JPS61177340A - Treatment of gold-and silver-containing silica ore - Google Patents

Treatment of gold-and silver-containing silica ore

Info

Publication number
JPS61177340A
JPS61177340A JP60017517A JP1751785A JPS61177340A JP S61177340 A JPS61177340 A JP S61177340A JP 60017517 A JP60017517 A JP 60017517A JP 1751785 A JP1751785 A JP 1751785A JP S61177340 A JPS61177340 A JP S61177340A
Authority
JP
Japan
Prior art keywords
gold
silver
slag
ore
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60017517A
Other languages
Japanese (ja)
Other versions
JPH0443967B2 (en
Inventor
Takayoshi Kimura
隆義 木村
Seiichi Tsuyukuchi
露口 誠一
Yoshiaki Mori
芳秋 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60017517A priority Critical patent/JPS61177340A/en
Priority to US06/823,629 priority patent/US4695317A/en
Publication of JPS61177340A publication Critical patent/JPS61177340A/en
Publication of JPH0443967B2 publication Critical patent/JPH0443967B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To treat efficiently gold- and silver-contg. silica ore and to recover efficiently gold and silver by adding a reducing agent and the gold- and silver- contg. silica ore to copper converter slag, maintaining the slag at an adequate temp., adding a CaO-contg. material thereto and maintaining the adequate CaO grade of the slag. CONSTITUTION:The copper converter slag is maintained at 1,200-1,300 deg.C by a method for blowing pulverized coal and air enriched with oxygen through a tuyere into the molten converter slag or other method to melt the gold- and silver-contg. silica ore and to absorb the gold and silver therein into the separated copper-component, by which the gold and silver are recovered and the refractory erosion of the converter is prevented in a method for treating the above- mentioned ore by adding the reducing agent and said ore into the copper converter slag, melting the slag and absorbing the gold and silver into the recovered copper-component. The CaO-contg. material is added to the slag and is melted to maintain the CaO grade of the slag at about >=3.0wt% and about 13% in the above-mentioned method, by which the slopping of the slag is prevented and the handling loss of the recovered gold and silver is decreased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は含金銀硅酸鉱を銅転炉媛に溶解し、金、銀企回
収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for dissolving gold-containing silver silicate ore in a copper converter and recovering gold and silver.

〔従来の技術〕[Conventional technology]

含金銀硅酸鉱を溶解し金を回収する方法として、銅転炉
媛に還元剤と含金銀硅酸鉱を加えて溶解し、媛中の銅分
に金銀を吸収させ、この銅分を分離することによって金
、銀を回収する方法を発明した。
As a method of melting gold-containing silver silicate ore and recovering gold, a reducing agent and gold-containing silver silicate ore are added to a copper converter, the gold and silver are absorbed into the copper content in the copper converter, and the copper content is separated. He invented a method of recovering gold and silver by doing this.

この方法は、溶融転炉媛中に羽口から微粉炭と酸素富化
空気を吹き込む、あるいは補助バーナーにて浴温を維持
しながら石炭等の還元剤を加える等の方法によって、暖
中のFe Oを還元して媛の粘性を下げ、媛中に懸垂し
ている銅分を沈降分離すると共に、媛に化学的に溶解し
ている銅の一部も還元して回収すると同時に、媛中のF
e / 5in2が0.8程度になるまで含金銀硅酸鉱
を加えて溶解し含金銀硅酸鉱中の金銀を分離した銅分中
に吸収させることによって、媛中の銅及び含金銀硅酸鉱
中の金、銀を同時に回収するものである。
This method involves blowing pulverized coal and oxygen-enriched air into the melting converter through the tuyeres, or adding a reducing agent such as coal while maintaining the bath temperature with an auxiliary burner. O is reduced to lower the viscosity of HIME, and the copper suspended in HIME is separated by sedimentation. At the same time, a part of the copper chemically dissolved in HIME is also reduced and recovered, and at the same time, the copper content suspended in HIME is reduced and recovered. F
By adding and dissolving gold-bearing silver silicate ore until e/5in2 becomes about 0.8 and absorbing the gold and silver in the gold-bearing silver silicate ore into the separated copper, the copper and gold-bearing silver silicate in Hime are dissolved. This method simultaneously recovers gold and silver from the ore.

