPH08150983A (en) 1994-11-29 1994-11-29 Resistance reducing device of ship

Publications (1)

Publication Number Publication Date
JPH08150983A true JPH08150983A (en) 1996-06-11

Family

ID=18091381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6317728A Pending JPH08150983A (en) 1994-11-29 1994-11-29 Resistance reducing device of ship

Country Status (1)

Country Link
JP (1) JPH08150983A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1203715A3 (en) * 2000-11-02 2003-07-23 Schottel GmbH & Co KG. Ship, especially fast ship with PoD propulsion
JPWO2006095774A1 (en) * 2005-03-11 2008-08-14 株式会社川崎造船 Ship stern structure
WO2011055558A1 (en) * 2009-11-05 2011-05-12 三菱重工業株式会社 Stern structure for ship
JP2011168251A (en) * 2010-02-22 2011-09-01 Ihi Corp Ship with two-screw propeller
CN104401475A (en) * 2014-11-25 2015-03-11 上海船舶研究设计院 Structure in combination of double vortex tail fins and tail shaft system of twin-propeller ship
KR20150034326A (en) * 2013-09-26 2015-04-03 대우조선해양 주식회사 Twisted strut and install structure of the twisted strut
JP6246960B1 (en) * 2017-01-25 2017-12-13 三菱重工業株式会社 Ship propulsion device and ship
DE102019116553A1 (en) * 2019-06-18 2020-12-24 Promarin Propeller Und Marinetechnik Gmbh Drive for a watercraft

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1203715A3 (en) * 2000-11-02 2003-07-23 Schottel GmbH & Co KG. Ship, especially fast ship with PoD propulsion
JPWO2006095774A1 (en) * 2005-03-11 2008-08-14 株式会社川崎造船 Ship stern structure
JP2011098725A (en) * 2005-03-11 2011-05-19 Kawasaki Heavy Ind Ltd Stern structure of ship
JP4781350B2 (en) * 2005-03-11 2011-09-28 川崎重工業株式会社 Ship stern structure
KR101330372B1 (en) * 2009-11-05 2013-11-15 미츠비시 쥬고교 가부시키가이샤 Stern structure for ship
WO2011055558A1 (en) * 2009-11-05 2011-05-12 三菱重工業株式会社 Stern structure for ship
CN102438891A (en) * 2009-11-05 2012-05-02 三菱重工业株式会社 Stern structure for ship
US8499705B2 (en) 2009-11-05 2013-08-06 Mitsubishi Heavy Industries, Ltd. Stern structure of ship
JP2011168251A (en) * 2010-02-22 2011-09-01 Ihi Corp Ship with two-screw propeller
KR20150034326A (en) * 2013-09-26 2015-04-03 대우조선해양 주식회사 Twisted strut and install structure of the twisted strut
CN104401475A (en) * 2014-11-25 2015-03-11 上海船舶研究设计院 Structure in combination of double vortex tail fins and tail shaft system of twin-propeller ship
JP6246960B1 (en) * 2017-01-25 2017-12-13 三菱重工業株式会社 Ship propulsion device and ship
WO2018138941A1 (en) * 2017-01-25 2018-08-02 三菱重工業株式会社 Ship propulsion device and ship
JP2018118634A (en) * 2017-01-25 2018-08-02 三菱重工業株式会社 Ship propulsion unit and ship
KR20190074319A (en) * 2017-01-25 2019-06-27 미츠비시 쥬고교 가부시키가이샤 Ship propulsion devices and vessels
CN110114268A (en) * 2017-01-25 2019-08-09 三菱重工业株式会社 The propulsion device and ship of ship
CN110114268B (en) * 2017-01-25 2022-06-14 三菱重工业株式会社 Propulsion device for ship and ship
DE102019116553A1 (en) * 2019-06-18 2020-12-24 Promarin Propeller Und Marinetechnik Gmbh Drive for a watercraft
DE102019116553B4 (en) * 2019-06-18 2021-01-07 Promarin Propeller Und Marinetechnik Gmbh Drive for a watercraft

Similar Documents

Publication Publication Date Title
JP4789953B2 (en) Ship propulsion system
JP3004238B2 (en) Ship propulsion performance improvement device
WO2015093048A1 (en) Stern duct, stern attachment, method of designing stern duct, and ship equipped with stern duct
JPH08150983A (en) Resistance reducing device of ship
US5145428A (en) Shrouded propeller system for a sailboat
US4746314A (en) Combined propulsion and steering system for a motor boat with an inboard engine
JP6548062B2 (en) Stern duct, stern attachment, method of designing stern duct, and ship equipped with stern duct
KR100946968B1 (en) Pre-swirl Stator improving ability to maneuver in vessel
EP0453529B1 (en) Asymmetric hydrofoil propulsion method and apparatus
GB2209509A (en) Watercraft with guide fins
JPH0526798U (en) Rudder for ships
CA2419669A1 (en) Boat thruster apparatus and method
JP4380975B2 (en) Ship
KR101886920B1 (en) Rudder for ship
EP1169223A1 (en) Drive means in a boat
JP3968808B2 (en) Ship rudder device
JPH08282590A (en) Propeller for vessel
JP2533737Y2 (en) Ship propulsion
JPH06247388A (en) Rudder structure of ship
JP2794768B2 (en) Small boat steering system
JPH07323887A (en) Marine propeller
JP2003200891A (en) Pod type propeller and vessel with the same
JPH1120789A (en) Double-axle ship with propelling performance increasing stern fin
JPH0958580A (en) Double end type ship
KR20120014995A (en) Ship using propeller