しかしこの方法では、最終的な媛組成がFeO−FeO
−SiO系媛のSiO飽和領域の組成となる2 3  
     2              まため、わ
ずかな温度低下や組成変動により添加した含金銀硅酸鉱
が未溶解のま\残って金、銀の収率の低下を招いたり、
溶解速度が遅いので含金銀硅酸鉱を完全に溶解するのに
高温で長時間保持するために多くの熱量が必要となり、
また溶解時間短縮のために更に昇温させれば耐火物の溶
損が著しくなる欠点がある。更に、この方法で羽口ある
いは上吹ランスから還元剤を吹き込む際に、転炉暖中に
含金銀硅酸鉱が溶解するにつれて暖の7オーミングが激
しくなり、暖が炉口から炉外に流出あるいは吹き上げる
スロッピングが増加し、繰り返し物が増加し、高温溶体
が吹き出すなど安全上、設備保全上の問題があった。
However, with this method, the final composition is FeO-FeO
-The composition of SiO saturation region of SiO system 2 3
2 Additionally, due to a slight temperature drop or compositional change, the added gold-containing silver silicate ore may remain undissolved, resulting in a decrease in the yield of gold and silver.
Because the dissolution rate is slow, a large amount of heat is required to maintain the gold-containing silver silicate ore at high temperatures for a long time to completely dissolve it.
Further, if the temperature is further increased to shorten the melting time, there is a drawback that the refractory material will be significantly damaged by melting. Furthermore, when the reducing agent is injected from the tuyere or top blowing lance using this method, as the gold-containing silver silicate ore dissolves during the converter heating, the heating becomes more intense, causing the heating to flow out of the furnace from the furnace opening. Alternatively, there were safety and equipment maintenance problems such as increased slopping, increased number of repeated objects, and high-temperature solution being blown out.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、銅転炉媛を還元しながら含金銀硅酸鉱
企溶解せしめる際に、短時間で含金銀硅酸鉱を完全に溶
解して浴温維持の為の燃料を低減させると共に、耐火物
の寿命を延長させ、暖のフォーミングスロッピングを防
止する方法を提供することにある。
The purpose of the present invention is to completely melt the gold-containing silver silicate ore in a short time when reducing the copper converter and melting the gold-containing silver silicate ore while reducing the amount of fuel required to maintain the bath temperature. The object of the present invention is to provide a method for extending the life of refractories and preventing thermal forming sloping.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の方法は、銅転炉媛に還元剤と含金銀硅酸鉱を加
えて溶解し、回収される銅分に金、銀を吸収させること
により含金銀硅酸鉱を処理する方法において、媛温度を
1200〜1300 cに保持しつつ暖のCaO品位が
a、O重量%以上となるように含CaO物を媛に添加溶
解させることにある。
The method of the present invention is a method for treating gold-containing silver silicate ore by adding a reducing agent and gold-containing silver silicate ore to a copper converter, dissolving it, and making the recovered copper absorb gold and silver. The purpose is to add and dissolve a CaO-containing substance in the molten metal so that the warm CaO grade becomes a, O weight % or more while maintaining the molten temperature at 1200 to 1300 c.

発明者等は実験室規模でアルミナ質タンマン管中で転炉
媛、含金銀硅酸鉱粉、石灰石粉、微粉炭を溶解しく条件
i暖中pe/SiO−o、s 、微粉□炭率=2重量%
、N ガス中、1250C,1時間)Xそのま\冷却せ
しめた後緻密な鎧層の直上の気泡と暖の混合した層(ア
ワ層)の厚さを測定し第1図の結果を得た。即ち、Ca
O添加率が2.5重量%未満(媛のCaO品位としては
3.0重量%)では、アワ層厚さが大きく、暖のフォー
ミング、スロッピングが起き易いので媛のCaO品位が
3.0重量%以上である必要がある。しかし多量含有せ
しめても効果は大きくならないので、せいぜいCaO品
位として13重量%程度までが限度である。
The inventors established conditions for dissolving converter powder, gold-containing silver silicate powder, limestone powder, and pulverized coal in an alumina Tamman tube on a laboratory scale. 2% by weight
, N gas, 1250C, 1 hour) . That is, Ca
If the O addition rate is less than 2.5% by weight (Hime's CaO grade is 3.0% by weight), the thickness of the millet layer is large and warm forming and slopping are likely to occur, so Hime's CaO grade is 3.0%. It needs to be at least % by weight. However, even if it is contained in a large amount, the effect will not be great, so the CaO grade is limited to about 13% by weight at most.

CaO源としては石灰石、生石炭いずれでも良く、形状
添加方法は種々考えられるが、特殊な方法は必要なく、
塊状のものを炉内に投入するだけで良い。
Either limestone or raw coal can be used as the CaO source, and various methods of adding shape can be considered, but no special method is required.
All you have to do is throw the lumps into the furnace.

含金銀硅酸鉱を溶解する際の媛温度が1200 C未満
ではスロッピングが著しく、含金銀硅酸鉱が未溶解で残
り、また1300 Cを超える温度では耐火物の溶損が
著しくなり、且つこの場合もスロッピングが多く起こる
ので媛温度を1200〜1300 t:’とする必要が
ある。
If the temperature when melting the gold-containing silver silicate ore is less than 1200 C, slopping will be significant and the gold-containing silver silicate will remain undissolved, and if the temperature exceeds 1300 C, the refractory will be significantly eroded, and Also in this case, since a lot of slopping occurs, the temperature must be set at 1200 to 1300 t:'.

〔実施例〕〔Example〕

実施例 レンガ内張りの内径1.51!1%内長1.7mのIt
s型転炉に第1表に示した組成の銅転炉暖2〜4Ton
を装入し、内径21鴎の羽口4本から酸素濃度25〜3
3容量%の酸素富化空気を15〜2ONm15)及び微
粉炭を10〜20重量%(対転炉媛%)吹き込みながら
・第1表に示した組成の含金銀硅酸鉱を媛層(1) F
e / SiOが1.ONO,8になるまで、及び石灰
石をCaO添加率が7重量%(対転炉媛%)となるまで
塊状のものは炉口に差し込んだシュートにより、また粉
状のものは羽口もしくはランスから吹き込む方法で連続
的に装入した。
Example brick lining inner diameter 1.51!1% inner length 1.7 m It
Copper converter furnace with the composition shown in Table 1 for S-type converter 2 to 4 tons
was charged, and the oxygen concentration was 25 to 3 from the four tuyeres of the inner diameter 21
While blowing 3% by volume of oxygen-enriched air (15 to 2ONm15) and 10 to 20% by weight of pulverized coal (1% by weight to the converter), the gold-containing silver silicate ore having the composition shown in Table 1 was poured into the 1st layer (1 ) F
e/SiO is 1. Until the ONO is 8, and the CaO addition rate is 7% by weight (based on the converter), lumpy limestone is collected through a chute inserted into the furnace mouth, and powdery material is collected through the tuyeres or lances. It was charged continuously by blowing method.

含金銀硅酸鉱、石灰石の投入終了後頁に一定時間吹錬を
行なった後、炉を傾転し媛及び回収銅分を炉外に排出し
た。これらの操業の間では、合金銀硅酸鉱装入速度、羽
口がら吹き込む酸素富化、空気の酸素濃度を調節するこ
とにより媛温度を1200〜1300 tZ”にコント
ロールした。
After the addition of gold-containing silver silicate and limestone, the furnace was blown for a certain period of time, and then the furnace was tilted and the iron and recovered copper were discharged from the furnace. During these operations, the temperature was controlled at 1200 to 1300 tZ'' by adjusting the alloyed silver silicate ore charging rate, oxygen enrichment blown into the tuyeres, and the oxygen concentration of the air.

含金銀硅酸鉱としては、SiO85,0重量%で、15
〜30闘の塊あるいは粉(200メツシユ以下のものを
70重量%含む)を用い、CaO源としては10〜20
11!T11の塊状石灰石を用いた。
As gold-containing silver silicate ore, SiO85.0% by weight, 15
~30 mcg lumps or powder (containing 70% by weight of 200 mcg or less) are used, and 10 to 20 mcg is used as the CaO source.
11! T11 massive limestone was used.

第1表 単位二重量% 本プロセスによる金、銀の回収率は96〜98重量%程
度であった。
Table 1: Unit Duplex Weight % The recovery rate of gold and silver by this process was about 96 to 98% by weight.

含金銀硅酸鉱の溶解状況に対する溶解時間、媛温度の影
響を第2図に示した。第2図で。及び6印はそれぞれ塊
状の含金銀硅酸鉱を媛層のFe/5in2が1.0とな
るまで装入し、石灰石をCaO添加率が。
Figure 2 shows the influence of dissolution time and temperature on the dissolution state of gold-containing silver silicate ore. In Figure 2. Marks 6 and 6 are respectively charged with bulk gold-bearing silver silicate ore until the Fe/5in2 of the Hime layer becomes 1.0, and limestone with a CaO addition rate.

7重量%(対転炉媛)となるまで装入した操業で未溶解
の含金銀硅酸鉱が無かった場合、及び有った場合であり
、△及びム印はそれぞれ塊状の含金銀硅酸鉱媛層のFe
/s1o  が0.8となるまで装入し、石灰石をCa
O添加率が7重量%(対転炉暖)となるまで装入した操
業で未溶解の含金銀硅酸鉱が無かった場合及び有った場
合であり、またV印は粉状の含金銀硅酸鉱を鉄中のFe
/SiOが1.0となるまで装入し、石灰石をCaO添
加率が7重量%(対転炉媛)となるまで装入した操業で
未溶解の含金銀硅酸鉱が無かった場合である。第2図で
判るように、CaO添加率7重量%では、暖温度120
0〜1300CでFe/ slo  を1.0とするこ
とで含金銀珪酸鉱の溶解状況は改善しており、粉状の含
金銀硅酸鉱を装入すれば更に改善される。
This is the case where there was no undissolved gold-containing silver silicate ore during the operation in which the amount was charged to 7% by weight (for the converter), and the cases where there was undissolved gold-containing silver silicate ore. Fe in the Ohime layer
/s1o is 0.8, and limestone is
This is the case where there was no undissolved gold-bearing silver silicate ore during the operation in which charging was carried out until the O addition rate reached 7% by weight (relative to the converter furnace), and the V mark indicates powdery gold-bearing silver. Silica ore is Fe in iron.
/SiO was charged until it reached 1.0, and limestone was charged until the CaO addition rate reached 7% by weight (for the converter furnace), and there was no undissolved gold-containing silver silicate ore. . As can be seen in Figure 2, when the CaO addition rate is 7% by weight, the warm temperature is 120%.
The dissolution state of the gold-containing silver silicate ore is improved by setting Fe/slo to 1.0 at 0 to 1300C, and it is further improved by charging the powdered gold-containing silver silicate ore.

暖のスロッピングに対するCaO添加と媛温度の制御の
効果を第2表に示した。第2表で実施例1.2では石灰
石を添加し、含金銀硅酸鉱装入速度及び使用する酸素富
化空気の酸素濃度を調節することにより暖温度を120
0〜1300 Cに制御したものであり、転炉炉口から
吹き上げる物が減少しスロッピングが押えられたことを
示している。
Table 2 shows the effects of CaO addition and temperature control on warm slopping. Table 2 shows that in Example 1.2, the warm temperature was reduced to 120% by adding limestone and adjusting the charging rate of gold-containing silver silicate ore and the oxygen concentration of the oxygen-enriched air used.
The temperature was controlled between 0 and 1300 C, indicating that the amount of material blown up from the converter mouth was reduced and slopping was suppressed.

第2表 転炉の耐火物溶損量に対するCaO添加とM温度の制御
の効果を第3表に示した。
Table 2 Table 3 shows the effects of CaO addition and M temperature control on the amount of refractory erosion in the converter.

第   3   表 第3表の実施例では、石灰石を添加し、含金銀硅酸鉱装
入速度及び使用する酸素富化空気の酸素濃度を調節する
ことにより媛温度を1200〜1300Cに制御したも
のであり、媛温度が適切に制御され、スロッピングも押
えられるので、転炉内の各部の耐火物の溶接量が低減さ
れたことを示している。
Table 3 In the example shown in Table 3, the temperature was controlled to 1200 to 1300 C by adding limestone and adjusting the charging rate of gold-containing silver silicate ore and the oxygen concentration of the oxygen-enriched air used. This indicates that the amount of refractory welding in each part of the converter was reduced because the temperature was properly controlled and slopping was suppressed.

比較例 次記する条件以外は実施例とほぼ同じ装置1装入物、及
び操業方法により実施した。
Comparative Example A comparative example was carried out using almost the same equipment 1 charge and operating method as in the example except for the conditions described below.

含金銀硅酸鉱の溶解状況に対する溶解時間、及び暖温度
の影響を示した第2図において、○印及び■印はそれぞ
れ石灰石は装入せず、塊状の含金銀硅酸鉱を鉄中のIl
′e/5in2が1.0となるまで装入した操業で未溶
解の含金銀硅醗鉱が無かった場合及び有った場合である
。第2図より判るようにこの例の条件即ち石灰石を使用
しない場合には、媛湛度を約13000以上の高温で、
溶解時間も約100分以上の長時間でないと未溶解の含
金銀硅酸鉱が残り易いことを示している。
In Figure 2, which shows the influence of dissolution time and warm temperature on the dissolution status of gold-bearing silver silicate ore, the marks ○ and ■ indicate the cases in which lumpy gold-bearing silver silicate ore is placed in iron without charging limestone, respectively. Il
This is the case where there was no undissolved gold-containing silver silicate ore during the operation in which charging was carried out until 'e/5in2 became 1.0. As can be seen from Figure 2, under the conditions of this example, i.e., when no limestone is used, the degree of permanence is set at a high temperature of about 13,000 or higher,
This indicates that undissolved gold-containing silver silicate ore tends to remain unless the dissolution time is a long time of about 100 minutes or more.

媛のスロッピングに対するCaO添加と暖温度の制御の
効果を示す第2表において、比較例1は石灰石を添加せ
ず、羽口空気の酸素富化をせず、媛温度を成り行きとし
た場合であり、最終媛温度は約110Orと低下したた
めにスロッピングが著しくなったものである。比較例2
では石灰石を添加せず、酸素富化空気の酸素濃度は操業
中一定とし、含金銀硅酸鉱の装入速度を一定としたので
、媛温度は成り行きで上昇し過ぎ1850〜1400 
’Cとなった。この場合も、媛温度が1300Cを超え
た時に、スロッピングが激しくなって一回の処理銅転炉
鉄量を少なくしたにもかかわらず多量の吹上物が生じた
。比較例3では、石灰石を添加せず、酸素富化空気の酸
素濃度及び含金銀硅酸鉱の装入速度を調整して媛温度を
1250〜1300 t:’に制御した場合である。
In Table 2 showing the effects of CaO addition and warm temperature control on slopping, Comparative Example 1 shows no addition of limestone, no oxygen enrichment of the tuyere air, and the slopping temperature. The slopping became significant because the final temperature decreased to about 110 Or. Comparative example 2
In this case, no limestone was added, the oxygen concentration of the oxygen-enriched air was kept constant during the operation, and the charging rate of the gold-containing silver silicate ore was kept constant, so the temperature rose too much and reached 1850-1400.
It became 'C. In this case as well, when the temperature exceeded 1300C, slopping became severe and a large amount of blow-up material was generated even though the amount of iron in the copper converter treated at one time was reduced. In Comparative Example 3, no limestone was added, and the temperature was controlled to 1250 to 1300 t:' by adjusting the oxygen concentration of the oxygen-enriched air and the charging rate of the gold-containing silver silicate ore.

転炉の耐火物溶損量に対するCaO添加と温度制御の効
果を示した第3表において、比較例は石灰石を添加せず
、媛温度は成り行きで最終鍛温度は1800 t:’以
上となった場合である。
In Table 3, which shows the effects of CaO addition and temperature control on the amount of refractory corrosion in the converter, in the comparative example, no limestone was added, the temperature was the same, and the final forging temperature was 1800 t:' or higher. This is the case.

〔効果〕〔effect〕

以上のように、本発明により短時間で含金銀硅酸鉱を未
溶解物が残ることなく溶解することができるので燃料を
減少でき、使用する反応容器の耐火物の寿命を延ばし、
媛のスロッピングを押えることにより、吹上物を減少さ
せて繰返し物の減少、ひいては金、銀のハンドリングロ
スを減少させ、生産性を向上させる。
As described above, according to the present invention, it is possible to dissolve gold-containing silver silicate ore in a short time without leaving any undissolved matter, thereby reducing fuel consumption, extending the life of the refractories in the reaction vessel used,
By suppressing the slopping of the metal, it is possible to reduce the number of blown-up objects, reduce the number of repeated objects, and in turn reduce handling losses of gold and silver, thereby improving productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は銅転炉暖に、含金銀硅酸鉱、石灰石粉及び微粉
炭を添加して溶解しそのま\冷却せしめた場合、冷却媛
の上層に生じたアワ層の厚さと、石灰石添加率との関係
を示した図、第2図は銅転炉媛に、含金銀硅酸鉱及び微
粉炭を添加して溶解した場合及び更に石灰石を加えて溶
解した場合の各媛温度における溶解時間と、含金銀硅酸
鉱の溶解状況を示した図である。 出願人  住友金属鉱山株式会社 、−一 第1図 3叶 CαO渚加率(刻1」霞蔓量2) 第2図 覆シ艷CaC)
Figure 1 shows the thickness of the millet layer formed on the upper layer of the cooling layer and the addition of limestone when gold-containing silver silicate, limestone powder, and pulverized coal are added to the copper converter furnace, melted, and then cooled. Figure 2 shows the melting time at each temperature when gold-containing silver silicate ore and pulverized coal are added to the copper converter and when limestone is added and melted. FIG. 2 is a diagram showing the state of dissolution of gold-containing silver silicate ore. Applicant: Sumitomo Metal Mining Co., Ltd. - Figure 1 3 CaO Nagisa addition rate (Time 1" Haze amount 2) Figure 2 Override CaC)

Claims (1)

【特許請求の範囲】[Claims] (1)銅転炉■に還元剤と含金銀硅酸鉱を加えて溶解し
、回収される銅分に金、銀を吸収させることにより含金
銀硅酸鉱を処理する方法において、■温度を1200〜
1300℃に保持し、■のCaO品位が3.0重量%以
上となるように含CaO物を■に添加溶解することを特
徴とする含金銀硅酸鉱の処理法。
(1) In a method of processing gold-containing silver silicate ore by adding a reducing agent and gold-containing silver silicate ore to a copper converter (■) and melting it, the recovered copper absorbs gold and silver. 1200~
A method for treating gold-containing silver silicate ore, which comprises maintaining the temperature at 1300° C. and adding and dissolving a CaO-containing substance in (2) so that the CaO grade in (1) becomes 3.0% by weight or more.
JP60017517A 1985-01-31 1985-01-31 Treatment of gold-and silver-containing silica ore Granted JPS61177340A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60017517A JPS61177340A (en) 1985-01-31 1985-01-31 Treatment of gold-and silver-containing silica ore
US06/823,629 US4695317A (en) 1985-01-31 1986-01-29 Method of treating silicate ore containing gold and silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60017517A JPS61177340A (en) 1985-01-31 1985-01-31 Treatment of gold-and silver-containing silica ore

Publications (2)

Publication Number Publication Date
JPS61177340A true JPS61177340A (en) 1986-08-09
JPH0443967B2 JPH0443967B2 (en) 1992-07-20

Family

ID=11946149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60017517A Granted JPS61177340A (en) 1985-01-31 1985-01-31 Treatment of gold-and silver-containing silica ore

Country Status (1)

Country Link
JP (1) JPS61177340A (en)

Also Published As

Publication number Publication date
JPH0443967B2 (en) 1992-07-20

Similar Documents

Publication Publication Date Title
EP2767597B1 (en) Method of reduction processing of steel-making slag
US4416690A (en) Solid matte-oxygen converting process
US4695317A (en) Method of treating silicate ore containing gold and silver
US3964899A (en) Additives to improve slag formation in steelmaking furnaces
JPS6032684B2 (en) Manufacturing method of refined steel
JPH0475288B2 (en)
JPS61177340A (en) Treatment of gold-and silver-containing silica ore
JPS587691B2 (en) Steel manufacturing method
JP2682637B2 (en) Operation method of flash furnace
JP4422318B2 (en) Hot metal dephosphorization method with little refractory damage
JP3184313B2 (en) Supply method of molten blast furnace slag as a raw material for rock wool and its component adjusting material
JP2002105526A (en) Method for dephosphorizing molten iron generating little non-slagging lime
SU729251A1 (en) Method of steel casting in hearth steel-melting set
US713802A (en) Process of combining titanium with iron.
US721467A (en) Alloy of iron and titanium.
SU730822A1 (en) Method of casting ferrotungsten
RU2096475C1 (en) Method of conversion pig iron smelting in blast furnace
JPS61106744A (en) Melting and manufacturing method of stainless steel
JPS6214209B2 (en)
JPH0313291B2 (en)
JPH01252712A (en) Method for operating smelting reduction furnace
Onorin et al. Filtration of Ferruginous Slag Melts Through Coke Filling(Bed)
JPH0830206B2 (en) Slag coating method for melting and refining furnace
JPH1017915A (en) Converter refining method
JPS63192812A (en) Cu removing method in molten iron

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees